JPH08304037A - Measuring apparatus for forged shaft - Google Patents

Measuring apparatus for forged shaft

Info

Publication number
JPH08304037A
JPH08304037A JP14110995A JP14110995A JPH08304037A JP H08304037 A JPH08304037 A JP H08304037A JP 14110995 A JP14110995 A JP 14110995A JP 14110995 A JP14110995 A JP 14110995A JP H08304037 A JPH08304037 A JP H08304037A
Authority
JP
Japan
Prior art keywords
shaft
forged shaft
slit light
sectional shape
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14110995A
Other languages
Japanese (ja)
Inventor
Masao Hirono
政雄 広野
Hidetoshi Imaizumi
英俊 今泉
Takakazu Ishimatsu
隆和 石松
▲暁▼ ▲孫▼
Akira Son
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nagasaki Machinery Mfg Co Ltd
Original Assignee
Mitsubishi Nagasaki Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nagasaki Machinery Mfg Co Ltd filed Critical Mitsubishi Nagasaki Machinery Mfg Co Ltd
Priority to JP14110995A priority Critical patent/JPH08304037A/en
Publication of JPH08304037A publication Critical patent/JPH08304037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To obtain a measuring apparatus by which the outside diameter size, the eccentricity and the circularity of a forged shaft are measured safely without relying on the experience of an operator by projecting a slit light from a slit-light projector onto the side face of the forged shaft which is turned and fetching an image in an irradiated part with a motion-picture camera at every rotation at a constant angle until the forged shaft makes one rotation. CONSTITUTION: A slit light is projected from a slit-light projector 1 to the side face of a forged shaft (a) which is gripped and held so that its shaft core comes in a horizontal state, and a slit-light irradiated part 1a which is slender in the up-and-down direction in a direction perpendicular to the horizontal shaft core is projected onto the side face of the shaft (a). The projected irradiated part 1a is photographed by a motion-picture camera 2 every rotation of the shaft (a) of a constant angle by a rotation mechanism 4, and images are fetched by a computing and processing means 5 until the shaft makes one rotation. In the computing and processing part 5, the images of the irradiated part 1a are image-processed so as to be extracted out of the respective fetched images, their central lines are found so as to be computed and processed according to the procedure of an optical cutting method, and the partial cross-sectional shape of the forged shaft (a) is found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鍛造されたシャフト
の断面外径寸法、断面形状の重心と回転軸との芯ずれ、
断面形状の真円度などを測定する鍛造シャフトの測定装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cross-section outer diameter dimension of a forged shaft, a center misalignment between a center of gravity of a cross-section shape and a rotary shaft,
The present invention relates to a measuring device for a forged shaft that measures the roundness of a cross-sectional shape.

【0002】[0002]

【従来の技術】従来、プレス機により鍛造されたシャフ
トの断面外径寸法の計測は、作業者が外パス(機械式外
形寸法計測器の名称)を用いて行っている。また、プレ
ス機により鍛造されたシャフトの断面形状の重心と回転
軸との芯ずれ、断面形状の真円度は、作業者の目測によ
り行われていた。
2. Description of the Related Art Conventionally, an operator measures the cross-sectional outer diameter of a shaft forged by a press machine by using an outer path (name of a mechanical external dimension measuring instrument). Further, the center of gravity of the cross-sectional shape of the shaft forged by the press machine and the misalignment of the rotary shaft, and the roundness of the cross-sectional shape have been determined by visual inspection by the operator.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
外パス(機械式外形寸法計測器の名称)を用いての作業
者による鍛造シャフトの外径寸法の計測は、高温の鍛造
シャフトとの距離約1mに近づき行うために、火傷の恐
れがあり非常に危険であった。また、鍛造シャフトの芯
ずれ、真円度を目測で判断できるようになるためには、
長年の経験が必要であった。
However, the measurement of the outer diameter of the forged shaft by the operator using the conventional outer path (name of the mechanical external dimension measuring instrument) is performed by measuring the distance between the forged shaft and the high temperature forged shaft. It was very dangerous because there was a risk of burns because it was approaching 1 m. Also, in order to be able to visually judge the misalignment and roundness of the forged shaft,
Many years of experience were needed.

【0004】この発明は、上記のような課題に鑑み、そ
の課題を解決すべく創案されたものであって、その目的
とするところは、安全にしかも作業者の長年の経験に頼
ることなく鍛造シャフトの外径寸法、芯ずれ、真円度な
どを測定することのできる鍛造シャフトの測定装置を提
供することにある。
The present invention has been made in view of the above problems and was devised to solve the problems. The purpose of the present invention is forging safely and without relying on many years of experience of workers. An object of the present invention is to provide a measuring device for a forged shaft, which is capable of measuring the outer diameter dimension, misalignment, roundness, etc. of the shaft.

【0005】[0005]

【課題を解決するための手段】以上の目的を達成するた
めに、請求項1の発明は、回転機構で水平に把持される
鍛造シャフトに該鍛造シャフトに対して直交方向にスリ
ット光を投光するスリット光投光器と、鍛造シャフトに
投光されたスリット光照射部を撮影する撮影機と、回転
機構で一定角度毎に回転される鍛造シャフトに投光され
たスリット光照射部の映像を一定角度回転する毎に撮影
機で撮影して取り込み、取り込んだ映像からスリット光
照射部を抽出して鍛造シャフトの各回転角度毎の部分断
面形状を求め、鍛造シャフトの各回転角度毎の部分断面
形状の重複部分が最も良く一致するように接続して鍛造
シャフトの全体断面形状を求める演算処理手段と、演算
処理手段で測定された内容を表示する表示手段と、を少
なくとも具備する構成よりなるものである。
In order to achieve the above object, the invention of claim 1 projects a slit light to a forged shaft horizontally held by a rotating mechanism in a direction orthogonal to the forged shaft. The slit light projector, the camera that shoots the slit light irradiation unit that is projected on the forged shaft, and the image of the slit light irradiation unit that is projected on the forged shaft that is rotated at a fixed angle by the rotating mechanism Each time it rotates, it is captured by a camera and captured, the slit light irradiation part is extracted from the captured image and the partial cross-sectional shape of each rotation angle of the forged shaft is obtained. It has at least a calculation processing means for connecting the overlapping parts so that they match each other best to obtain the overall cross-sectional shape of the forged shaft, and a display means for displaying the content measured by the calculation processing means. It is made from formed.

【0006】また、請求項2の発明は、回転機構で水平
に把持される鍛造シャフトに該鍛造シャフトに対して直
交方向にスリット光を投光するスリット光投光器と、鍛
造シャフトに投光されたスリット光照射部を撮影する撮
影機と、回転機構で一定角度毎に回転される鍛造シャフ
トに投光されたスリット光照射部の映像を一定角度回転
する毎に撮影機で撮影して取り込み、取り込んだ映像か
らスリット光照射部を抽出して鍛造シャフトの各回転角
度毎の部分断面形状を求め、鍛造シャフトの各回転角度
毎の部分断面形状の重複部分が最も良く一致するように
接続して鍛造シャフトの全体断面形状を求め、得られた
鍛造シャフトの全体断面形状から外径寸法を測定する演
算処理手段と、演算処理手段で測定された内容を表示す
る表示手段と、を少なくとも具備する構成よりなるもの
である。
According to the second aspect of the invention, the forged shaft horizontally held by the rotating mechanism projects the slit light in a direction orthogonal to the forged shaft, and the forged shaft projects the slit light. An image of the slit light irradiation part and an image of the slit light irradiation part projected on a forged shaft that is rotated at a fixed angle by a rotating mechanism are taken and captured by the camera every time it is rotated. The slit light irradiation part is extracted from the image to determine the partial cross-sectional shape of the forged shaft at each rotation angle, and the forging shaft is connected so that the overlapping portions of the partial cross-sectional shape at each rotation angle match each other forging. An arithmetic processing means for obtaining the overall cross-sectional shape of the shaft and measuring the outer diameter dimension from the obtained overall cross-sectional shape of the forged shaft, and a display means for displaying the content measured by the arithmetic processing means are provided. Which has the constitution comprising even without.

【0007】また、請求項3の発明は、回転機構で水平
に把持される鍛造シャフトに該鍛造シャフトに対して直
交方向にスリット光を投光するスリット光投光器と、鍛
造シャフトに投光されたスリット光照射部を撮影する撮
影機と、回転機構で一定角度毎に回転される鍛造シャフ
トに投光されたスリット光照射部の映像を一定角度回転
する毎に撮影機で撮影して取り込み、取り込んだ映像か
らスリット光照射部を抽出して鍛造シャフトの各回転角
度毎の部分断面形状を求め、鍛造シャフトの各回転角度
毎の部分断面形状の重複部分が最も良く一致するように
接続して鍛造シャフトの全体断面形状を求め、最初の測
定基準位置における鍛造シャフトの全体断面形状の重心
位置と鍛造シャフトの回転中心位置とのずれから芯ずれ
を測定する演算処理手段と、演算処理手段で測定された
内容を表示する表示手段と、を少なくとも具備する構成
よりなるものである。
According to the invention of claim 3, a slit light projector for projecting slit light in a direction orthogonal to the forged shaft, which is horizontally held by a rotating mechanism, and a forged shaft are projected. An image of the slit light irradiation part and an image of the slit light irradiation part projected on a forged shaft that is rotated at a fixed angle by a rotating mechanism are taken and captured by the camera every time it is rotated. The slit light irradiation part is extracted from the image to determine the partial cross-sectional shape of the forged shaft at each rotation angle, and the forging shaft is connected so that the overlapping portions of the partial cross-sectional shape at each rotation angle match each other forging. A calculation process that obtains the overall cross-sectional shape of the shaft and measures the misalignment from the deviation between the center of gravity of the overall cross-sectional shape of the forged shaft and the rotation center position of the forged shaft at the first measurement reference position. Means and a display means for displaying the measured content by the arithmetic processing unit is made of at least comprises configuring the.

【0008】また、請求項4の発明は、回転機構で水平
に把持される鍛造シャフトに該鍛造シャフトに対して直
交方向にスリット光を投光するスリット光投光器と、鍛
造シャフトに投光されたスリット光照射部を撮影する撮
影機と、回転機構で一定角度毎に回転される鍛造シャフ
トに投光されたスリット光照射部の映像を一定角度回転
する毎に撮影機で撮影して取り込み、取り込んだ映像か
らスリット光照射部を抽出して鍛造シャフトの各回転角
度毎の部分断面形状を求め、鍛造シャフトの各回転角度
毎の部分断面形状の重複部分が最も良く一致するように
接続して鍛造シャフトの全体断面形状を求め、得られた
鍛造シャフトの全体断面形状の重心を通る複数の直線が
断面外形線と交わる点である2点間の距離から最大直径
と最小直径を求め、最大直径と最小直径との差を求めて
真円度を測定する演算処理手段と、演算処理手段で測定
された内容を表示する表示手段と、を少なくとも具備す
る構成よりなるものである。
According to the invention of claim 4, a slit light projector for projecting slit light in a direction orthogonal to the forged shaft, which is horizontally held by the rotating mechanism, and a forged shaft. An image of the slit light irradiation part and an image of the slit light irradiation part projected on a forged shaft that is rotated at a fixed angle by a rotating mechanism are taken and captured by the camera every time it is rotated. The slit light irradiation part is extracted from the image to determine the partial cross-sectional shape of the forged shaft at each rotation angle, and the forging shaft is connected so that the overlapping portions of the partial cross-sectional shape at each rotation angle match each other forging. The overall cross-sectional shape of the shaft is obtained, and the maximum diameter and the minimum diameter are obtained from the distance between the two points at which a plurality of straight lines passing through the center of gravity of the obtained overall cross-sectional shape of the forged shaft intersect the cross-sectional contour line. And processing means for measuring the roundness and obtains the difference between the maximum and minimum diameters, and a display means for displaying the measured content by the arithmetic processing unit is made of at least comprises configuring the.

【0009】また、請求項5の発明は、回転機構で水平
に把持される鍛造シャフトに該鍛造シャフトに対して直
交方向にスリット光を投光するスリット光投光器と、鍛
造シャフトに投光されたスリット光照射部を撮影する撮
影機と、回転機構で一定角度毎に回転される鍛造シャフ
トに投光されたスリット光照射部の映像を一定角度回転
する毎に撮影機で撮影して取り込み、取り込んだ映像か
らスリット光照射部を抽出して鍛造シャフトの各回転角
度毎の部分断面形状を求め、鍛造シャフトの各回転角度
毎の部分断面形状の重複部分が最も良く一致するように
接続して鍛造シャフトの全体断面形状を求め、得られた
鍛造シャフトの全体断面形状から外径寸法を測定し、且
つ、最初の測定基準位置における鍛造シャフトの全体断
面形状の重心位置と鍛造シャフトの回転中心位置とのず
れから芯ずれを測定する演算処理手段と、演算処理手段
で測定された内容を表示する表示手段と、を少なくとも
具備する構成よりなるものである。
Further, according to the invention of claim 5, a slit light projector for projecting slit light in a direction orthogonal to the forged shaft, which is horizontally held by the rotating mechanism, and a forged shaft are projected. An image of the slit light irradiation part and an image of the slit light irradiation part projected on a forged shaft that is rotated at a fixed angle by a rotating mechanism are taken and captured by the camera every time it is rotated. The slit light irradiation part is extracted from the image to determine the partial cross-sectional shape of the forged shaft at each rotation angle, and the forging shaft is connected so that the overlapping portions of the partial cross-sectional shape at each rotation angle match each other forging. Obtain the overall cross-sectional shape of the shaft, measure the outer diameter dimension from the obtained overall cross-sectional shape of the forged shaft, and determine the center of gravity of the overall cross-sectional shape of the forged shaft at the first measurement reference position. And processing means for measuring the misalignment from the deviation between the rotational center position of the forged shaft, and a display means for displaying the measured content by the arithmetic processing unit is made of at least comprises configuring the.

【0010】また、請求項6の発明は、回転機構で水平
に把持される鍛造シャフトに該鍛造シャフトに対して直
交方向にスリット光を投光するスリット光投光器と、鍛
造シャフトに投光されたスリット光照射部を撮影する撮
影機と、回転機構で一定角度毎に回転される鍛造シャフ
トに投光されたスリット光照射部の映像を一定角度回転
する毎に撮影機で撮影して取り込み、取り込んだ映像か
らスリット光照射部を抽出して鍛造シャフトの各回転角
度毎の部分断面形状を求め、鍛造シャフトの各回転角度
毎の部分断面形状の重複部分が最も良く一致するように
接続して鍛造シャフトの全体断面形状を求め、得られた
鍛造シャフトの全体断面形状から外径寸法を測定し、且
つ、得られた鍛造シャフトの全体断面形状の重心を通る
複数の直線が断面外形線と交わる点である2点間の距離
から最大直径と最小直径を求め、最大直径と最小直径と
の差を求めて真円度を測定する演算処理手段と、演算処
理手段で測定された内容を表示する表示手段と、を少な
くとも具備する構成よりなるものである。
Further, according to the invention of claim 6, a slit light projector for projecting slit light in a direction perpendicular to the forged shaft, which is horizontally held by the rotating mechanism, and a forged shaft are projected. An image of the slit light irradiation part and an image of the slit light irradiation part projected on a forged shaft that is rotated at a fixed angle by a rotating mechanism are taken and captured by the camera every time it is rotated. The slit light irradiation part is extracted from the image to determine the partial cross-sectional shape of the forged shaft at each rotation angle, and the forging shaft is connected so that the overlapping portions of the partial cross-sectional shape at each rotation angle match each other forging. Obtain the overall cross-sectional shape of the shaft, measure the outer diameter dimension from the overall cross-sectional shape of the obtained forged shaft, and cross the multiple straight lines passing through the center of gravity of the overall cross-sectional shape of the obtained forged shaft. The maximum diameter and the minimum diameter are obtained from the distance between the two points intersecting the shape line, and the roundness is measured by obtaining the difference between the maximum diameter and the minimum diameter. And a display unit for displaying the contents.

【0011】また、請求項7の発明は、回転機構で水平
に把持される鍛造シャフトに該鍛造シャフトに対して直
交方向にスリット光を投光するスリット光投光器と、鍛
造シャフトに投光されたスリット光照射部を撮影する撮
影機と、回転機構で一定角度毎に回転される鍛造シャフ
トに投光されたスリット光照射部の映像を一定角度回転
する毎に撮影機で撮影して取り込み、取り込んだ映像か
らスリット光照射部を抽出して鍛造シャフトの各回転角
度毎の部分断面形状を求め、鍛造シャフトの各回転角度
毎の部分断面形状の重複部分が最も良く一致するように
接続して鍛造シャフトの全体断面形状を求め、最初の測
定基準位置における鍛造シャフトの全体断面形状の重心
位置と鍛造シャフトの回転中心位置とのずれから芯ずれ
を測定し、且つ、得られた鍛造シャフトの全体断面形状
の重心を通る複数の直線が断面外形線と交わる点である
2点間の距離から最大直径と最小直径を求め、最大直径
と最小直径との差を求めて真円度を測定する演算処理手
段と、演算処理手段で測定された内容を表示する表示手
段と、を少なくとも具備する構成よりなるものである。
Further, according to the invention of claim 7, a slit light projector for projecting slit light in a direction orthogonal to the forged shaft, which is horizontally held by the rotating mechanism, and a forged shaft are projected. An image of the slit light irradiation part and an image of the slit light irradiation part projected on a forged shaft that is rotated at a fixed angle by a rotating mechanism are taken and captured by the camera every time it is rotated. The slit light irradiation part is extracted from the image to determine the partial cross-sectional shape of the forged shaft at each rotation angle, and the forging shaft is connected so that the overlapping portions of the partial cross-sectional shape at each rotation angle match each other forging. Obtaining the overall cross-sectional shape of the shaft, measuring the misalignment from the deviation between the center of gravity position of the overall cross-sectional shape of the forged shaft and the rotation center position of the forged shaft at the first measurement reference position, and The maximum diameter and the minimum diameter are calculated from the distance between the two points where a plurality of straight lines passing through the center of gravity of the entire cross-sectional shape of the forged shaft intersect with the cross-sectional contour line, and the difference between the maximum diameter and the minimum diameter is calculated to obtain the true value. It is configured to include at least an arithmetic processing unit that measures the roundness and a display unit that displays the content measured by the arithmetic processing unit.

【0012】また、請求項8の発明は、回転機構で水平
に把持される鍛造シャフトに該鍛造シャフトに対して直
交方向にスリット光を投光するスリット光投光器と、鍛
造シャフトに投光されたスリット光照射部を撮影する撮
影機と、回転機構で一定角度毎に回転される鍛造シャフ
トに投光されたスリット光照射部の映像を一定角度回転
する毎に撮影機で撮影して取り込み、取り込んだ映像か
らスリット光照射部を抽出して鍛造シャフトの各回転角
度毎の部分断面形状を求め、鍛造シャフトの各回転角度
毎の部分断面形状の重複部分が最も良く一致するように
接続して鍛造シャフトの全体断面形状を求め、得られた
鍛造シャフトの全体断面形状から外径寸法を測定し、且
つ、最初の測定基準位置における鍛造シャフトの全体断
面形状の重心位置と鍛造シャフトの回転中心位置とのず
れから芯ずれを測定し、さらに、得られた鍛造シャフト
の全体断面形状の重心を通る複数の直線が断面外形線と
交わる点である2点間の距離から最大直径と最小直径を
求め、最大直径と最小直径との差を求めて真円度を測定
する演算処理手段と、演算処理手段で測定された内容を
表示する表示手段と、を少なくとも具備する構成よりな
るものである。
The invention of claim 8 is a slit light projector for projecting slit light in a direction orthogonal to the forged shaft, which is horizontally held by a rotating mechanism, and a forged shaft. An image of the slit light irradiation part and an image of the slit light irradiation part projected on a forged shaft that is rotated at a fixed angle by a rotating mechanism are taken and captured by the camera every time it is rotated. The slit light irradiation part is extracted from the image to determine the partial cross-sectional shape of the forged shaft at each rotation angle, and the forging shaft is connected so that the overlapping portions of the partial cross-sectional shape at each rotation angle match each other forging. Obtain the overall cross-sectional shape of the shaft, measure the outer diameter dimension from the obtained overall cross-sectional shape of the forged shaft, and determine the center of gravity of the overall cross-sectional shape of the forged shaft at the first measurement reference position. The misalignment is measured from the deviation from the center of rotation of the forged shaft, and the maximum distance is determined from the distance between the two points where the straight lines passing through the center of gravity of the overall cross-sectional shape of the forged shaft intersect the cross-sectional contour line. A configuration including at least a calculation processing means for determining a roundness by determining a diameter and a minimum diameter, a difference between the maximum diameter and the minimum diameter, and a display means for displaying the content measured by the calculation processing means. It will be.

【0013】[0013]

【作用】以上のような構成を有するこの発明は、次のよ
うに作用する。スリット光投光器から回転機構により一
定角度毎に回転されている鍛造シャフトの側面にスリッ
ト光を投光し、そのスリット光照射部の映像を撮影機に
より一定角度回転毎に一回転するまで演算処理手段に取
り込む。演算処理手段では取り込まれた映像からスリッ
ト光照射部を抽出し、演算処理により、スリット光照射
部の鍛造シャフトの部分断面形状を求める。得られた鍛
造シャフトの各回転角度毎の部分断面形状の重複部分が
最も良く一致するように接続し、鍛造シャフトの全体断
面形状を求める。得られた鍛造シャフトの全体断面形状
から外径寸法、芯ずれ、真円度などを測定する。
The present invention having the above-described structure operates as follows. Slit light is projected from the slit light projector to the side surface of the forged shaft that is rotated at a constant angle by a rotating mechanism, and the image of the slit light irradiation unit is processed by the camera until it rotates once at a constant angle. Take in. The arithmetic processing means extracts the slit light irradiation portion from the captured image and calculates the partial cross-sectional shape of the forged shaft of the slit light irradiation portion by the arithmetic processing. The obtained forged shaft is connected so that the overlapping portions of the partial cross-sectional shapes for each rotation angle are best matched, and the overall cross-sectional shape of the forged shaft is obtained. From the overall cross-sectional shape of the obtained forged shaft, the outer diameter dimension, misalignment, roundness, etc. are measured.

【0014】[0014]

【実施例】以下、図面に記載の実施例に基づいてこの発
明をより具体的に説明する。ここで、図1は鍛造シャフ
トの測定装置の全体概略図、図2は鍛造シャフトの測定
装置の一部概略側面図、図3は鍛造シャフトの測定装置
の全体概略系統図、図4は鍛造シャフトの部分分割測定
概要図、図5は鍛造シャフトの部分断面形状図、図6
(A)〜(F)は鍛造シャフトの部分断面形状の接続概
要図、図7は芯ずれの測定概要図、図8は重心位置の算
出概要図、図9は真円度の測定概要図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described more concretely with reference to the embodiments shown in the drawings. Here, FIG. 1 is an overall schematic view of a measuring device for a forged shaft, FIG. 2 is a partial schematic side view of a measuring device for a forged shaft, FIG. 3 is an overall schematic system diagram of a measuring device for a forged shaft, and FIG. 4 is a forged shaft. 6 is a schematic view of partial division measurement of FIG. 5, FIG. 5 is a partial sectional shape view of the forged shaft, FIG.
(A) ~ (F) is a connection schematic diagram of the partial cross-sectional shape of the forged shaft, Fig. 7 is a measurement schematic diagram of misalignment, Fig. 8 is a schematic diagram of calculation of the position of the center of gravity, and Fig. 9 is a schematic diagram of measurement of circularity. is there.

【0015】図において、スリット光投光器1は回転機
構で水平に把持される鍛造シャフトaに該鍛造シャフト
aに対して直交方向に細長なスリット光を投光する機器
で、スリット光投光器1から照射されたスリット光によ
って、水平な鍛造シャフトaの側面には水平に対して垂
直な上下方向に細長なスリット光照射部1aが写し出さ
れる。スリット光投光器1は演算処理手段5によって制
御される。
In the figure, a slit light projector 1 is a device for projecting an elongated slit light in a direction orthogonal to the forged shaft a to a forged shaft a which is horizontally held by a rotating mechanism. By the slit light thus produced, an elongated slit light irradiating section 1a is projected on the side surface of the horizontal forged shaft a in the vertical direction perpendicular to the horizontal. The slit light projector 1 is controlled by the arithmetic processing means 5.

【0016】撮影機2は鍛造シャフトaの側面に上下方
向に写し出された細長なスリット光照射部1aを撮影す
る機器で、撮影された映像はケーブルを通じて演算処理
手段5に送られて映像入力して取り込まれる。撮影機2
には例えばCCD(電荷結合素子)−TVカメラが使用
される。撮影機2は演算処理手段5によって制御され
る。
The photographing device 2 is a device for photographing the elongated slit light irradiating portion 1a which is vertically projected on the side surface of the forged shaft a, and the photographed image is sent to the arithmetic processing means 5 through a cable to input the image. Are taken in. Camera 2
For example, a CCD (charge coupled device) -TV camera is used. The photographing device 2 is controlled by the arithmetic processing means 5.

【0017】スリット光投光器1及び撮影機2は、取付
け支持台3の上部の水平軸3aの両側に水平状態でそれ
ぞれ固定して取付けられている。また、スリット光投光
器1は、水平に把持された鍛造シャフトaに対して直交
方向にスリット光が照射できるように水平軸3aに固定
されている。また、撮影機2のCCD−TVカメラで映
された鍛造シャフトaの側面にスリット光が投光されて
いる映像を見るテレビ2aが設けられている。
The slit light projector 1 and the photographing device 2 are fixed and mounted horizontally on both sides of the horizontal shaft 3a above the mounting support 3. Further, the slit light projector 1 is fixed to the horizontal shaft 3a so that the forged shaft a held horizontally can be irradiated with slit light in a direction orthogonal to the forged shaft a. Further, a television 2a for viewing an image in which slit light is projected is provided on the side surface of the forged shaft a projected by the CCD-TV camera of the camera 2.

【0018】回転機構4は、プレス機でプレスされた直
後で高温状態にある鍛造シャフトaの一端部を把持して
その軸芯を水平に保持した状態で回転する機構で、回転
機構4によって鍛造シャフトaはその軸芯回りに一回転
させられる。この場合、鍛造シャフトaは連続して回転
せず、一定角度回転して少し停止し、再び一定角度回転
する間欠回転するように回転機構4の回転は演算処理手
段5によって制御される。
The rotating mechanism 4 is a mechanism for holding the one end of the forged shaft a which is in a high temperature state immediately after being pressed by the press machine and rotating the forged shaft a while keeping its axis horizontal. The shaft a is rotated once around its axis. In this case, the rotation of the rotating mechanism 4 is controlled by the arithmetic processing means 5 so that the forged shaft a does not rotate continuously, rotates a fixed angle, stops for a while, and then intermittently rotates again by a fixed angle.

【0019】演算処理手段5は、回転機構4で一定角度
毎に回転される鍛造シャフトaに投光されたスリット光
照射部1aの映像を一定角度回転する毎に撮影機2で撮
影して取り込み、取り込んだ映像からスリット光照射部
1aを抽出して鍛造シャフトaの各回転角度毎の部分断
面形状を求め、鍛造シャフトaの各回転角度毎の部分断
面形状の重複部分が最も良く一致するように接続して鍛
造シャフトaの全体断面形状を求めるものである。演算
処理手段5には例えばパーソナルコンピュータが使用さ
れる。また、演算処理手段5のパーソナルコンピュータ
には撮影機2のCCD−TVカメラからの映像を画像処
理するための画像処理ボードが設けられている。また、
パーソナルコンピュータにはキーボード5aが設けられ
ており、このキーボード5aから演算処理手段5に入力
できる。
The arithmetic processing means 5 captures an image of the slit light irradiation section 1a projected on the forged shaft a rotated by the rotating mechanism 4 at a constant angle by the camera 2 every time it rotates by a constant angle. , The slit light irradiation portion 1a is extracted from the captured image to obtain the partial cross-sectional shape of the forged shaft a for each rotation angle, and the overlapping portion of the partial cross-sectional shape of the forged shaft a for each rotation angle is best matched. To obtain the entire cross-sectional shape of the forged shaft a. A personal computer, for example, is used as the arithmetic processing means 5. Further, the personal computer of the arithmetic processing means 5 is provided with an image processing board for image-processing the video from the CCD-TV camera of the photographing device 2. Also,
A keyboard 5a is provided in the personal computer, and data can be input to the arithmetic processing means 5 from this keyboard 5a.

【0020】演算処理手段5には、これ以外にも、必要
に応じて適宜、得られた鍛造シャフトaの全体断面形状
から外径寸法を測定したり、また、最初の測定基準位置
における鍛造シャフトaの全体断面形状の重心位置と鍛
造シャフトaの回転中心位置とのずれから芯ずれを測定
したり、或いは、得られた鍛造シャフトaの全体断面形
状の重心を通る複数の直線が断面外形線と交わる点であ
る2点間の距離から最大直径と最小直径を求め、最大直
径と最小直径との差を求めて真円度を測定したりするこ
とができるように調整される。
In addition to the above, the arithmetic processing means 5 appropriately measures the outer diameter dimension from the entire cross-sectional shape of the obtained forged shaft a as required, and the forged shaft at the first measurement reference position. The misalignment is measured from the deviation between the position of the center of gravity of the overall cross-sectional shape of a and the position of the center of rotation of the forged shaft a, or a plurality of straight lines passing through the center of gravity of the obtained overall cross-sectional shape of the forged shaft a are cross-sectional outlines. The roundness is adjusted so that the maximum diameter and the minimum diameter are obtained from the distance between the two points that intersect with, and the difference between the maximum diameter and the minimum diameter is obtained to measure the roundness.

【0021】表示手段6は演算処理手段5で測定された
内容を表示するもので、表示手段6には、例えば、測定
された内容を画面上で表示するディスプレー装置や、測
定された内容を印字するプリンター装置などが使用され
る。作業者は、表示手段6を通じて演算処理手段5で測
定された内容を認識することができる。
The display means 6 displays the contents measured by the arithmetic processing means 5, and the display means 6 displays, for example, a display device for displaying the measured contents on the screen or prints the measured contents. A printer device or the like is used. The operator can recognize the content measured by the arithmetic processing means 5 through the display means 6.

【0022】次に、上記実施例の構成に基づく動作につ
いて以下説明する。先ず、図示しないプレス機によって
プレスされた直後の鍛造シャフトaを、回転機構4によ
ってその一端部を把持して軸芯が水平状態になるように
保持する。この作業と相前後して、鍛造シャフトaの側
面から一定距離だけ離れた箇所に取付け支持台3を設置
し、この取付け支持台3の上部の水平軸3aの両側にス
リット光投光器1と撮影機2を動かないように固定して
取付ける。この場合、スリット光投光器1は該スリット
光投光器1から照射されたスリット光が鍛造シャフトa
の水平軸芯に対して直交方向になるように取付ける。ま
た、撮影機2は鍛造シャフトaの側面に写し出されたス
リット光照射部1aを撮影できるように取付ける。
The operation based on the configuration of the above embodiment will be described below. First, the forged shaft a immediately after being pressed by a press machine (not shown) is held by the rotating mechanism 4 such that one end of the forged shaft a is held and the shaft center is in a horizontal state. Before and after this work, the mounting support 3 is installed at a position apart from the side surface of the forged shaft a by a certain distance, and the slit light projector 1 and the photographing device are provided on both sides of the horizontal shaft 3a above the mounting support 3. Fix 2 so that it does not move and attach it. In this case, the slit light projector 1 detects the slit light emitted from the slit light projector 1 from the forged shaft a.
Mount so that it is perpendicular to the horizontal axis of. Further, the photographing device 2 is attached so that the slit light irradiation portion 1a projected on the side surface of the forged shaft a can be photographed.

【0023】以上のような準備が完了した後に、演算処
理手段5を作動させる。演算処理手段5の作動はパーソ
ナルコンピュータのキーボード5aからの入力により行
われる。演算処理手段5の作動により、スリット光投光
器1から軸芯が水平状態になるように把持された鍛造シ
ャフトaの側面に向かってスリット光が照射され、鍛造
シャフトaの側面には水平軸芯に対して直交方向の上下
方向に細長なスリット光照射部1aが写し出される。
After the above preparation is completed, the arithmetic processing means 5 is activated. The operation of the arithmetic processing means 5 is performed by input from the keyboard 5a of the personal computer. By the operation of the arithmetic processing means 5, slit light is radiated from the slit light projector 1 toward the side surface of the forged shaft a held so that the axis is in a horizontal state, and the side surface of the forged shaft a is aligned with the horizontal axis. On the other hand, an elongated slit light irradiation unit 1a is projected in the vertical direction in the orthogonal direction.

【0024】鍛造シャフトaの側面に写し出された上下
方向に細長なスリット光照射部1aは、撮影機2によっ
て撮影され、その映像は演算処理手段5に取り込まれ
る。その後、回転機構4は鍛造シャフトaを一定角度
(例えば30度)回転させて停止し、その角度で鍛造シ
ャフトaの側面に写し出されたスリット光照射部1aは
撮影機2によって撮影され、その映像は演算処理手段5
に取り込まれる。再び、回転機構4は鍛造シャフトaを
一定角度(例えば30度)回転させて停止し、その角度
で鍛造シャフトaの側面に写し出されたスリット光照射
部1aは撮影機2によって撮影され、その映像は演算処
理手段5に取り込まれる。以下同様な手順で、回転機構
4によって鍛造シャフトaを一定角度(例えば30度)
回転させる毎に、その角度で鍛造シャフトaの側面に写
し出されたスリット光照射部1aを撮影機2によって撮
影し、その映像を演算処理手段5に取り込む。この動作
は鍛造シャフトaが一回転するまで続けられる(図4参
照)。
The vertically elongated slit light irradiating portion 1a projected on the side surface of the forged shaft a is photographed by the photographing device 2 and the image thereof is taken into the arithmetic processing means 5. After that, the rotating mechanism 4 rotates the forged shaft a by a certain angle (for example, 30 degrees) and stops, and the slit light irradiation unit 1a projected on the side surface of the forged shaft a at that angle is photographed by the photographing device 2 and the image thereof is obtained. Is arithmetic processing means 5
Is taken into. Again, the rotating mechanism 4 rotates the forged shaft a by a certain angle (for example, 30 degrees) and stops, and the slit light irradiation unit 1a projected on the side surface of the forged shaft a at that angle is photographed by the photographing device 2 and the image thereof is obtained. Are taken into the arithmetic processing means 5. Following the same procedure, the forging shaft a is rotated by the rotating mechanism 4 at a constant angle (for example, 30 degrees).
Each time it is rotated, the slit light irradiation unit 1a projected on the side surface of the forged shaft a at that angle is photographed by the photographing device 2, and the image is taken into the arithmetic processing means 5. This operation is continued until the forged shaft a makes one revolution (see FIG. 4).

【0025】演算処理手段5では、取り込まれた各画像
の中からスリット光照射部1aの映像を画像処理により
抽出し、その中心線を求め、演算処理により鍛造シャフ
トaの部分断面形状を求める。部分断面形状の求め方
は、良く知られている光切断法の手順に従って行う。例
えば、図5に示すように複数の部分断面形状R1〜R12
が求まる。
The arithmetic processing means 5 extracts the image of the slit light irradiating portion 1a from each of the captured images by image processing, obtains the center line thereof, and obtains the partial cross-sectional shape of the forged shaft a by arithmetic processing. The method of obtaining the partial cross-sectional shape is performed according to the well-known procedure of the light-section method. For example, as shown in FIG. 5, a plurality of partial cross-sectional shapes R1 to R12
Is found.

【0026】隣接する部分断面形状のR1とR2、R2
とR3、・・・・・、R12とR1の重複部分が最も良く
一致するように部分断面形状を順番に接続する。ただ
し、その際に部分断面形状の回転角を考慮する。その接
続には重複部分におけるずれ(二乗誤差)を最小にする
アルゴリズムを用いる。
Adjacent partial sectional shapes R1, R2 and R2
, R3, ..., The partial cross-sectional shapes are connected in order so that the overlapping portions of R12 and R1 best match. However, in that case, the rotation angle of the partial cross-sectional shape is considered. For the connection, an algorithm that minimizes the deviation (square error) in the overlapping part is used.

【0027】隣接する部分断面形状のR1とR2の重複
部分が最も良く一致するような接続するには、図6
(A)〜(F)に示すように、次のようにして行われ
る。即ち、同図(A)の部分断面形状のR1のV点とR
2のU点を一致させるように部分断面形状のR2を移動
させる。部分断面形状のR1のV点とR2のU点を一致
させた後、部分断面形状のR2をU点を中心に30度回
転させる(同図(B)参照)。
In order to make a connection in which the overlapping portions of adjacent partial cross-sectional shapes R1 and R2 are best matched, FIG.
As shown in (A) to (F), it is performed as follows. That is, the V point and R of R1 of the partial cross-sectional shape of FIG.
The partial cross-sectional shape R2 is moved so that the U points of 2 coincide with each other. After matching the V point of R1 and the U point of R2 of the partial cross-sectional shape, R2 of the partial cross-sectional shape is rotated by 30 degrees about the U point (see FIG. 7B).

【0028】次に部分断面形状のR2をR1に沿って平
行移動させて、最終的に部分断面形状のR1のV点と反
対側のZ点側に最適な状態に接続させる。部分断面形状
のR2を平行移動させる場合、同図(C)に示すような
等間隔の仮想水平線nを考える。部分断面形状のR2の
U点を仮想水平線nの一目盛分だけ垂直移動させ、一目
盛目の仮想水平線n1に沿って横方向に移動させ、交差
する部分断面形状のR1とR2が交点を境としてその上
下で造る面積T1とT2の合計=(T1+T2)が最小
になる位置まで移動させて、その最小面積を記憶する
(同図(D)参照)。
Next, the partial cross-sectional shape R2 is translated along R1 and finally connected to the Z-point side opposite to the point V of the partial cross-sectional shape R1 in an optimum state. When translating the partial cross-sectional shape R2 in parallel, consider an imaginary horizontal line n at equal intervals as shown in FIG. The U point of R2 of the partial cross-sectional shape is vertically moved by one graduation of the virtual horizontal line n, and is moved laterally along the imaginary horizontal line n1 of the first graduation, and the intersecting points of the intersecting partial cross-sectional shapes R1 and R2. Then, the area is moved to a position where the sum of the areas T1 and T2 to be built above and below = (T1 + T2) is minimized, and the minimum area is stored (see FIG. 7D).

【0029】続いて、また、部分断面形状のR2のU点
を仮想水平線nの一目盛分だけ垂直移動させ、二目盛目
の仮想水平線n2に沿って横方向に移動させ、交差する
部分断面形状のR1とR2が交点を境としてその上下で
造る面積T1とT2の合計=(T1+T2)が最小にな
る位置まで移動させて、その最小面積を記憶する。
Subsequently, the U point of R2 of the partial sectional shape is vertically moved by one scale of the virtual horizontal line n, and is moved laterally along the virtual horizontal line n2 of the second scale to intersect the partial sectional shape. R1 and R2 are moved to a position where the sum of (T1 + T2) of areas T1 and T2 created above and below the intersection is the minimum, and the minimum area is stored.

【0030】以下、同様に部分断面形状のR2のU点を
仮想水平線nの一目盛分だけ順次垂直移動させ、その仮
想水平線nに沿って横移動させて得られる最小面積(T
1+T2)の集まりの中で最も最小となる部分で、部分
断面形状のR1とR2を重ね合わせて接続させる(同図
(E)(F)参照)。
Similarly, the point U of R2 of the partial cross-sectional shape is similarly vertically moved by one scale of the imaginary horizontal line n, and laterally moved along the imaginary horizontal line n to obtain the minimum area (T
1 + T2) is the smallest part in the group, and the partial cross-sectional shapes R1 and R2 are overlapped and connected (see (E) and (F) in the same figure).

【0031】次に、部分断面形状のR2とR3を前記と
同様な処理方法で重ね合わせて接続させる。以下、順に
部分断面形状のR3とR4、R4とR5、・・・・、R
11とR12、R12とR1を前記と同様な処理方法で重ね合
わせて接続させて、鍛造シャフトaの全体断面形状を得
る。
Next, the partial cross-sectional shapes R2 and R3 are overlapped and connected by the same processing method as described above. In the following, the partial cross-sectional shapes R3 and R4, R4 and R5, ..., R
11 and R12 and R12 and R1 are overlapped and connected by the same processing method as described above to obtain the entire cross-sectional shape of the forged shaft a.

【0032】また、得られた鍛造シャフトaの全体断面
形状から外径寸法の測定は、後述の真円度の測定の前半
部と同様な方法で求められる。例えば、図9に示すよう
に、得られた鍛造シャフトaの全体断面形状の重心GX
を通る複数の直線Lが断面外形線と交わる点である2点
間の距離から外径寸法が測定される。
From the overall cross-sectional shape of the obtained forged shaft a, the outer diameter is measured by the same method as in the first half of the roundness measurement described later. For example, as shown in FIG. 9, the center of gravity GX of the entire cross-sectional shape of the obtained forged shaft a.
The outer diameter dimension is measured from the distance between two points, which are points where a plurality of straight lines L passing through intersect with the outline of the cross section.

【0033】また、得られた鍛造シャフトaの全体断面
形状から芯ずれの測定は、図7に示すように、最初の測
定基準位置における鍛造シャフトaの全体断面形状の重
心位置GXと、回転機構4によって回転させられる鍛造
シャフトaの回転中心位置GRとのずれから芯ずれを測
定して求められる。演算処理手段5によって測定された
芯ずれは、表示手段6を通じて表示されて、作業者に認
識される。鍛造シャフトaの全体断面形状の重心位置G
Xは、図8に示すように、次のようにして求められる。
ここで、s1,s2は台形の面積、x1,x2は台形の
重心位置、GXは閉曲線の重心位置つまり鍛造シャフト
aの全体断面形状の重心位置、Sは全体の面積つまり鍛
造シャフトaの全体断面形状の面積とすると、 閉曲線の重心位置GX=(s1・x1+s2・x2+・
・・・・+sn・xn)/S が成り立つ。上式を使用するにあたって台形の面積と重
心位置を求めなければいけない。ここで、台形の重心位
置は次式で求めることができる。 台形の重心位置x1=(2X1Y1+X1Y2+X2Y
1+2X2Y2)/3(Y1+Y2) 台形の面積s1=(Y1+Y2)・(X2−X1)/2 全体の面積S =s1+s2+・・・・・・+sn
The misalignment of the obtained forged shaft a is measured from the center of gravity position GX of the forged shaft a at the first measurement reference position and the rotation mechanism, as shown in FIG. 4 is obtained by measuring the misalignment from the misalignment with the rotation center position GR of the forged shaft a rotated by 4. The misalignment measured by the arithmetic processing means 5 is displayed on the display means 6 and is recognized by the operator. Center of gravity position G of the entire cross-sectional shape of the forged shaft a
X is calculated as follows, as shown in FIG.
Here, s1 and s2 are trapezoidal areas, x1 and x2 are trapezoidal barycentric positions, GX is a closed curve barycentric position, that is, the barycentric position of the entire cross-sectional shape of the forged shaft a, and S is the entire area, that is, the entire cross-section of the forged shaft a. Assuming the area of the shape, the position of the center of gravity of the closed curve GX = (s1 · x1 + s2 · x2 + ·
··· + Sn · xn) / S holds. To use the above equation, we must find the area of the trapezoid and the position of the center of gravity. Here, the center of gravity of the trapezoid can be calculated by the following equation. Center of gravity position of trapezoid x1 = (2X1Y1 + X1Y2 + X2Y
1 + 2X2Y2) / 3 (Y1 + Y2) Trapezoidal area s1 = (Y1 + Y2). (X2-X1) / 2 Total area S = s1 + s2 + ... + Sn

【0034】また、得られた鍛造シャフトaの全体断面
形状から真円度の測定は、図9に示すように、得られた
鍛造シャフトaの全体断面形状の重心GXを通る複数の
直線Lが断面外形線と交わる点である2点間の距離から
最大直径Lmax と最小直径Lmin を求め、最大直径L
max と最小直径Lmin との差を求めることにより得られ
る。演算処理手段5によって測定された真円度は、表示
手段6を通じて表示されて、作業者に認識される。
Further, the roundness is measured from the entire cross-sectional shape of the obtained forged shaft a. As shown in FIG. 9, a plurality of straight lines L passing through the center of gravity GX of the obtained forged shaft a are obtained. The maximum diameter L max and the minimum diameter L min are calculated from the distance between the two points that intersect with the cross-section contour line, and the maximum diameter L
It is obtained by finding the difference between max and the minimum diameter L min . The roundness measured by the arithmetic processing means 5 is displayed on the display means 6 and is recognized by the operator.

【0035】なお、この発明は上記実施例に限定される
ものではなく、この発明の精神を逸脱しない範囲で種々
の改変をなし得ることは勿論である。
The present invention is not limited to the above embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

【0036】[0036]

【発明の効果】以上の記載より明らかなように、請求項
1の構成によれば、危険な高温の鍛造シャフトに近づく
ことなく、また安全にしかも作業者の長年の経験に頼る
ことなく、鍛造シャフトの全体断面形状を測定すること
ができる。
As is apparent from the above description, according to the construction of claim 1, forging is performed without approaching a dangerous high temperature forged shaft, safely and without relying on many years of experience of an operator. The overall cross-sectional shape of the shaft can be measured.

【0037】請求項2の構成によれば、危険な高温の鍛
造シャフトに近づくことなく、また安全にしかも作業者
の長年の経験に頼ることなく、鍛造シャフトの全体断面
形状を測定でき、これから鍛造シャフトの外径寸法を測
定することができる。
According to the second aspect of the invention, the entire cross-sectional shape of the forged shaft can be measured without approaching the dangerous high temperature forged shaft, and safely and without relying on the operator's many years of experience. The outer diameter of the shaft can be measured.

【0038】請求項3の構成によれば、危険な高温の鍛
造シャフトに近づくことなく、また安全にしかも作業者
の長年の経験に頼ることなく、鍛造シャフトの全体断面
形状を測定でき、これから鍛造シャフトの芯ずれを測定
することができる。
According to the third aspect of the present invention, the entire cross-sectional shape of the forged shaft can be measured without approaching the dangerous high temperature forged shaft, and safely and without relying on the operator's many years of experience. The misalignment of the shaft can be measured.

【0039】請求項4の構成によれば、危険な高温の鍛
造シャフトに近づくことなく、また安全にしかも作業者
の長年の経験に頼ることなく、鍛造シャフトの全体断面
形状を測定でき、これから鍛造シャフトの真円度を測定
することができる。
According to the structure of claim 4, the entire cross-sectional shape of the forged shaft can be measured without approaching the dangerously high temperature forged shaft, and safely and without relying on the operator's many years of experience. The roundness of the shaft can be measured.

【0040】請求項5の構成によれば、危険な高温の鍛
造シャフトに近づくことなく、また安全にしかも作業者
の長年の経験に頼ることなく、鍛造シャフトの全体断面
形状を測定でき、これから鍛造シャフトの外径寸法及び
芯ずれを測定することができる。
According to the structure of claim 5, the entire cross-sectional shape of the forged shaft can be measured without approaching the dangerous high temperature forged shaft, and safely and without relying on the operator's many years of experience. It is possible to measure the outer diameter dimension and the misalignment of the shaft.

【0041】請求項6の構成によれば、危険な高温の鍛
造シャフトに近づくことなく、また安全にしかも作業者
の長年の経験に頼ることなく、鍛造シャフトの全体断面
形状を測定でき、これから鍛造シャフトの外径寸法及び
真円度を測定することができる。
According to the structure of claim 6, the entire cross-sectional shape of the forged shaft can be measured without approaching the dangerous high temperature forged shaft and safely and without relying on the operator's many years of experience. The outer diameter dimension and roundness of the shaft can be measured.

【0042】請求項7の構成によれば、危険な高温の鍛
造シャフトに近づくことなく、また安全にしかも作業者
の長年の経験に頼ることなく、鍛造シャフトの全体断面
形状を測定でき、これから鍛造シャフトの芯ずれ及び真
円度を測定することができる。
According to the configuration of claim 7, the entire cross-sectional shape of the forged shaft can be measured without approaching the dangerous high temperature forged shaft and safely and without relying on the operator's many years of experience. The shaft misalignment and roundness can be measured.

【0043】請求項8の構成によれば、危険な高温の鍛
造シャフトに近づくことなく、また安全にしかも作業者
の長年の経験に頼ることなく、鍛造シャフトの全体断面
形状を測定でき、これから鍛造シャフトの外径寸法、芯
ずれ及び真円度を測定することができる。
According to the structure of claim 8, the entire cross-sectional shape of the forged shaft can be measured without approaching the dangerous high temperature forged shaft and safely and without relying on the operator's many years of experience. It is possible to measure the outer diameter dimension, misalignment and roundness of the shaft.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す鍛造シャフトの測定装
置の全体概略図である。
FIG. 1 is an overall schematic view of a forged shaft measuring apparatus showing an embodiment of the present invention.

【図2】この発明の実施例を示す鍛造シャフトの測定装
置の一部概略側面図である。
FIG. 2 is a partial schematic side view of a forged shaft measuring apparatus showing an embodiment of the present invention.

【図3】この発明の実施例を示す鍛造シャフトの測定装
置の全体概略系統図である。
FIG. 3 is an overall schematic system diagram of a forged shaft measuring device showing an embodiment of the present invention.

【図4】この発明の実施例を示す鍛造シャフトの部分分
割測定概要図である。
FIG. 4 is a schematic view of partial division measurement of a forged shaft showing an embodiment of the present invention.

【図5】この発明の実施例を示す鍛造シャフトの部分断
面形状図である。
FIG. 5 is a partial sectional shape view of a forged shaft showing an embodiment of the present invention.

【図6】(A)〜(F)はこの発明の実施例を示す鍛造
シャフトの部分断面形状の接続概要図である。
6 (A) to (F) are schematic connection diagrams of a partial cross-sectional shape of a forged shaft showing an embodiment of the present invention.

【図7】この発明の実施例を示す芯ずれの測定概要図で
ある。
FIG. 7 is a schematic diagram of measurement of misalignment showing an embodiment of the present invention.

【図8】この発明の実施例を示す重心位置の算出概要図
である。
FIG. 8 is a schematic diagram of calculation of a center of gravity position showing an embodiment of the present invention.

【図9】この発明の実施例を示す真円度の測定概要図で
ある。
FIG. 9 is a schematic diagram of roundness measurement showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 スリット光投光器 1a スリット光照射部 2 撮影機 2a テレビ 3 取付け支持台 3a 水平軸 4 回転機構 5 演算処理手段 5a キーボード 6 表示手段 a 鍛造シャフト 1 Slit Light Projector 1a Slit Light Irradiator 2 Camera 2a Television 3 Mounting Support 3a Horizontal Axis 4 Rotation Mechanism 5 Arithmetic Processing Means 5a Keyboard 6 Display Means a Forged Shaft

フロントページの続き (72)発明者 ▲孫▼ ▲暁▼ 長崎県長崎市文教町1−14 長崎大学工学 部内Front page continuation (72) Inventor ▲ Grandchild ▼ ▲ Akatsuki ▼ 1-14 Bunkyo-cho, Nagasaki City, Nagasaki Prefecture Nagasaki University Faculty of Engineering

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 回転機構で水平に把持される鍛造シャフ
トに該鍛造シャフトに対して直交方向にスリット光を投
光するスリット光投光器と、 鍛造シャフトに投光されたスリット光照射部を撮影する
撮影機と、 回転機構で一定角度毎に回転される鍛造シャフトに投光
されたスリット光照射部の映像を一定角度回転する毎に
撮影機で撮影して取り込み、取り込んだ映像からスリッ
ト光照射部を抽出して鍛造シャフトの各回転角度毎の部
分断面形状を求め、鍛造シャフトの各回転角度毎の部分
断面形状の重複部分が最も良く一致するように接続して
鍛造シャフトの全体断面形状を求める演算処理手段と、 演算処理手段で測定された内容を表示する表示手段と、
を少なくとも具備することを特徴とする鍛造シャフトの
測定装置。
1. A slit light projector for projecting a slit light in a direction orthogonal to the forged shaft horizontally held by a rotating mechanism, and an image of a slit light irradiation unit projected on the forged shaft. Every time the image of the slit light irradiation part projected on the forging shaft rotated by the photographing device and the forging shaft rotated by the rotating mechanism is rotated by a certain angle, the image is taken and captured by the camera, and the slit light irradiation part is taken from the captured image. To obtain the partial cross-sectional shape of the forged shaft for each rotation angle, and connect so that the overlapping portions of the partial cross-sectional shape of the forged shaft for each rotation angle match best to obtain the overall cross-sectional shape of the forged shaft. Arithmetic processing means, display means for displaying the content measured by the arithmetic processing means,
A measuring device for a forged shaft, comprising:
【請求項2】 回転機構で水平に把持される鍛造シャフ
トに該鍛造シャフトに対して直交方向にスリット光を投
光するスリット光投光器と、 鍛造シャフトに投光されたスリット光照射部を撮影する
撮影機と、 回転機構で一定角度毎に回転される鍛造シャフトに投光
されたスリット光照射部の映像を一定角度回転する毎に
撮影機で撮影して取り込み、取り込んだ映像からスリッ
ト光照射部を抽出して鍛造シャフトの各回転角度毎の部
分断面形状を求め、鍛造シャフトの各回転角度毎の部分
断面形状の重複部分が最も良く一致するように接続して
鍛造シャフトの全体断面形状を求め、得られた鍛造シャ
フトの全体断面形状から外径寸法を測定する演算処理手
段と、 演算処理手段で測定された内容を表示する表示手段と、
を少なくとも具備することを特徴とする鍛造シャフトの
測定装置。
2. A slit light projector for projecting slit light in a direction orthogonal to the forged shaft, which is horizontally held by a rotating mechanism, and an image of a slit light irradiation part projected on the forged shaft. Every time the image of the slit light irradiation part projected on the forging shaft rotated by the photographing device and the forging shaft rotated by the rotating mechanism is rotated by a certain angle, the image is taken and captured by the camera, and the slit light irradiation part is taken from the captured image. To obtain the partial cross-sectional shape of the forged shaft for each rotation angle, and connect so that the overlapping portions of the partial cross-sectional shape of the forged shaft for each rotation angle match best to obtain the overall cross-sectional shape of the forged shaft. An arithmetic processing means for measuring the outer diameter dimension from the obtained overall cross-sectional shape of the forged shaft, and a display means for displaying the content measured by the arithmetic processing means,
A measuring device for a forged shaft, comprising:
【請求項3】 回転機構で水平に把持される鍛造シャフ
トに該鍛造シャフトに対して直交方向にスリット光を投
光するスリット光投光器と、 鍛造シャフトに投光されたスリット光照射部を撮影する
撮影機と、 回転機構で一定角度毎に回転される鍛造シャフトに投光
されたスリット光照射部の映像を一定角度回転する毎に
撮影機で撮影して取り込み、取り込んだ映像からスリッ
ト光照射部を抽出して鍛造シャフトの各回転角度毎の部
分断面形状を求め、鍛造シャフトの各回転角度毎の部分
断面形状の重複部分が最も良く一致するように接続して
鍛造シャフトの全体断面形状を求め、最初の測定基準位
置における鍛造シャフトの全体断面形状の重心位置と鍛
造シャフトの回転中心位置とのずれから芯ずれを測定す
る演算処理手段と、 演算処理手段で測定された内容を表示する表示手段と、
を少なくとも具備することを特徴とする鍛造シャフトの
測定装置。
3. A slit light projector for projecting slit light in a direction orthogonal to the forged shaft, which is horizontally held by a rotating mechanism, and an image of the slit light irradiation part, which is projected on the forged shaft. Every time the image of the slit light irradiation part projected on the forging shaft rotated by the photographing device and the forging shaft rotated by the rotating mechanism is rotated by a certain angle, the image is taken and captured by the camera, and the slit light irradiation part is taken from the captured image. To obtain the partial cross-sectional shape of the forged shaft for each rotation angle, and connect so that the overlapping portions of the partial cross-sectional shape of the forged shaft for each rotation angle match best to obtain the overall cross-sectional shape of the forged shaft. An arithmetic processing means for measuring the misalignment from the deviation between the center of gravity position of the entire cross-sectional shape of the forged shaft and the rotational center position of the forged shaft at the first measurement reference position, and an arithmetic processing means Display means for displaying the contents measured in
A measuring device for a forged shaft, comprising:
【請求項4】 回転機構で水平に把持される鍛造シャフ
トに該鍛造シャフトに対して直交方向にスリット光を投
光するスリット光投光器と、 鍛造シャフトに投光されたスリット光照射部を撮影する
撮影機と、 回転機構で一定角度毎に回転される鍛造シャフトに投光
されたスリット光照射部の映像を一定角度回転する毎に
撮影機で撮影して取り込み、取り込んだ映像からスリッ
ト光照射部を抽出して鍛造シャフトの各回転角度毎の部
分断面形状を求め、鍛造シャフトの各回転角度毎の部分
断面形状の重複部分が最も良く一致するように接続して
鍛造シャフトの全体断面形状を求め、得られた鍛造シャ
フトの全体断面形状の重心を通る複数の直線が断面外形
線と交わる点である2点間の距離から最大直径と最小直
径を求め、最大直径と最小直径との差を求めて真円度を
測定する演算処理手段と、 演算処理手段で測定された内容を表示する表示手段と、
を少なくとも具備することを特徴とする鍛造シャフトの
測定装置。
4. A slit light projector for projecting slit light in a direction orthogonal to the forged shaft, which is horizontally held by a rotating mechanism, and a slit light irradiation part, which is projected on the forged shaft. Every time the image of the slit light irradiation part projected on the forging shaft rotated by the photographing device and the forging shaft rotated by the rotating mechanism is rotated by a certain angle, the image is taken and captured by the camera, and the slit light irradiation part is taken from the captured image. To obtain the partial cross-sectional shape of the forged shaft for each rotation angle, and connect so that the overlapping portions of the partial cross-sectional shape of the forged shaft for each rotation angle match best to obtain the overall cross-sectional shape of the forged shaft. , The maximum diameter and the minimum diameter are obtained from the distance between two points, which are points where a plurality of straight lines passing through the center of gravity of the entire cross-sectional shape of the obtained forged shaft intersect with the cross-section contour line, and the maximum diameter and the minimum diameter are calculated. And processing means for measuring the roundness and determining a difference, and display means for displaying the measured contents processing means,
A measuring device for a forged shaft, comprising:
【請求項5】 回転機構で水平に把持される鍛造シャフ
トに該鍛造シャフトに対して直交方向にスリット光を投
光するスリット光投光器と、 鍛造シャフトに投光されたスリット光照射部を撮影する
撮影機と、 回転機構で一定角度毎に回転される鍛造シャフトに投光
されたスリット光照射部の映像を一定角度回転する毎に
撮影機で撮影して取り込み、取り込んだ映像からスリッ
ト光照射部を抽出して鍛造シャフトの各回転角度毎の部
分断面形状を求め、鍛造シャフトの各回転角度毎の部分
断面形状の重複部分が最も良く一致するように接続して
鍛造シャフトの全体断面形状を求め、得られた鍛造シャ
フトの全体断面形状から外径寸法を測定し、且つ、最初
の測定基準位置における鍛造シャフトの全体断面形状の
重心位置と鍛造シャフトの回転中心位置とのずれから芯
ずれを測定する演算処理手段と、 演算処理手段で測定された内容を表示する表示手段と、
を少なくとも具備することを特徴とする鍛造シャフトの
測定装置。
5. A slit light projector for projecting slit light in a direction orthogonal to the forged shaft, which is horizontally held by a rotating mechanism, and an image of the slit light irradiation unit projected on the forged shaft. Every time the image of the slit light irradiation part projected on the forging shaft rotated by the photographing device and the forging shaft rotated by the rotating mechanism is rotated by a certain angle, the image is taken and captured by the camera, and the slit light irradiation part is taken from the captured image. To obtain the partial cross-sectional shape of the forged shaft for each rotation angle, and connect so that the overlapping portions of the partial cross-sectional shape of the forged shaft for each rotation angle match best to obtain the overall cross-sectional shape of the forged shaft. The outer diameter of the obtained forged shaft is measured, and the center of gravity of the forged shaft is measured at the first measurement reference position and the forged shaft is rotating. And processing means for measuring the misalignment from the deviation between the position, and a display means for displaying the measured contents processing means,
A measuring device for a forged shaft, comprising:
【請求項6】 回転機構で水平に把持される鍛造シャフ
トに該鍛造シャフトに対して直交方向にスリット光を投
光するスリット光投光器と、 鍛造シャフトに投光されたスリット光照射部を撮影する
撮影機と、 回転機構で一定角度毎に回転される鍛造シャフトに投光
されたスリット光照射部の映像を一定角度回転する毎に
撮影機で撮影して取り込み、取り込んだ映像からスリッ
ト光照射部を抽出して鍛造シャフトの各回転角度毎の部
分断面形状を求め、鍛造シャフトの各回転角度毎の部分
断面形状の重複部分が最も良く一致するように接続して
鍛造シャフトの全体断面形状を求め、得られた鍛造シャ
フトの全体断面形状から外径寸法を測定し、且つ、得ら
れた鍛造シャフトの全体断面形状の重心を通る複数の直
線が断面外形線と交わる点である2点間の距離から最大
直径と最小直径を求め、最大直径と最小直径との差を求
めて真円度を測定する演算処理手段と、 演算処理手段で測定された内容を表示する表示手段と、
を少なくとも具備することを特徴とする鍛造シャフトの
測定装置。
6. A slit light projector that projects slit light in a direction orthogonal to the forged shaft horizontally held by a rotating mechanism, and an image of a slit light irradiation unit projected on the forged shaft. Every time the image of the slit light irradiation part projected on the forging shaft rotated by the photographing device and the forging shaft rotated by the rotating mechanism is rotated by a certain angle, the image is taken and captured by the camera, and the slit light irradiation part is taken from the captured image. To obtain the partial cross-sectional shape of the forged shaft for each rotation angle, and connect so that the overlapping portions of the partial cross-sectional shape of the forged shaft for each rotation angle match best to obtain the overall cross-sectional shape of the forged shaft. The outer diameter is measured from the overall cross-sectional shape of the obtained forged shaft, and a plurality of straight lines passing through the center of gravity of the overall cross-sectional shape of the obtained forged shaft intersect with the cross-sectional contour line. Determine the maximum and minimum diameters from the distance between points, and display means for displaying an arithmetic processing means for measuring the roundness and obtains the difference between the maximum and minimum diameters, the measured contents processing means,
A measuring device for a forged shaft, comprising:
【請求項7】 回転機構で水平に把持される鍛造シャフ
トに該鍛造シャフトに対して直交方向にスリット光を投
光するスリット光投光器と、 鍛造シャフトに投光されたスリット光照射部を撮影する
撮影機と、 回転機構で一定角度毎に回転される鍛造シャフトに投光
されたスリット光照射部の映像を一定角度回転する毎に
撮影機で撮影して取り込み、取り込んだ映像からスリッ
ト光照射部を抽出して鍛造シャフトの各回転角度毎の部
分断面形状を求め、鍛造シャフトの各回転角度毎の部分
断面形状の重複部分が最も良く一致するように接続して
鍛造シャフトの全体断面形状を求め、最初の測定基準位
置における鍛造シャフトの全体断面形状の重心位置と鍛
造シャフトの回転中心位置とのずれから芯ずれを測定
し、且つ、得られた鍛造シャフトの全体断面形状の重心
を通る複数の直線が断面外形線と交わる点である2点間
の距離から最大直径と最小直径を求め、最大直径と最小
直径との差を求めて真円度を測定する演算処理手段と、 演算処理手段で測定された内容を表示する表示手段と、
を少なくとも具備することを特徴とする鍛造シャフトの
測定装置。
7. A slit light projector for projecting slit light in a direction orthogonal to the forged shaft, which is horizontally held by a rotating mechanism, and an image of the slit light irradiation part projected on the forged shaft. Every time the image of the slit light irradiation part projected on the forging shaft rotated by the photographing device and the forging shaft rotated by the rotating mechanism is rotated by a certain angle, the image is taken and captured by the camera, and the slit light irradiation part is taken from the captured image. To obtain the partial cross-sectional shape of the forged shaft for each rotation angle, and connect so that the overlapping portions of the partial cross-sectional shape of the forged shaft for each rotation angle match best to obtain the overall cross-sectional shape of the forged shaft. , The center of misalignment is measured from the deviation between the center of gravity of the entire cross-sectional shape of the forged shaft and the center of rotation of the forged shaft at the first measurement reference position, and The roundness is measured by finding the maximum diameter and the minimum diameter from the distance between two points, which are the points where a plurality of straight lines passing through the center of gravity of the body cross section intersect with the cross sectional outline, and then finding the difference between the maximum diameter and the minimum diameter. Arithmetic processing means, display means for displaying the content measured by the arithmetic processing means,
A measuring device for a forged shaft, comprising:
【請求項8】 回転機構で水平に把持される鍛造シャフ
トに該鍛造シャフトに対して直交方向にスリット光を投
光するスリット光投光器と、 鍛造シャフトに投光されたスリット光照射部を撮影する
撮影機と、 回転機構で一定角度毎に回転される鍛造シャフトに投光
されたスリット光照射部の映像を一定角度回転する毎に
撮影機で撮影して取り込み、取り込んだ映像からスリッ
ト光照射部を抽出して鍛造シャフトの各回転角度毎の部
分断面形状を求め、鍛造シャフトの各回転角度毎の部分
断面形状の重複部分が最も良く一致するように接続して
鍛造シャフトの全体断面形状を求め、得られた鍛造シャ
フトの全体断面形状から外径寸法を測定し、且つ、最初
の測定基準位置における鍛造シャフトの全体断面形状の
重心位置と鍛造シャフトの回転中心位置とのずれから芯
ずれを測定し、さらに、得られた鍛造シャフトの全体断
面形状の重心を通る複数の直線が断面外形線と交わる点
である2点間の距離から最大直径と最小直径を求め、最
大直径と最小直径との差を求めて真円度を測定する演算
処理手段と、 演算処理手段で測定された内容を表示する表示手段と、
を少なくとも具備することを特徴とする鍛造シャフトの
測定装置。
8. A slit light projector for projecting slit light in a direction orthogonal to the forged shaft, which is horizontally held by a rotating mechanism, and an image of the slit light irradiation part projected on the forged shaft. Every time the image of the slit light irradiation part projected on the forging shaft rotated by the photographing device and the forging shaft rotated by the rotating mechanism is rotated by a certain angle, the image is taken and captured by the camera, and the slit light irradiation part is taken from the captured image. To obtain the partial cross-sectional shape of the forged shaft for each rotation angle, and connect so that the overlapping portions of the partial cross-sectional shape of the forged shaft for each rotation angle match best to obtain the overall cross-sectional shape of the forged shaft. The outer diameter of the obtained forged shaft is measured, and the center of gravity of the forged shaft is measured at the first measurement reference position and the forged shaft is rotating. The misalignment is measured from the misalignment with the position, and the maximum diameter and the minimum diameter are calculated from the distance between the two points where a plurality of straight lines passing through the center of gravity of the overall cross-sectional shape of the obtained forged shaft intersect with the cross-sectional contour line. Obtained, arithmetic processing means for measuring the roundness by obtaining the difference between the maximum diameter and the minimum diameter, display means for displaying the content measured by the arithmetic processing means,
A measuring device for a forged shaft, comprising:
JP14110995A 1995-05-15 1995-05-15 Measuring apparatus for forged shaft Pending JPH08304037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14110995A JPH08304037A (en) 1995-05-15 1995-05-15 Measuring apparatus for forged shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14110995A JPH08304037A (en) 1995-05-15 1995-05-15 Measuring apparatus for forged shaft

Publications (1)

Publication Number Publication Date
JPH08304037A true JPH08304037A (en) 1996-11-22

Family

ID=15284388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14110995A Pending JPH08304037A (en) 1995-05-15 1995-05-15 Measuring apparatus for forged shaft

Country Status (1)

Country Link
JP (1) JPH08304037A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249702A (en) * 2009-04-16 2010-11-04 Bridgestone Corp Method and device for detecting shape of band-like member
JP2012093268A (en) * 2010-10-28 2012-05-17 Aida Engineering Co Ltd Circularity measurement system and pipe-making device with the same
KR101220478B1 (en) * 2010-10-28 2013-02-07 한전케이피에스 주식회사 Large Shaft Bending Measurement method and system
JP2013511033A (en) * 2009-11-11 2013-03-28 アンドリツ オサケユキチュア Method of measuring and aligning a cylindrical rotating device
CN111256613A (en) * 2020-02-25 2020-06-09 厦门市省力机械有限公司 Roundness tester and roundness testing method
JP2022026621A (en) * 2020-07-31 2022-02-10 三鷹光器株式会社 Non-contact method of measuring circularity and diameter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249702A (en) * 2009-04-16 2010-11-04 Bridgestone Corp Method and device for detecting shape of band-like member
JP2013511033A (en) * 2009-11-11 2013-03-28 アンドリツ オサケユキチュア Method of measuring and aligning a cylindrical rotating device
US9234737B2 (en) 2009-11-11 2016-01-12 Andritz Oy Method for measuring and aligning a rotary cylindrical apparatus
JP2012093268A (en) * 2010-10-28 2012-05-17 Aida Engineering Co Ltd Circularity measurement system and pipe-making device with the same
KR101220478B1 (en) * 2010-10-28 2013-02-07 한전케이피에스 주식회사 Large Shaft Bending Measurement method and system
CN111256613A (en) * 2020-02-25 2020-06-09 厦门市省力机械有限公司 Roundness tester and roundness testing method
JP2022026621A (en) * 2020-07-31 2022-02-10 三鷹光器株式会社 Non-contact method of measuring circularity and diameter

Similar Documents

Publication Publication Date Title
US7632015B2 (en) CT scanner including device to visually indicate area of CT scan
CN109632103A (en) High vacant building Temperature Distribution and surface crack remote supervision system and monitoring method
US10258306B2 (en) Method and system for controlling computer tomography imaging
US7551711B2 (en) CT scanner including a camera to obtain external images of a patient
JPH07286837A (en) Instrument and method for measuring rotational amount of spherical body
JP2002529685A (en) Tomographic reconstruction of electronic components from shadow sensor data.
JPH0263217B2 (en)
WO1991003732A1 (en) Method for aligning an articulated beam delivery device, such as a robot
JP3067652B2 (en) Concrete crack measuring method and measuring device
JP2980195B2 (en) Method and apparatus for measuring rebar diameter
JPH08304037A (en) Measuring apparatus for forged shaft
JP2000018921A (en) Dimension measuring method and apparatus thereof
JP2021177157A5 (en)
JP3696335B2 (en) Method for associating each measurement point of multiple images
JPH09196637A (en) Method for measuring bend angle of long material
JP2007121126A (en) Three-dimensional shape measuring device and three-dimensional shape measuring method
JP2535712B2 (en) X-ray CT system
JP2980194B2 (en) Method and apparatus for measuring reinforcing bar position and posture
JP4207327B2 (en) Rotation position detector
JPH0692888B2 (en) X-ray CT system
JP2913370B2 (en) Optical position measurement method
JPH0721357A (en) Spiral scanning-type crt device
JP2004229854A (en) Method for correcting ct image distortion photographed by cone beam ct apparatus
JPH08271235A (en) Object surface inclination measuring device
JP2000333935A (en) Medical image processing device

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040511

Free format text: JAPANESE INTERMEDIATE CODE: A02