JPH1192834A - Production of sintered ore - Google Patents

Production of sintered ore

Info

Publication number
JPH1192834A
JPH1192834A JP25217197A JP25217197A JPH1192834A JP H1192834 A JPH1192834 A JP H1192834A JP 25217197 A JP25217197 A JP 25217197A JP 25217197 A JP25217197 A JP 25217197A JP H1192834 A JPH1192834 A JP H1192834A
Authority
JP
Japan
Prior art keywords
index
pseudo
granulation
raw material
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25217197A
Other languages
Japanese (ja)
Inventor
Koji Ano
浩二 阿野
Masahiro Kuwana
昌弘 桑名
Hitoaki Yamagata
仁朗 山形
Akihiro Nishiguchi
昭洋 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25217197A priority Critical patent/JPH1192834A/en
Publication of JPH1192834A publication Critical patent/JPH1192834A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the productivity of sintered ore by using an existing equipment in a mixed granulating process and improving the granulating property to improve the air permeability of sintering raw material. SOLUTION: Individual pseudo granulating indices of the raw materials for sintered ore is previously obtd. and the raw materials for sintered ore are divided into an iron ore group having high pseudo granulating index and an iron ore group having low pseudo granulating index based on the previously obtd. individual indices. After applying a granulating promotion means to the iron ore group having low pseudo granulating index, the mixing and the granulation are executed in each of two iron groups and, thereafter, these granulated materials are mixed to execute sintering, wherein, the pseudo granulating index (mass%) is [(the ratio of the raw material having <0.25 mm size before granulation - the ratio of the raw material having <0.25 mm size) after granulation/(the ratio of the raw material having <0.25 mm size before granulation)]×100.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、製鉄用原料である
焼結鉱の製造方法に関するもので、特に、焼結原料の造
粒性を向上させて、通気度の良好な焼結原料を焼成する
焼結鉱の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered ore, which is a raw material for iron making, and more particularly, to a method for sintering a raw material having good air permeability by improving the granulation of the raw material. And a method for producing a sintered ore.

【0002】[0002]

【従来の技術】製鉄用原料として用いられる焼結鉱の製
造は、一般に、図3に示す焼結原料の事前処理工程によ
り行われる。この事前処理工程は、原料槽1とドラムミ
キサー2からなる混合、造粒工程と、給鉱ホッパー3、
焼結機4からなる焼結工程で構成される。焼結鉱の焼結
原料である粉鉄鉱石、CaO含有副原料(生石灰、石灰
石等)、SiO2 含有副原料(珪石、蛇紋岩等)および
コークス粉等の固体燃料は原料槽に貯蔵されている。こ
れら原料は所定量に配合されてドラムミキサーに装入さ
れ、さらに適量の水分を加えられて混合、造粒される。
次に、この造粒物は、給鉱ホッパーにより、焼結機(例
えば、ドワイトロイド式焼結機)のパレット上に適当な
高さに充填され、表層部の固体燃料に着火される。着火
後は、下方に向けて空気を吸引しながら固体燃料を燃焼
させて、この燃焼熱により配合原料を焼結される。
2. Description of the Related Art In general, the production of sintered ore used as a raw material for iron making is performed by a pre-processing step of the sintering raw material shown in FIG. This pre-treatment step includes a mixing and granulating step including a raw material tank 1 and a drum mixer 2, and a feed hopper 3,
The sintering process includes a sintering process. Solid fuels such as fine iron ore, sintering raw materials, CaO-containing auxiliary materials (quick lime, limestone, etc.), SiO 2 -containing auxiliary materials (silicaite, serpentine, etc.) and coke powder are stored in a raw material tank. I have. These raw materials are blended in a predetermined amount, charged into a drum mixer, further mixed with an appropriate amount of water, and granulated.
Next, the granulated material is charged to a suitable height on a pallet of a sintering machine (for example, a Dwyroid type sintering machine) by a feed hopper, and the solid fuel in the surface layer is ignited. After ignition, the solid fuel is burned while sucking air downward, and the compounding material is sintered by the heat of combustion.

【0003】焼結機のパレットに装入された前記造粒物
には、焼結反応を均一かつ十分に進行させるために通気
性が要求される。この通気性を改善するために、焼結原
料の粗粒化や、焼結原料の造粒性を向上、すなわち焼結
原料の構成粒子を接合して擬似粒子化率を向上させて粗
粒化させて通気抵抗を少なくすることである。このた
め、粗粒の原料の配合量の増加や、造粒促進のためにバ
インダー(生石灰、ベントナイト、セメント、セメント
クリンカ粉等)の添加が行われている。
[0003] The above-mentioned granulated material loaded on a pallet of a sintering machine is required to have air permeability in order for the sintering reaction to proceed uniformly and sufficiently. In order to improve the air permeability, the sintering raw material is coarsened and the sintering raw material is improved in granulation property. That is, the airflow resistance is reduced. For this reason, binders (quick lime, bentonite, cement, cement clinker powder, etc.) are added to increase the amount of the raw material for coarse particles and to promote granulation.

【0004】また、焼結原料の通気性の改善のために、
焼結原料の微粉と粗粉に分けて分割造粒する方法が提案
されている(図4:材料とプロセス、日本鉄鋼協会編
Vol.10(1997)190頁 参照)。この方法
は、従来、一括して全原料を造粒するのに対し、焼結原
料の微粉(全原料の20質量%)を水分との強制攪拌を
行って選択的に造粒強化する工程を追加するものであ
る。この分割造粒により造粒率が向上し、通気性が改善
できることが示唆されている。
In order to improve the permeability of the sintering raw material,
A method of dividing and granulating the fine powder and coarse powder of the sintering raw material has been proposed (Fig. 4: Materials and processes, edited by The Iron and Steel Institute of Japan)
Vol. 10 (1997) p. 190). This method conventionally comprises a step of selectively granulating and strengthening the fine powder of the sintering raw material (20% by mass of the whole raw material) by forcibly stirring with water while the whole raw material is granulated at once. To add. It has been suggested that the granulation rate can be improved by this split granulation, and the air permeability can be improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、近年の
良質鉄鉱石の産出量の減少に伴い、使用する鉄鉱石の銘
柄が多くなり、焼結原料の造粒性はこれら銘柄特性に大
きく影響されている。すなわち、粗粒原料の配合比の低
下や、造粒性の劣る銘柄の鉄鉱石や、同じく造粒性の劣
る焼結返鉱の配合量の増加に伴い、焼結原料の造粒性の
低下が生じることである。このため、焼結原料の通気性
が低下して、焼結鉱の生産性が低下する問題がある。
However, with the decrease in the yield of high quality iron ore in recent years, the number of brands of iron ore to be used has increased, and the granulation properties of sintering raw materials have been greatly affected by these brand characteristics. I have. That is, with the decrease in the mixing ratio of the coarse-grained raw material, and the increase in the amount of iron ore of the brand with poor granulation properties and the sintering ore with the same poor granulation property, the granulation properties of the sintering raw materials decrease. Is to occur. For this reason, there is a problem that the permeability of the sintering raw material decreases, and the productivity of the sinter decreases.

【0006】また、前述の分割造粒においても、残りの
80%の粗粉原料にも造粒性の劣る銘柄が存在すること
もあり、焼結原料全体として、造粒性の低下につながる
場合がある。さらに、微粉を強制攪拌するために新たな
混合機を必要とし、操業が複雑になると共に、設備費の
増加につながる問題がある。
[0006] In the above-mentioned divided granulation, there is also a case where the remaining 80% of the coarse powder raw material may have a brand having poor granulation properties. There is. In addition, a new mixer is required to forcibly agitate the fine powder, which complicates the operation and increases the equipment cost.

【0007】そこで本発明は、既存の混合、造粒工程の
設備を用いて、焼結原料の造粒性を改善して、焼結原料
の通気性を向上させることにより、焼結鉱の生産性を向
上させることを目的とするものである。
[0007] Accordingly, the present invention is to improve the granulation of the sintering raw material and improve the permeability of the sintering raw material by using the existing mixing and granulation equipment, thereby producing sinter ore. The purpose is to improve the performance.

【0008】[0008]

【課題を解決するための手段】前述の課題を解決するた
めに、発明者らは、焼結原料の造粒性を改善するため
に、焼結原料の性状および擬似粒子化の機構について鋭
意研究を行った。その結果、混合、造粒工程を2系統と
し、焼結原料の擬似粒子化の程度に基づいて原料をそれ
ぞれグルーピングして、擬似粒子化の劣る原料の造粒強
化を図ることにより、焼結原料の造粒性を改善できると
の知見を得て本発明を完成した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have intensively studied the properties of the sintering raw material and the mechanism of pseudo-particle formation in order to improve the granulation property of the sintering raw material. Was done. As a result, the mixing and granulating processes are divided into two systems, and the raw materials are grouped based on the degree of pseudo-particle formation of the sintering raw materials to enhance the granulation of raw materials with poor pseudo-particle formation, thereby obtaining a sintered raw material. The present inventors have found that the granulation property can be improved, and completed the present invention.

【0009】本発明のうちで請求項1記載の発明は、予
め、焼結鉱の原料の個々の擬似粒子化指数を求めてお
き、これより焼結鉱の原料を高擬似粒子化指数の鉄鉱石
群と低擬似粒子化指数の鉄鉱石群に分け、低擬似粒子化
指数の鉄鉱石群に造粒促進手段を施した後、前記2つの
鉄鉱石群ごとに混合、造粒を行い、その後、これら造粒
物を混合して、焼結を行うことを特徴とするものであ
る。ここで、擬似粒子化指数(質量%)=(造粒前の
0.25mm未満の原料の比率−造粒後の0.25mm
未満の原料の比率)/(造粒前の0.25mm未満の原
料の比率)×100 である。
According to the first aspect of the present invention, in the present invention, the sinter ore raw materials having a high pseudo-grain index are determined from the individual pseudo-graining indices of the raw materials for the sinter ore. After the stone group and the iron ore group having a low pseudo-graining index are subjected to granulation promoting means, the iron ore group having a low pseudo-graining index is mixed and granulated for each of the two iron ore groups. The sintering is performed by mixing these granulated materials. Here, pseudo-granulation index (% by mass) = (Ratio of raw material less than 0.25 mm before granulation−0.25 mm after granulation)
Less than the ratio of raw materials less than 0.25 mm before granulation) × 100.

【0010】通気性と擬似粒子化指数とは相関があり、
擬似粒子化指数を用いることにより、通気性に対する効
果と焼結原料の擬似粒子化の程度を適確に判断できる。
さらに、 高擬似粒子化指数の鉄鉱石群と低擬似粒子化
指数の鉄鉱石群に分けて、低擬似粒子化指数の鉄鉱石群
に造粒促進手段を施した後、前記2つの鉄鉱石群ごとに
混合、造粒を行い、その後、これら造粒物を混合するこ
とによって、低擬似粒子化指数の鉄鉱石群の造粒強化を
行うことができ、全体として、焼結原料の造粒性をより
改善できる。
[0010] There is a correlation between the air permeability and the quasi-particle index,
By using the pseudo-particle index, the effect on air permeability and the degree of pseudo-particle conversion of the sintering raw material can be determined accurately.
Further, the iron ore group having a high pseudo-graining index and the iron ore group having a low pseudo-graining index are separated, and the ore group having a low pseudo-graining index is subjected to granulation promoting means. By performing mixing and granulation every time, and then mixing these granulated materials, it is possible to strengthen the granulation of iron ores having a low pseudo-particle index, and as a whole the granulation properties of the sintering raw material Can be further improved.

【0011】また請求項2記載の発明は、請求項1記載
の発明の構成のうち、造粒促進手段が、低擬似粒子化指
数の鉄鉱石群にのみバインダーを添加することを特徴と
するものである。低擬似粒子化指数の鉄鉱石群にのみバ
インダーを添加することにより、低擬似粒子化指数の鉄
鉱石群の造粒強化を効果的に行うことができ、全体とし
て、焼結原料の造粒性をより改善できる。
According to a second aspect of the present invention, in the first aspect of the present invention, the granulation promoting means adds a binder only to a group of iron ores having a low pseudo-particle index. It is. By adding a binder only to the iron ore group having a low pseudo-graining index, it is possible to effectively enhance the granulation of the iron ore group having a low pseudo-graining index. Can be further improved.

【0012】また請求項3記載の発明は、請求項1記載
の発明の構成のうち、造粒促進手段が、低擬似粒子化指
数の鉄鉱石群へのバインダーの添加量を高擬似粒子化指
数の鉄鉱石群より多くすることであることを特徴とする
ものである。低擬似粒子化指数の鉄鉱石群へのバインダ
ーの添加量を高擬似粒子化指数の鉄鉱石群より多くする
ことにより、低擬似粒子化指数の鉄鉱石群の造粒強化を
効果的に行って、焼結原料の造粒性をより改善するとと
もに、焼結鉱の焼結時間を短縮でき、焼結炉の生産性を
向上できる。
According to a third aspect of the present invention, in the first aspect of the invention, the granulation accelerating means is configured to adjust the amount of the binder to be added to the iron ore group having a low pseudo-graining index. Iron ore group. By increasing the amount of binder added to the iron ore group with a low pseudo-graining index compared to the iron ore group with a high pseudo-graining index, it is possible to effectively enhance the granulation of the iron ore group with a low pseudo-graining index. In addition, the granulation property of the sintering raw material can be further improved, and the sintering time of the sinter can be reduced, and the productivity of the sintering furnace can be improved.

【0013】また請求項4記載の発明は、請求項1又は
2又は3記載の発明の構成において、高擬似粒子化指数
が40質量%以上、低擬似粒子化指数が40質量%未満
とすることを特徴とするものである。高擬似粒子化指数
の鉄鉱石群と低擬似粒子化指数の鉄鉱石群とに的確に分
けることにより、全体として、効率良く焼結原料の造粒
性を改善できる。
According to a fourth aspect of the present invention, in the constitution of the first or second or third aspect, the high pseudo-particle index is 40% by mass or more and the low pseudo-particle index is less than 40% by mass. It is characterized by the following. By properly separating the iron ore group having a high pseudo-graining index and the iron ore group having a low pseudo-graining index, the granulation of the sintering raw material can be efficiently improved as a whole.

【0014】本発明の焼結鉱の製造方法について、さら
に説明する。焼結原料の造粒性は、焼結原料の構成粒子
の結合による擬似粒子化の程度により判断される。擬似
粒子化の良否は、焼結原料の吸水能、表面形状、粘性等
の性状に影響される。擬似粒子化は、原料粒子間の間隙
に水が充填されて水の表面張力により結合されて生じる
ものであり、特に、粗粉を核として微粉が結合して擬似
粒子化が生じることが多い。
The method for producing a sintered ore of the present invention will be further described. The granulation property of the sintering raw material is determined based on the degree of pseudo-particle formation due to the combination of the constituent particles of the sintering raw material. The quality of the quasi-particles is affected by the properties of the sintering material such as water absorption capacity, surface shape, and viscosity. Pseudo-particle formation is caused by filling the gaps between the raw material particles with water and being combined by the surface tension of water. In particular, in many cases, fine powder is combined with coarse powder as a nucleus to form pseudo-particles.

【0015】そこで、焼結原料の鉄鉱石R(銘柄)につ
いて、原料切出しとドラムミキサーで造粒した後の粒度
(擬似粒子化後の粒度)を比較した。これを図2に示
す。原料切出しと造粒後の粒度分布を比較すると、造粒
後は、原料切出し時に比べて、0.25mm未満の粒径
の比率が減少しており、0.25mm以上の粒径の比率
の増加していることが判った。このように、0.25m
m未満の粒径の粒子が結合して擬似粒子化されているこ
とが判明した。
[0015] Then, the iron ore R (brand) as a sintering raw material was compared in terms of particle size (particle size after forming into pseudo particles) after raw material cutting and granulation by a drum mixer. This is shown in FIG. Comparing the particle size distribution after the raw material cutting and the granulation, after granulation, the ratio of the particle size less than 0.25 mm is smaller than that at the time of the raw material cutting, and the ratio of the particle size of 0.25 mm or more is increased. I knew I was doing it. Thus, 0.25m
It was found that particles having a particle size of less than m were combined to form pseudo particles.

【0016】したがって、擬似粒子化の良否の判定に
は、0.25mm未満の粒径について、原料配合時との
造粒後の比率の変化に注目することにより可能となる。
この結果、擬似粒子化指数を以下のように定義した。 擬似粒子化指数(質量%)=(造粒前の0.25mm未満の原料の比率−造 粒後の0.25mm未満の原料の比率)/(造粒前の0.25mm未満の原料の 比率)×100 ・・1式
Therefore, it is possible to judge the quality of pseudo-particle formation by paying attention to the change in the ratio of the particle size of less than 0.25 mm to that of the raw material after granulation.
As a result, the quasiparticle index was defined as follows. Pseudoparticle formation index (% by mass) = (Ratio of raw material less than 0.25 mm before granulation−Ratio of raw material less than 0.25 mm after granulation) / (Ratio of raw material less than 0.25 mm before granulation) ) × 100 ・ ・ 1 set

【0017】次に、焼結原料の配合材料について、個々
の配合材料について造粒を行い、造粒前後の粒度分布を
測定し、擬似粒子化指数を計算した。これを表1に示
す。表1より、鉄鉱石A、鉄鉱石C、石灰石、焼結返鉱
等は擬似粒子化指数が低く、造粒性を改善すべき材料で
あることが判る。これら擬似粒子化指数が低い材料に、
パインダー(例えば、生石灰)を添加して、造粒強化す
ることが有効である。
Next, with respect to the compounding material of the sintering raw material, granulation was performed for each compounding material, the particle size distribution before and after the granulation was measured, and the pseudo-particle conversion index was calculated. This is shown in Table 1. From Table 1, it can be seen that iron ore A, iron ore C, limestone, sinter remineralization and the like have a low pseudo-particle index and are materials to be improved in granulation properties. For these materials with low pseudo-particle index,
It is effective to add a binder (for example, quicklime) to strengthen granulation.

【0018】[0018]

【表1】 [Table 1]

【0019】従来法では、焼結原料を全量配合して、ド
ラムミキサーにて混合、造粒時の擬似粒子化指数の変化
を詳細に検討した結果、擬似粒子化指数の高い材料が選
択的に擬似粒子化促進されるが、擬似粒子化指数が低い
材料は、材料自身が持つ擬似粒子化指数より高くならな
いことが判明した。そこで、焼結原料の擬似粒子化の程
度に基づいて原料をそれぞれグルーピングして、擬似粒
子化の劣る原料の造粒強化を図ることが有効となる。擬
似粒子化指数の低い材料は他方の系列で、さらにバイン
ダーを添加して、造粒強化することにより、擬似粒子化
指数の低い材料の擬似粒子化指数をより高く造粒するこ
とができる。この造粒物に、他の系統で造粒した高擬似
粒子化指数の材料群を混合することにより、従来法よ
り、擬似粒子化指数をさらに高くすることが可能とな
る。
In the conventional method, the total amount of the sintering raw materials is blended, mixed by a drum mixer, and the change of the quasi-granulation index at the time of granulation is examined in detail. It was found that a material that promotes pseudo-particle formation but has a low pseudo-particle formation index does not have a higher pseudo-particle formation index than the material itself has. Therefore, it is effective to group the raw materials based on the degree of quasi-particle formation of the sintering raw materials and to enhance the granulation of the raw material having poor pseudo-particle formation. The material having a low pseudo-granulation index is the other series, and the binder is further added to enhance the granulation, whereby the material having a low pseudo-granulation index can be granulated with a higher pseudo-granulation index. By mixing the granulated material with a material group having a high pseudo-particle-forming index granulated by another system, it is possible to further increase the pseudo-particle-forming index as compared with the conventional method.

【0020】[0020]

【実施例】本発明の実施例を図1、及び表1、表2によ
り説明する。図1は本実施例の焼結原料の事前処理工程
を示す図である。表1は本実施例で使用した焼結原料の
擬似粒子化指数を示す表であり、表2は本実施例での焼
結原料の配合例である。まず、本実施例の焼結原料の事
前処理工程(図1参照)は、従来の焼結原料の事前処理
工程(図3参照)に、原料槽1とドラムミキサー2との
間を2系統にしたことが特徴である。高擬似粒子化指数
の鉄鉱石群を混合、造粒するA系統と、低擬似粒子化指
数の鉄鉱石群を混合、造粒するB系統である。これら造
粒物を混合して給鉱ホッパー3に貯蔵した。この給鉱ホ
ッパーにより、前記混合された造粒物を、焼結機4のパ
レット上に充填し、焼結を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a pretreatment process of a sintering raw material of the present embodiment. Table 1 is a table showing the quasi-particle formation index of the sintering raw materials used in the present example, and Table 2 is an example of the mixture of the sintering raw materials in the present example. First, the pretreatment step (see FIG. 1) of the sintering raw material according to the present embodiment is the same as the conventional pretreatment step of the sintering raw material (see FIG. 3). It is a characteristic that The A system mixes and granulates iron ores having a high quasi-granulation index, and the B system mixes and granulates iron ores with a low quasi-granulation index. These granules were mixed and stored in the feed hopper 3. The mixed granulated material was filled on a pallet of the sintering machine 4 and sintered by the ore feeding hopper.

【0021】使用した焼結原料を表2に示す。焼結原料
の粒度については、鉄鉱石は8mmアンダーに、副原料
等は5mmアンダーに調整した。なお、比較例が従来使
用している焼結原料の配合割合である。最初に選択造粒
すべき銘柄を選定するために各銘柄の乾燥粒度と造粒後
の粒度を測定し予め、前述した方法で、擬似粒子化指数
を求めておいた。この結果を表1に示す。
Table 2 shows the sintering raw materials used. Regarding the particle size of the sintering raw material, the iron ore was adjusted to be under 8 mm, and the auxiliary raw material was adjusted to be under 5 mm. The comparative examples are the mixing ratios of the conventionally used sintering raw materials. First, in order to select a brand to be selectively granulated, the dry particle size of each brand and the particle size after granulation were measured, and the pseudo-particle formation index was determined in advance by the method described above. Table 1 shows the results.

【0022】発明法−1は、従来使用している焼結原料
の内、擬似粒子化指数が40%未満の鉄鉱石A、鉄鉱石
Cに、生石灰をバインダとして配合し、さらに、同じく
擬似粒子化指数が40%未満の石灰石を配合してB系原
料とした。A系原料は、従来使用している焼結原料から
B系原料を除いたものである。発明法−2は、同じく、
擬似粒子化指数が40%未満の鉄鉱石A、鉄鉱石Cに、
生石灰を配合し、さらに、擬似粒子化指数が40%未満
の焼結返鉱を配合してB系原料とした。同様に、A系原
料は、従来使用している焼結原料からB系原料を除いた
ものである。発明法−2−Aおよび発明法−2−Bは、
発明法−2と同じ原料配合で、バインダーの生石灰を両
系原料に配合したものである。これら試験材は、擬似粒
子化指数の低いB系原料中への生石灰の配合比率を高く
し、生石灰の傾斜配合を行っている。
Inventive method-1 is a method in which, among the conventionally used sintering raw materials, iron ore A and iron ore C each having a pseudoparticle index of less than 40% are blended with quick lime as a binder. Limestone having a chemical conversion index of less than 40% was blended to obtain a B-based raw material. The A-based raw material is obtained by removing the B-based raw material from the conventionally used sintering raw material. Invention method-2 also
For iron ore A and iron ore C whose pseudo-particle index is less than 40%,
Quick lime was blended, and sinter ore having a pseudoparticle index of less than 40% was blended to obtain a B-based raw material. Similarly, the A-based raw material is obtained by removing the B-based raw material from the conventionally used sintering raw material. Invention method-2-A and invention method-2-B are:
The same raw material blending as in Invention method-2, in which quicklime as a binder is blended into both raw materials. In these test materials, the blending ratio of quicklime in the B-based raw material having a low pseudo-particle formation index is increased to perform a gradient blending of quicklime.

【0023】[0023]

【表2】 [Table 2]

【0024】混合、造粒工程において、それぞれの原料
群を予め配合し、その後、配合水分が7質量%の水分に
なる水を添加して、ドラムミキサーにより造粒を行っ
た。サンプリングはそれぞれの原料群を予め配合した時
点の混合粉と、造粒を行った造粒物について行い、これ
らについて、粒度分布を測定した。次に、発明法−1、
発明法−2、発明法−2−Aおよび発明法−2−Bにお
いて、A系原料とB系原料をコンクルミキサーで混合し
て、同じくこの混合原料をサンプリングして、通気度と
粒度分布を測定した。通気度は空気透過法により測定し
た。このときの通気度はある圧力勾配の下で単位体積の
原料を通しての流れで定義され、この焼結原料の通気度
としてJPU(Japanese Permeability Unit)が用いら
れる。 通気度=(F/A)×(H/S)0.6 ここで、 F:通過流量(m3 /min) A:吸引面積(m2 ) H:充填厚み(m) S:負圧(mmaq) また、擬似粒子化指数は、前述の粒度分布の測定結果を
基に、前述の(1)式を用いて計算した。
In the mixing and granulating steps, each raw material group was previously blended, and then water was added to make the blended water a moisture of 7% by mass, and the mixture was granulated by a drum mixer. Sampling was performed on the mixed powder at the time when each raw material group was previously blended and on the granulated product, and the particle size distribution was measured. Next, Invention Method-1,
In Invention Method-2, Invention Method-2-A, and Invention Method-2-B, the A-based material and the B-based material are mixed with a conkle mixer, and the mixed material is sampled to determine the air permeability and the particle size distribution. It was measured. The air permeability was measured by an air permeation method. The air permeability at this time is defined by a flow through a unit volume of raw material under a certain pressure gradient, and JPU (Japanese Permeability Unit) is used as the air permeability of the sintering raw material. Air permeability = (F / A) × (H / S) 0.6 where: F: flow rate (m 3 / min) A: suction area (m 2 ) H: filling thickness (m) S: negative pressure (mmaq) The quasi-particle formation index was calculated by using the above-described formula (1) based on the measurement result of the above-mentioned particle size distribution.

【0025】表3に示すように、通気度は比較例では3
0.2であったのが、本発明法では34から35と著し
く改善された。これは、低擬似粒子化指数の鉄鉱石群の
造粒強化されたことによるものである。すなわち、比較
例の擬似粒子化指数が82.7質量%であったのが、発
明法−1では90.8質量%、発明法−2では93.3
質量%に改善されており、特に低擬似粒子化指数の鉄鉱
石群(B系原料)の擬似粒子化指数が高くなっているこ
とから明らかとなった。
As shown in Table 3, the air permeability was 3 in the comparative example.
The value of 0.2 was remarkably improved from 34 to 35 in the method of the present invention. This is due to the enhanced granulation of the iron ore group having a low pseudo-graining index. That is, the pseudo-particle formation index of the comparative example was 82.7% by mass, but 90.8% by mass in Invention Method-1 and 93.3% in Invention Method-2.
% Of the iron ore group (B-based raw material) having a low pseudo-graining index, which is particularly evident from the high pseudo-granulation index.

【0026】[0026]

【表3】 [Table 3]

【0027】次に、発明法−1、発明法−2、発明法−
2−Aおよび発明法−2−Bの混合原料と比較例の原料
について、原料充填高さ500mm、空気の吸引圧力1
000〜1600mmaqの条件で焼結鍋による焼結実
験を行った。この結果を表4に示す。焼結鉱の生産性
は、通気度の改善にともない、本発明法の歩留りは、比
較例の64%から65乃至69%に向上した。そして、
バインダーの生石灰を両系原料に配合した発明法−2−
Aおよび発明法−2−Bは、比較例に比べ焼結時間の短
縮により、生産率の改善が著しく、特に、発明法−2−
Bでは生産率が比較例に比べて、約26%向上した。
Next, Invention Method-1, Invention Method-2, Invention Method-
The raw material filling height was 500 mm and the air suction pressure was 1 for the mixed raw material of 2-A and Invention Method-2-B and the raw material of Comparative Example.
A sintering experiment using a sintering pot was performed under the conditions of 000 to 1600 mmaq. Table 4 shows the results. The productivity of the sinter increased with the improvement of the air permeability, and the yield of the method of the present invention increased from 64% of the comparative example to 65 to 69%. And
Invention method in which quicklime as a binder is blended with both raw materials
In A and Invention Method-2-B, the sintering time was shorter than that of Comparative Example, and the production rate was significantly improved.
In B, the production rate was improved by about 26% as compared with the comparative example.

【0028】比較例に比べ焼結時間が短縮できたのは、
バインダーの生石灰を両系原料に配合したことにより、
バインダーの生石灰により両系原料の擬似粒子が保た
れ、通気性が低下しなかったことによるものと考えられ
る。このように、バインダーの生石灰は2つの鉄鉱石群
に配合し、この配合比率を擬似粒子化指数の低い鉄鉱石
群(B系原料)の方に、擬似粒子化指数の高い鉄鉱石群
(A系原料)より多く配合することにより、焼結鉱の通
気度を改善できとともに、焼結鉱の生産性がさらに向上
できることが判明した。
The sintering time was shorter than that of the comparative example.
By blending quicklime of the binder into both raw materials,
It is considered that the pseudo particles of both raw materials were kept by the quicklime of the binder, and the air permeability did not decrease. As described above, the quicklime of the binder is blended into two iron ore groups, and the blending ratio is set such that the iron ore group having a low pseudo-particle index (B-based raw material) and the iron ore group having a high pseudo-particle index (A It has been found that by blending more than the raw material, the permeability of the sintered ore can be improved and the productivity of the sintered ore can be further improved.

【0029】[0029]

【表4】 [Table 4]

【0030】本発明は、混合、造粒工程を2系統とし、
焼結原料の擬似粒子化の程度に基づいて原料をそれぞれ
グルーピングして、擬似粒子化の劣る原料の造粒強化を
図ることにより、焼結原料の造粒性を改善でき、この結
果、焼結原料の通気性を向上でき、焼結機の生産性を向
上できた。
In the present invention, the mixing and granulating processes are divided into two systems,
By grouping the raw materials based on the degree of pseudo-granulation of the sintering raw materials to enhance the granulation of raw materials with poor pseudo-granularity, the granulation properties of the sintering raw materials can be improved. The air permeability of the raw material could be improved, and the productivity of the sintering machine could be improved.

【0031】本発明の実施例に限定されることなく、鉄
鉱石以外の擬似粒子化指数の低い、焼結返鉱、石灰石、
コークス粉等は、高擬似粒子化指数の鉄鉱石群と低擬似
粒子化指数の鉄鉱石群に適宜振り分けて配合することが
できる。また、造粒促進のためにバインダーとして、生
石灰以外に、ベントナイト、セメント、セメントクリン
カ粉等を用いることができる。
Without being limited to the embodiments of the present invention, sinter refining, limestone,
Coke powder and the like can be appropriately divided and mixed into an iron ore group having a high pseudo-particle index and an iron ore group having a low pseudo-particle index. In addition, bentonite, cement, cement clinker powder, and the like can be used as a binder for promoting granulation, in addition to quick lime.

【0032】[0032]

【発明の効果】以上、説明したように、本発明は、予
め、焼結鉱の個々の原料の擬似粒子化指数を求めてお
き、これより焼結鉱の原料を高擬似粒子化指数の鉄鉱石
群と低擬似粒子化指数の鉄鉱石群に分け、低擬似粒子化
指数の鉄鉱石群に造粒促進手段を施した後、前記2つの
鉄鉱石群ごとに混合、造粒を行ことにより、焼結原料の
造粒性を改善することができ、この結果、焼結原料の通
気性を向上させることができ、焼結機の生産性を向上さ
せる効果を有するものである。さらに、近年の良質鉄鉱
石の産出量の減少に伴う、鉄鉱石の銘柄の多様化に対応
でき、焼結機の安定した生産を可能とするものである。
As described above, according to the present invention, the sinter ore raw materials having a high quasi-particle index are obtained from the sinter ore raw materials in advance. By dividing the ore group and the iron ore group with a low pseudo-graining index, and performing granulation accelerating means on the iron ore group with a low pseudo-graining index, by mixing and granulating for each of the two iron ore groups, Thus, the granulation of the sintering raw material can be improved, and as a result, the permeability of the sintering raw material can be improved, which has the effect of improving the productivity of the sintering machine. Furthermore, it is possible to cope with the diversification of brands of iron ore due to a decrease in the output of good quality iron ore in recent years, and to enable stable production of a sintering machine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の焼結原料の事前処理工程を示す図であ
る。
FIG. 1 is a view showing a pretreatment step of a sintering raw material of the present invention.

【図2】擬似粒子化指数(GI指数)を説明する図であ
って、焼結原料の粒度分布を示す図である。
FIG. 2 is a view for explaining a pseudo-graining index (GI index), showing a particle size distribution of a sintering raw material.

【図3】従来の焼結原料の事前処理工程を示す図であ
る。
FIG. 3 is a view showing a conventional pretreatment process of a sintering raw material.

【図4】分割造粒を行う従来の焼結原料の事前処理工程
を示す図である。
FIG. 4 is a view showing a conventional pretreatment process of a sintering raw material for performing split granulation.

【符号の説明】[Explanation of symbols]

1 原料槽 2 ドラムミキサー 3 給鉱ホッパー 4 焼結機 5 強制混合機 DESCRIPTION OF SYMBOLS 1 Raw material tank 2 Drum mixer 3 Mining hopper 4 Sintering machine 5 Forced mixer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西口 昭洋 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akihiro Nishiguchi 1 Kanazawa-cho, Kakogawa-shi, Hyogo Kobe Steel, Ltd. Inside the Kakogawa Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 予め、焼結鉱の原料の個々の擬似粒子化
指数を求めておき、これより焼結鉱の原料を高擬似粒子
化指数の鉄鉱石群と低擬似粒子化指数の鉄鉱石群に分
け、低擬似粒子化指数の鉄鉱石群に造粒促進手段を施し
た後、前記2つの鉄鉱石群ごとに混合、造粒を行い、そ
の後、これら造粒物を混合して、焼結を行うことを特徴
とする焼結鉱の製造方法。ここで、擬似粒子化指数(質
量%)=(造粒前の0.25mm未満の原料の比率−造
粒後の0.25mm未満の原料の比率)/(造粒前の
0.25mm未満の原料の比率)×100 である。
1. A method for obtaining individual pseudo-particles of a raw material of a sinter ore in advance, from which iron ore group having a high pseudo-particle-forming index and iron ore having a low pseudo-particle-forming index are obtained. After the iron ore group having a low pseudo-particle size index is subjected to granulation promoting means, the two ore groups are mixed and granulated, and then these granulated materials are mixed and sintered. A method for producing a sintered ore, comprising sintering. Here, pseudo-granulation index (% by mass) = (Ratio of raw material less than 0.25 mm before granulation−ratio of raw material less than 0.25 mm after granulation) / (less than 0.25 mm before granulation). (Raw material ratio) × 100.
【請求項2】 前記造粒促進手段が、低擬似粒子化指数
の鉄鉱石群にのみバインダーを添加することである請求
項1記載の焼結鉱の製造方法。
2. The method for producing a sintered ore according to claim 1, wherein the granulation accelerating means is to add a binder only to a group of iron ores having a low pseudo-particle-forming index.
【請求項3】 前記造粒促進手段が、低擬似粒子化指数
の鉄鉱石群へのバインダーの添加量を高擬似粒子化指数
の鉄鉱石群より多くすることである請求項1記載の焼結
鉱の製造方法。
3. The sintering method according to claim 1, wherein said granulation accelerating means increases the amount of a binder added to the iron ore group having a low pseudo-graining index compared to the iron ore group having a high pseudo-graining index. How to make ore.
【請求項4】 高擬似粒子化指数が40質量%以上、低
擬似粒子化指数が40質量%未満である請求項1又は2
又は3記載の焼結鉱の製造方法。
4. The high quasi-particle index of 40% by mass or more and the low quasi-particle index of less than 40% by mass.
Or the method for producing a sintered ore according to 3.
JP25217197A 1997-09-17 1997-09-17 Production of sintered ore Pending JPH1192834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25217197A JPH1192834A (en) 1997-09-17 1997-09-17 Production of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25217197A JPH1192834A (en) 1997-09-17 1997-09-17 Production of sintered ore

Publications (1)

Publication Number Publication Date
JPH1192834A true JPH1192834A (en) 1999-04-06

Family

ID=17233487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25217197A Pending JPH1192834A (en) 1997-09-17 1997-09-17 Production of sintered ore

Country Status (1)

Country Link
JP (1) JPH1192834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7418601B2 (en) 2002-06-18 2008-08-26 Sanyo Electric Co., Ltd. Data transfer control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7418601B2 (en) 2002-06-18 2008-08-26 Sanyo Electric Co., Ltd. Data transfer control system

Similar Documents

Publication Publication Date Title
CN109234523B (en) High-crystal-water high-proportion limonite sintering method
JP5194378B2 (en) Method for producing sintered ore
JP5315659B2 (en) Method for producing sintered ore
KR20180110034A (en) Method for producing sintered ores
JP6421666B2 (en) Method for producing sintered ore
CN107164631B (en) A kind of method and system improving iron ore sintering mixture ventilation
JP4996100B2 (en) Method for producing sintered ore
JPH1192834A (en) Production of sintered ore
KR100787359B1 (en) Method for producing sintered steel
JP6071409B2 (en) Pre-granulation method for sintering raw materials
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JP2002129246A (en) Method for producing sintered ore
CN206902200U (en) A kind of system for improving iron ore sintering mixture ventilation
KR100469299B1 (en) sinter manufacture method
JP3888981B2 (en) Method for producing sintered ore
JP2009185315A (en) Method for granulating raw material to be sintered
JP4438477B2 (en) Method for producing sintered ore for blast furnace
RU2241770C1 (en) Batch for manufacturing of iron-ore pellets
JP7047645B2 (en) Sintered ore manufacturing method
JPH10317069A (en) Sintering raw material treatment
SU1468945A1 (en) Method of producing sinter cake with residual carbon
JP2001234255A (en) Method for manufacturing sintered ore and the sintered ore
JPH09143580A (en) Production of sintered ore
JP2006213980A (en) Method for manufacturing sintered ore
CN1063429A (en) Gas mud, mixture of fly ash comprehensive recovery system