JPH1194185A - Underground pipe internal wall examining device - Google Patents

Underground pipe internal wall examining device

Info

Publication number
JPH1194185A
JPH1194185A JP9363164A JP36316497A JPH1194185A JP H1194185 A JPH1194185 A JP H1194185A JP 9363164 A JP9363164 A JP 9363164A JP 36316497 A JP36316497 A JP 36316497A JP H1194185 A JPH1194185 A JP H1194185A
Authority
JP
Japan
Prior art keywords
underground pipe
wall
photographing
image
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9363164A
Other languages
Japanese (ja)
Other versions
JP4098865B2 (en
Inventor
Atsuo Aihara
篤郎 相原
Kiyoshi Hasegawa
清 長谷川
Yuji Takei
勇二 武井
Ichiro Tamura
一郎 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QI KK
TOKYO SEKKEI JIMUSHO KK
Tokyo Metropolitan Government
Kansei Co
Original Assignee
QI KK
TOKYO SEKKEI JIMUSHO KK
Tokyo Metropolitan Government
Kansei Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QI KK, TOKYO SEKKEI JIMUSHO KK, Tokyo Metropolitan Government, Kansei Co filed Critical QI KK
Priority to JP36316497A priority Critical patent/JP4098865B2/en
Publication of JPH1194185A publication Critical patent/JPH1194185A/en
Application granted granted Critical
Publication of JP4098865B2 publication Critical patent/JP4098865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To specify the size or shape of an examined object such as a crack rapidly and correctly by disposing light sources in square shape, and photographing the internal wall of an underground pipe including places irradiated by beams of light at the time of photographing the internal wall of the underground pipe by a photographing telecamera while navigating on a fluid in the underground pipe. SOLUTION: An examining device 1 with a photographing telecamera (TV camera) 7 mounted on a water surface navigation body 3 is made to float on a fluid in a sewer pipe and navigated in the sewer pipe. During this navigation, the internal wall of the sewer pipe is photographed by the TV camera 7 to examine the position and size of a crack formed in the internal wall of the sewer pipe, but in this case, four laser beam sources 13 are arranged in square shape at the TV camera 7, and the center of the square shape is made to coincide with the center of a lens 11 of the TV camera 7. The internal wall of the underground pipe including places irradiated by beams of light from the light sources 13 is photographed by the TV camera 7, and the sensation of irradiated places on an image is used as a scale indicating actual length so as to be able to easily recognize the actual size of a specific part on the image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は下水管などの地中管
の内壁を調査する調査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an investigation device for inspecting the inner wall of an underground pipe such as a sewer pipe.

【0002】[0002]

【従来の技術】広域下水道計画の実施及び非開削技術の
向上にともなって、近年下水管の長距離化、すなわちマ
ンホール間隔の長距離化並びに下水管の大口径化が進展
している。大口径の下水管内には多量の流水が存在する
ために、管内部の破損状態などを調査するにあたって小
口径の下水管の調査に用いられている車輪又はスキーを
備えた小型の調査装置は潜行調査能力がないので使用す
ることができない。そこで、管内に調査員が入り込んで
携帯VTRを用い、又は目視によって管内部の調査を行
なっているが、管路の長距離化によって生じた換気不足
による大量の有毒ガスの充満などにより調査員が管内に
入り込めない場合も多い。また、管内が調査可能な状態
であっても、管内の水深及び流速が大きいために調査作
業はきわめて危険なものとなっている。
2. Description of the Related Art With the implementation of wide area sewerage plans and the improvement of non-cutting techniques, in recent years, the length of sewer pipes, that is, the distance between manholes and the diameter of sewer pipes have been increasing. Due to the large amount of flowing water in the large-diameter sewer pipes, small surveying equipment equipped with wheels or skis used for investigating small-diameter sewer pipes for investigating damage inside the pipes, etc. It cannot be used due to lack of research capability. Therefore, an investigator enters the pipe and uses a portable VTR or visually inspects the inside of the pipe. However, the investigator is filled with a large amount of toxic gas due to lack of ventilation caused by the lengthening of the pipeline. In many cases, they cannot enter the pipe. Further, even if the inside of the pipe can be inspected, the investigation work is extremely dangerous because the water depth and the flow velocity in the pipe are large.

【0003】[0003]

【発明が解決しようとする課題】したがって、水上航行
体に撮影用テレビカメラ機を搭載することにより調査装
置を構成しておき、この調査装置を下水管内の流水上に
浮かべて下水管内で航行させながら撮影用テレビカメラ
機で下水管内壁を撮影し、撮影結果に基づいて下水管内
壁に生じている亀裂の位置や大きさなどを調査する方法
が用いられている。しかしながら、撮影用テレビカメラ
機による調査画像は、垂直上方や水平側方を撮影する場
合を除いて亀裂等をゆがんだ状態で表示するので、精密
な調査が必要な場合には調査員によって調査結果を補正
しなければならず、調査作業に時間がかかるだけでなく
最終的な調査結果に誤りが生じるおそれも多い。
Therefore, an investigation device is constructed by mounting a television camera for photographing on a watercraft, and the inspection device is floated on flowing water in a sewer pipe to be navigated in the sewer pipe. A method has been used in which the inner wall of a sewer pipe is photographed with a television camera for photographing, and the position and size of a crack formed in the inner wall of the sewer pipe are investigated based on the photographed result. However, the survey image by the TV camera camera is displayed with the cracks distorted, except when photographing vertically above or horizontally, so if a precise survey is required, the survey results should be obtained by the investigator. Must be corrected, not only takes time for the investigation work, but also often causes errors in the final investigation result.

【0004】そこで、本発明は亀裂等の調査対象の大き
さあるいは形状を迅速かつ正確に特定することのできる
地中管内壁の調査装置の提供を目的とする。
Accordingly, an object of the present invention is to provide an apparatus for investigating the inner wall of an underground pipe capable of quickly and accurately specifying the size or shape of an object to be inspected for a crack or the like.

【0005】[0005]

【課題を解決するための手段】この目的を達成するた
め、本発明の調査装置は、水上航行体と、この水上航行
体に搭載された撮影用テレビカメラ機と、から構成さ
れ、地中管内で水上を航行しながら前記撮影用テレビカ
メラ機で地中管内壁を撮影して調査する地中管内壁の調
査装置であって、前記撮影用テレビカメラ機のカメラレ
ンズの外側周囲には、このカメラレンズの光軸と平行な
光線を発射する光源が四角形状を形成するように4つ配
置されていて、前記撮影用テレビカメラ機により前記光
源からの前記光線の地中管内壁への照射箇所を含めてこ
の地中管内壁を撮影して画像上に表示するとともに、前
記照射箇所間の実際の長さを測定し、画像上の照射箇所
の間隔を前記照射箇所間の実際の長さを示すスケールと
して用いることにより画像上の特定部分の実際の大きさ
を認識可能とするものである。本発明は、水上航行体
と、この水上航行体に搭載された撮影用テレビカメラ機
と、から構成された地中管内壁の調査装置を用い、地中
管内でこの調査装置を水上を航行させながら前記撮影用
テレビカメラ機で地中管内壁を撮影して調査する地中管
内壁の調査方法であって、前記撮影用テレビカメラ機の
カメラレンズの外側周囲には、このカメラレンズの光軸
と平行な光線を発射する光源が四角形状を形成するよう
に4つ配置されていて、前記撮影用テレビカメラ機によ
り前記光源からの前記光線の地中管内壁への照射箇所を
含めてこの地中管内壁を撮影して画像上に表示するとと
もに、前記照射箇所間の実際の長さを測定し、画像上の
照射箇所の間隔を前記照射箇所間の実際の長さを示すス
ケールとして用いることにより画像上の特定部分の実際
の大きさを認識可能とする、又は認識する、ことを特徴
とする地中管内壁の調査方法と把握することもできる。
In order to achieve this object, an investigation device according to the present invention comprises a watercraft and a television camera machine mounted on the watercraft for photographing. An underground pipe inner wall surveying device for photographing and investigating the inner wall of the underground pipe with the photographing television camera machine while navigating above the water, and the periphery of the camera lens of the photographing television camera machine, Four light sources that emit light rays parallel to the optical axis of the camera lens are arranged so as to form a square shape, and the irradiating point of the light rays from the light source to the inner wall of the underground pipe by the photographing television camera machine Along with photographing the inner wall of the underground pipe including and displaying on the image, measuring the actual length between the irradiation points, the interval between the irradiation points on the image is used to determine the actual length between the irradiation points. By using as a scale to show It is to be recognized the actual size of the specific portion on the image. The present invention uses a survey device for the inner wall of an underground pipe, which is composed of a watercraft and a television camera for shooting mounted on the watercraft, and makes the survey device sail above the water in the underground pipe. A method of investigating an inner wall of an underground pipe by photographing the inner wall of the underground pipe using the television camera for photographing, wherein an optical axis of the camera lens is provided around an outer periphery of the camera lens of the television camera for photographing. And four light sources emitting light rays parallel to the light source are arranged so as to form a square shape, and the light source from the light source is irradiated on the inner wall of the underground pipe by the photographing television camera machine. While photographing the inner wall of the middle tube and displaying it on the image, measuring the actual length between the irradiation points, using the interval between the irradiation points on the image as a scale indicating the actual length between the irradiation points Of the specific part on the image And recognizable size during, or recognize, may be regarded as a searching method for underground pipe wall, characterized in that.

【0006】例えば光源を正方形状が形成されるように
4つ配置し、光源によって形成される正方形状の中心を
撮影用テレビカメラ機のレンズ中心と一致させておく。
光源は正方形状の上辺及び下辺が水平方向に延びるよう
に配置されることが多く、撮影用テレビカメラ機はこの
光源からの光線の照射箇所を含めて地中管内壁を撮影す
る。多くの場合、調査過程において正方形状の上辺及び
下辺は水平方向に維持され、画像上には撮影された4つ
の照射箇所が表示される。この4つの画像上の照射箇所
の間隔をスケールとして用いるには、照射箇所間の実際
の長さを計測して画像上の照射箇所の間隔にこの長さを
適用する必要がある。照射箇所間の実際の長さを算出す
るために図6に示すような算出方法を用いることができ
る。撮影用テレビカメラ機のカメラレンズの中心をA、
光線Lの地中管内壁Bへの照射箇所をC,Dとすると、
CDの長さが求めるべき実際の長さとなるが、このCD
の長さはACの長さ、ADの長さ及び角CADの角度が
求まれば余弦定理によって算出することができる。照射
箇所C,Dの撮像面(多くの場合、CCD面)上位置、
すなわち照射箇所C,Dからのレンズ中心Aを通過した
反射光の撮像面到達位置をE,F、レンズ中心Aを通り
EFに直交する直線(あるいはレンズ中心AとCDの中
点とを通る直線)をG、直線GとEFとの交点をH、直
線GとCDとの交点(あるいはCDの中点)をIとする
と、FH及びEHの長さは撮像面座標から(Hの撮像面
座標は撮像面中心からEFへの垂線の足の座標)、AH
の長さはレンズ中心Aと撮像面との距離(焦点距離)及
び撮像面中心(レンズ中心Aを通り撮像面に直交する直
線の足)と交点Hとの距離に基づきそれぞれ求めること
ができるので、角FAH及び角EAH、したがって角D
AI及び角CAIを算出することができる。また、照射
箇所C,Dを通る直線Gへの垂線J,Kの長さ(Cと垂
線Jの足との間隔及びDと垂線Kの足との間隔)はそれ
ぞれ光線Lの間隔の2分の1となるので、ACの長さ及
びADの長さをそれぞれ求めることができる。このよう
にして角CAD(角CAI+角DAI)、ACの長さ及
びADの長さが求まるので、CDの長さを求めることが
できる。
For example, four light sources are arranged so as to form a square shape, and the center of the square shape formed by the light sources is made to coincide with the lens center of the television camera for photographing.
In many cases, the light source is arranged such that the upper and lower sides of the square shape extend in the horizontal direction, and the television camera for photographing photographs the inner wall of the underground pipe including the irradiation position of the light beam from the light source. In many cases, the upper side and the lower side of the square are maintained in the horizontal direction during the investigation process, and the four irradiated portions photographed are displayed on the image. In order to use the distance between the irradiation points on the four images as a scale, it is necessary to measure the actual length between the irradiation points and apply this length to the distance between the irradiation points on the image. A calculation method as shown in FIG. 6 can be used to calculate the actual length between irradiation points. A is the center of the camera lens of the TV camera for shooting.
Assuming that the light beam L is applied to the underground pipe inner wall B at locations C and D,
The length of the CD is the actual length to be found.
Can be calculated by the cosine theorem if the length of AC, the length of AD, and the angle of the angle CAD are obtained. The positions of the irradiation points C and D on the imaging surface (often the CCD surface),
That is, E, F, and a straight line passing through the lens center A and orthogonal to EF (or a straight line passing through the lens center A and the midpoint of the CD) of the reflected light passing through the lens center A from the irradiation points C and D. ) Is G, the intersection of the straight line G and EF is H, and the intersection of the straight line G and CD (or the midpoint of CD) is I, the length of FH and EH is calculated from the coordinates of the imaging plane to the coordinates of the imaging plane of H Is the coordinates of the perpendicular foot from the center of the imaging surface to EF), AH
Can be obtained based on the distance (focal length) between the lens center A and the imaging plane and the distance between the intersection H and the center of the imaging plane (the leg of a straight line passing through the lens center A and orthogonal to the imaging plane). , The angle FAH and the angle EAH, and thus the angle D
AI and angle CAI can be calculated. The lengths of the perpendiculars J and K to the straight line G passing through the irradiation points C and D (the distance between C and the foot of the perpendicular J and the distance between D and the foot of the perpendicular K) are each two minutes of the distance between the light rays L. Therefore, the length of AC and the length of AD can be obtained. In this way, since the angle CAD (angle CAI + angle DAI), the length of AC, and the length of AD are obtained, the length of CD can be obtained.

【0007】図6に示す算出方法を用いれば、撮影用テ
レビカメラ機がどのような方向で地中管内壁を撮影して
いても、撮影用テレビカメラ機の撮像面上における2つ
の照射箇所の撮像位置から隣り合う2つの照射箇所の実
際の間隔を算出することができる。したがって、例えば
図6に示す算出方法を用いて、隣り合う2つの照射箇所
の実際の間隔を算出し、この算出結果に基づいて画像上
の照射箇所の間隔を決定し、決定された間隔に基づいて
画像上の又は見かけの亀裂等(特定部分)の大きさや形
状からこの亀裂等の実際の大きさあるいは形状又は大き
さ及び形状を求めることができる。
[0007] By using the calculation method shown in FIG. 6, no matter what direction the photographing television camera machine photographs the inner wall of the underground pipe, two irradiation spots on the imaging surface of the photographing television camera machine can be used. From the imaging position, the actual interval between two adjacent irradiation locations can be calculated. Therefore, for example, by using the calculation method shown in FIG. 6, the actual interval between two adjacent irradiation points is calculated, the interval between the irradiation points on the image is determined based on the calculation result, and based on the determined interval. The actual size or shape of the crack or the like or the size and shape of the crack or the like (specific portion) on the image can be obtained from the size or shape of the crack or the like (specific portion) on the image.

【0008】また、光源から照射箇所C,Dまでのそれ
ぞれの距離を求めることができれば、図7に示すように
光線Lの間隔Mと距離差N(照射箇所C,Dの光線方向
間隔)とに基づき2つの照射箇所C,Dの実際の間隔O
を算出することができる。照射箇所までの距離は、図8
に示すように光源Pと水平方向に僅かの間隔を置いて、
あるいは光源Pから水平方向に僅かに位置をずらして、
受光レンズQ及び受光面Rを有する受光部Sを構成する
ことにより算出することができる。図8に示すように、
照射箇所から受光レンズQの中心を通る反射光の受光面
Rへの到達位置は、照射箇所の距離が長くなると受光面
中心に近づく。したがって、予め到達位置と照射箇所ま
での距離との関係を設定しておけば、光源Pから照射箇
所までのそれぞれの距離を求めることができる。
If the respective distances from the light source to the irradiation points C and D can be obtained, as shown in FIG. 7, the distance M between the light rays L and the distance difference N (the distance between the irradiation points C and D in the light direction) are calculated. The actual distance O between the two irradiation points C and D based on
Can be calculated. The distance to the irradiation point is shown in FIG.
At a slight distance horizontally from the light source P as shown in
Alternatively, the position is slightly shifted in the horizontal direction from the light source P,
It can be calculated by configuring the light receiving section S having the light receiving lens Q and the light receiving surface R. As shown in FIG.
The position at which the reflected light passing through the center of the light receiving lens Q from the irradiation location reaches the light receiving surface R approaches the center of the light receiving surface as the distance between the irradiation locations increases. Therefore, if the relationship between the arrival position and the distance to the irradiation location is set in advance, the respective distances from the light source P to the irradiation location can be obtained.

【0009】前記撮影用テレビカメラ機は垂直面に沿っ
て回転できるように、かつ水平面に沿って回転できるよ
うに構成され、カメラレンズがどの方向を向く場合にも
上側の2つの光源及び下側の2つの光源は常に水平に位
置するようにすべきである。
The photographing television camera device is configured to be rotatable along a vertical plane and rotatable along a horizontal plane, and the upper two light sources and the lower two light sources regardless of the direction of the camera lens. Should always be located horizontally.

【0010】光源は拡散しないレーザー光を発射するレ
ーザー光源であることが好ましい。
The light source is preferably a laser light source that emits laser light that does not diffuse.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明に係る下水管用の調査装置の
側面図である。
FIG. 1 is a side view of an investigation device for a sewer according to the present invention.

【0013】調査装置1は、水上航行体3と、左右一対
の支持柱5(一方側のみ図示)によって支えられてこの
水上航行体3に搭載されたテレビカメラ機7と、この左
右一対の支持柱5のそれぞれの上端部に取り付けられた
左右一対の照明ライト9,9(図2も参照)と、から構
成されていて、電源・信号ケーブル(図示せず)を通し
て地上から制御信号を送ることによりテレビカメラ機7
と照明ライト9とを同時に上下方向に、すなわち水上航
行体3の幅方向中央線を含む仮想垂直面に沿って揺動さ
せることができる(仮想線及び矢印参照)。また、図2
に示すように、電源・信号ケーブルを通して地上から制
御信号を送ることによりテレビカメラ機7と照明ライト
9とを同時に水平方向に回転させることができる(矢印
参照)。テレビカメラ機7の前面にはカメラレンズ11
の外側周囲に4つのレーザー光源13が設けられ、これ
らの4つのレーザー光源13はカメラレンズ11の光軸
と平行なレーザー光線を発射し、また、4つのレーザー
光源13を結ぶことにより1辺が100mmの、そして
上辺及び下辺が常に水平方向に延びる正方形が形成され
る(図3参照)。
The survey device 1 includes a watercraft 3, a television camera 7 supported by a pair of left and right support columns 5 (only one side is shown) and mounted on the watercraft 3, and a pair of left and right supports. A pair of left and right illumination lights 9 and 9 (see also FIG. 2) attached to the upper end of each of the pillars 5 to send a control signal from the ground through a power / signal cable (not shown). TV camera machine 7 by
And the illumination light 9 can be simultaneously swung up and down, that is, along a virtual vertical plane including the widthwise center line of the watercraft 3 (see virtual lines and arrows). FIG.
As shown in (1), by transmitting a control signal from the ground through a power / signal cable, the television camera 7 and the illumination light 9 can be simultaneously rotated in the horizontal direction (see arrows). A camera lens 11 is provided on the front of the TV camera device 7.
Are provided around the outside of the camera, these four laser light sources 13 emit laser beams parallel to the optical axis of the camera lens 11, and the four laser light sources 13 are connected to each other so that one side is 100 mm. And a square whose upper and lower sides always extend in the horizontal direction is formed (see FIG. 3).

【0014】水上航行体3の前端部に設けられた取付部
15にはワイヤ17が取り付けられ、このワイヤ17を
下流側から引っ張ることにより水上航行体3を下水管内
の流速よりも速く移動させることがことができる。下水
管内の流速が大きい場合には水上航行体3の後端部に設
けられた取付部19にワイヤを取り付けてこのワイヤの
張力を調整することにより水上航行体3の速度を調整す
る。なお、図中21は補助用ライトである。
A wire 17 is attached to a mounting portion 15 provided at the front end of the watercraft 3, and the wire 17 is pulled from the downstream side to move the watercraft 3 faster than the flow velocity in the sewer pipe. Can be. When the flow velocity in the sewer pipe is high, the speed of the watercraft 3 is adjusted by attaching a wire to the mounting portion 19 provided at the rear end of the watercraft 3 and adjusting the tension of the wire. In the drawing, reference numeral 21 denotes an auxiliary light.

【0015】図4は下水管内壁の側方上側を調査した場
合の映像画面を示す図である。
FIG. 4 is a view showing a video screen when the upper side of the inner wall of the sewer pipe is examined.

【0016】テレビカメラ機7により下水管内壁の側方
上側に生じている亀裂及びレーザー光源13からのレー
ザー光線照射箇所が撮影されるが、地上に配置されたデ
ィスプレイ21に表示されたレーザー光線照射箇所の映
像23によって形成される4角形は正方形とはなってい
ない。そこで、レーザー光線照射箇所の映像23の間隔
がレーザー光線照射箇所の実際の間隔を示すものとし
て、撮影された亀裂の映像25の実際の大きさを把握す
る。撮影された亀裂の映像25の実際の大きさを把握す
るには、例えばレーザー光線照射箇所の映像23によっ
て形成される4角形の下辺及び左側辺を座標軸として亀
裂の映像25の下半分27の大きさを決定し、レーザー
光線照射箇所の映像23によって形成される4角形の上
辺及び右側辺を座標軸として亀裂の映像25の上半分2
9の大きさを決定することによって行うことができる。
The television camera 7 captures a photograph of a crack formed on the lateral upper side of the inner wall of the sewage pipe and a portion irradiated with the laser beam from the laser light source 13. The quadrangle formed by the image 23 is not a square. Therefore, the actual size of the photographed crack image 25 is grasped assuming that the interval between the images 23 of the laser beam irradiation point indicates the actual interval of the laser beam irradiation point. In order to grasp the actual size of the photographed crack image 25, for example, the size of the lower half 27 of the crack image 25 using the lower and left sides of the square formed by the image 23 of the laser beam irradiation position as coordinate axes Is determined, and the upper half 2 of the crack image 25 is set using the upper side and the right side of the square formed by the image 23 of the laser beam irradiation position as coordinate axes.
9 can be determined.

【0017】なお、レーザー光源13とレーザー光線照
射箇所とのそれぞれの距離を求める場合には、図5に示
すようにレーザー光源13の脇に受光部31を設けてお
く。
When obtaining the respective distances between the laser light source 13 and the laser beam irradiation location, a light receiving section 31 is provided beside the laser light source 13 as shown in FIG.

【0018】[0018]

【発明の効果】以上説明したように、本発明の調査装置
を用いれば、地中管内壁に生じた亀裂等を簡単かつ正確
に測定することができる。
As described above, the use of the investigation device of the present invention makes it possible to easily and accurately measure cracks and the like generated on the inner wall of an underground pipe.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る調査装置の側面図である。FIG. 1 is a side view of an investigation device according to the present invention.

【図2】テレビカメラ機部分の平面図である。FIG. 2 is a plan view of a television camera unit.

【図3】テレビカメラ機の正面図である。FIG. 3 is a front view of the television camera device.

【図4】テレビカメラ機の撮影画像を示す図である。FIG. 4 is a diagram showing a captured image of a television camera device.

【図5】受光部を設けた場合のテレビカメラ機の正面図
である。
FIG. 5 is a front view of the television camera device provided with a light receiving unit.

【図6】照射箇所の実際の間隔の算出方法を説明する図
である。
FIG. 6 is a diagram illustrating a method for calculating an actual interval between irradiation locations.

【図7】照射箇所の実際の間隔の別の算出方法を説明す
る図である。
FIG. 7 is a diagram for explaining another method of calculating the actual interval between irradiation locations.

【図8】光源と照射箇所との距離の算出方法を説明する
図である。
FIG. 8 is a diagram illustrating a method for calculating a distance between a light source and an irradiation location.

【符号の説明】[Explanation of symbols]

1 調査装置 3 水上航行体 7 テレビカメラ機 11 カメラレンズ 13 レーザー光源 23 レーザー光線照射位置の映像(画像上
の照射箇所) 25 亀裂の映像(画像上の特定部分)
DESCRIPTION OF SYMBOLS 1 Investigation device 3 Watercraft 7 Television camera 11 Camera lens 13 Laser light source 23 Image of laser beam irradiation position (irradiation point on image) 25 Image of crack (specific part on image)

───────────────────────────────────────────────────── フロントページの続き (71)出願人 598003829 株式会社東京設計事務所 東京都千代田区霞が関3−7−4(富士ビ ル) (72)発明者 相原 篤郎 千葉県船橋市北本町2−62−5−607 (72)発明者 長谷川 清 東京都世田谷区上用賀1−7−3 管清工 業株式会社内 (72)発明者 武井 勇二 神奈川県横浜市西区高島2丁目12番6号 株式会社キュー・アイ内 (72)発明者 田村 一郎 東京都千代田区霞が関3−7−4(富士ビ ル) 株式会社東京設計事務所内 ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 598003829 Tokyo Design Office 3-7-4 Kasumigaseki, Chiyoda-ku, Tokyo (Fuji Building) (72) Inventor Atsuro Aihara 2-62 Kitahonmachi, Funabashi-shi, Chiba -5-607 (72) Inventor Kiyoshi Hasegawa 1-7-3, Kamiyoga, Setagaya-ku, Tokyo Kanpaku Kogyo Co., Ltd. (72) Inventor Yuji Takei 2--12-6 Takashima, Nishi-ku, Yokohama-shi, Kanagawa Prefecture Inside the queue eye (72) Inventor Ichiro Tamura 3-7-4 Kasumigaseki, Chiyoda-ku, Tokyo (Fuji Building) Inside Tokyo Design Office

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水上航行体と、この水上航行体に搭載さ
れた撮影用テレビカメラ機と、から構成され、地中管内
で水上を航行しながら前記撮影用テレビカメラ機で地中
管内壁を撮影して調査する地中管内壁の調査装置であっ
て、 前記撮影用テレビカメラ機のカメラレンズの外側周囲に
は、このカメラレンズの光軸と平行な光線を発射する光
源が四角形状を形成するように4つ配置されていて、 前記撮影用テレビカメラ機により前記光源からの前記光
線の地中管内壁への照射箇所を含めてこの地中管内壁を
撮影して画像上に表示するとともに、 前記照射箇所間の実際の長さを測定し、 画像上の照射箇所の間隔を前記照射箇所間の実際の長さ
を示すスケールとして用いることにより画像上の特定部
分の実際の大きさを認識可能とする、 ことを特徴とする地中管内壁の調査装置。
An underwater pipe is constructed by a watercraft and a television camera mounted on the watercraft. An apparatus for investigating an inner wall of an underground pipe for photographing and investigating, wherein a light source that emits light rays parallel to an optical axis of the camera lens of the camera lens of the photographing television camera forms a square shape. Are arranged so that the photographing television camera machine photographs the inner wall of the underground pipe including the irradiation position of the light beam from the light source to the inner wall of the underground pipe, and displays it on an image. Measuring the actual length between the illuminated locations and recognizing the actual size of a particular portion on the image by using the spacing between the illuminated locations on the image as a scale indicating the actual length between the illuminated locations Make it possible Investigation unit of the underground pipe wall to be.
【請求項2】 水上航行体と、この水上航行体に搭載さ
れた撮影用テレビカメラ機と、から構成され、地中管内
で水上を航行しながら前記撮影用テレビカメラ機で地中
管内壁を撮影して調査する地中管内壁の調査装置であっ
て、 前記撮影用テレビカメラ機のカメラレンズの外側周囲に
は、このカメラレンズの光軸と平行な光線を発射する光
源が正方形状を形成するように4つ配置されていて、 前記撮影用テレビカメラ機により前記光源からの前記光
線の地中管内壁への照射箇所を含めてこの地中管内壁を
撮影して画像上に表示するとともに、 前記撮影用テレビカメラ機の撮像面上における2つの照
射箇所の撮像位置から前記照射箇所間の実際の長さを測
定し、 画像上の照射箇所の間隔を前記照射箇所間の実際の長さ
を示すスケールとして用いることにより画像上の特定部
分の実際の大きさを認識可能とする、 ことを特徴とする地中管内壁の調査装置。
2. A watercraft and a TV camera mounted on the watercraft for photographing. An investigation device for an inner wall of an underground pipe for photographing and investigating, wherein a light source that emits light rays parallel to the optical axis of the camera lens is formed in a square shape around an outer periphery of a camera lens of the television camera for photographing. Are arranged so that the photographing television camera machine photographs the inner wall of the underground pipe including the irradiation position of the light beam from the light source to the inner wall of the underground pipe, and displays it on an image. Measuring the actual length between the illuminated locations from the imaging locations of the two illuminated locations on the imaging surface of the imaging television camera, and determining the distance between the illuminated locations on the image to the actual length between the illuminated locations Used as scale Rukoto and recognizable an actual size of a particular portion of the image, the survey device of the underground pipe wall, characterized in that.
【請求項3】 水上航行体と、この水上航行体に搭載さ
れた撮影用テレビカメラ機と、から構成され、地中管内
で水上を航行しながら前記撮影用テレビカメラ機で地中
管内壁を撮影して調査する地中管内壁の調査装置であっ
て、 前記撮影用テレビカメラ機のカメラレンズの外側周囲に
は、このカメラレンズの光軸と平行な光線を発射する光
源が正方形状を形成するように4つ配置されていて、 前記撮影用テレビカメラ機により前記光源からの前記光
線の地中管内壁への照射箇所を含めてこの地中管内壁を
撮影して画像上に表示するとともに、 前記光源と前記照射位置との距離を測定することにより
前記照射箇所間の実際の長さを測定し、 画像上の照射箇所の間隔を前記照射箇所間の実際の長さ
を示すスケールとして用いることにより画像上の特定部
分の実際の大きさを認識可能とする、 ことを特徴とする地中管内壁の調査装置。
3. A watercraft, and a television camera for shooting mounted on the watercraft, wherein the inner wall of the underground pipe is moved by the video camera camera while sailing on the water in the ground pipe. An investigation device for an inner wall of an underground pipe for photographing and investigating, wherein a light source that emits light rays parallel to the optical axis of the camera lens is formed in a square shape around an outer periphery of a camera lens of the television camera for photographing. Are arranged so that the photographing television camera machine photographs the inner wall of the underground pipe including the irradiation position of the light beam from the light source to the inner wall of the underground pipe, and displays it on an image. By measuring the distance between the light source and the irradiation position, the actual length between the irradiation positions is measured, and the interval between the irradiation positions on an image is used as a scale indicating the actual length between the irradiation positions. By the image And can be recognized actual size of the particular portion, survey device of the underground pipe wall, characterized in that.
【請求項4】 前記撮影用テレビカメラ機は垂直面に沿
って回転できるように、かつ水平面に沿って回転できる
ように前記水上航行体に搭載されていることを特徴とす
る請求項1、2又は3記載の地中管内壁の調査装置。
4. The watercraft is mounted on the watercraft so as to be rotatable along a vertical plane and rotatable along a horizontal plane. Or the investigation device of the underground pipe inner wall of 3.
【請求項5】 前記光源はレーザー光源であることを特
徴とする請求項1、2、3又は4記載の地中管内壁の調
査装置。
5. The apparatus according to claim 1, wherein the light source is a laser light source.
JP36316497A 1997-07-21 1997-12-15 Underground pipe inner wall investigation device Expired - Lifetime JP4098865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36316497A JP4098865B2 (en) 1997-07-21 1997-12-15 Underground pipe inner wall investigation device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-210047 1997-07-21
JP21004797 1997-07-21
JP36316497A JP4098865B2 (en) 1997-07-21 1997-12-15 Underground pipe inner wall investigation device

Publications (2)

Publication Number Publication Date
JPH1194185A true JPH1194185A (en) 1999-04-09
JP4098865B2 JP4098865B2 (en) 2008-06-11

Family

ID=26517829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36316497A Expired - Lifetime JP4098865B2 (en) 1997-07-21 1997-12-15 Underground pipe inner wall investigation device

Country Status (1)

Country Link
JP (1) JP4098865B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228419A (en) * 2001-02-05 2002-08-14 Fujikura Ltd Dimension measuring apparatus
JP2011106537A (en) * 2009-11-16 2011-06-02 Sekisui Chem Co Ltd Method for regenerating existing pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134156U (en) * 1991-05-30 1992-12-14 株式会社東芝 Rotating electric machine frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228419A (en) * 2001-02-05 2002-08-14 Fujikura Ltd Dimension measuring apparatus
JP2011106537A (en) * 2009-11-16 2011-06-02 Sekisui Chem Co Ltd Method for regenerating existing pipe

Also Published As

Publication number Publication date
JP4098865B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
US9841503B2 (en) Optical ground tracking apparatus, systems, and methods
US20180217023A1 (en) Multi-sensor inspection for identification of pressurized pipe defects that leak
EP1305594B1 (en) Apparatus and method for detecting defects or damage inside a sewer pipeline
JP3420734B2 (en) Processing method of inside image of sewer
JP4984497B2 (en) Underwater inspection device
CA2669973A1 (en) System and method for inspecting the interior surface of a pipeline
RU2591875C1 (en) Method of constructing map of exogenous geological processes of area along route of main oil line
JP2531488B2 (en) In-pipe measurement method
JPS61281915A (en) Vehicle device for measuring properties of road surface
JP2010203888A (en) Device and method for detecting position of underwater vehicle
WO2014127142A1 (en) Optical ground tracking apparatus, systems, and methods
US11391559B2 (en) System and method for determination of a spatial property of a submerged object in a 3D-space
EP0831299A1 (en) Device for observing inner wall surface of conduit
AU2022200941A1 (en) Multi-Sensor Inspection For Identification Of Pressurized Pipe Defects That Leak
JPH1194185A (en) Underground pipe internal wall examining device
KR102421133B1 (en) Pipeline inspection system including an intelligent pipeline inspection robot equipped with an infrared sensor and a gyroscope sensor
JP2008014814A (en) Method for detecting end of road
CN111504269B (en) Underwater scale measurement method and device thereof
US20030016285A1 (en) Imaging apparatus and method
US9127928B2 (en) Object location accounting for pitch, yaw and roll of device
RU2456544C2 (en) Method of controlling bulkiness of equipment layout in tunnels and apparatus for realising said method
JPH08304037A (en) Measuring apparatus for forged shaft
JP6789868B2 (en) Image processing device
JP3728535B2 (en) In-pipe defect dimension measurement system and method
JP3566270B2 (en) Inspection method for burial construction of sewer pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term