KR100469299B1 - sinter manufacture method - Google Patents

sinter manufacture method Download PDF

Info

Publication number
KR100469299B1
KR100469299B1 KR10-2000-0077367A KR20000077367A KR100469299B1 KR 100469299 B1 KR100469299 B1 KR 100469299B1 KR 20000077367 A KR20000077367 A KR 20000077367A KR 100469299 B1 KR100469299 B1 KR 100469299B1
Authority
KR
South Korea
Prior art keywords
sintered
particles
ore
raw material
water
Prior art date
Application number
KR10-2000-0077367A
Other languages
Korean (ko)
Other versions
KR20020084909A (en
Inventor
윤영재
김성완
김재왕
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2000-0077367A priority Critical patent/KR100469299B1/en
Publication of KR20020084909A publication Critical patent/KR20020084909A/en
Application granted granted Critical
Publication of KR100469299B1 publication Critical patent/KR100469299B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 소결 배합원료의 절출공정중 입자간 가장 큰 갈철광 계통의 단미광에 유기점결제로 전분당을 첨가하여 소결원료의 조립성을 개선하여 소결층 통기가 향상되어 소결 생산성을 향상시키도록 한 소결광 제조방법에 관한 것으로, 입자와 기공이 큰 갈청광 계통의 철광석을 핵입자로 설정하여 소결빈의 원료 정량절출 장치에서 절출시 유기점결제인 전당분을 물과 4:6 으로 혼합한후 살수시켜 차기 미분의 부원료가 절출 밸트에 쌓이게 하여 결합력을 증대시켜 조립입자의 크기를 향상시킴으로써, 소결원료의 조립공정중 소결빈에 절출되는 원료의 입자와 기공이 큰 갈청광계 계통에 유기점결제로 전분당을 첨가함으로써, 핵입자와 미립입자의 결합력 증대로 의사입자 입경을 크게하여 소결기에 장입됨에 따라 통기성 향상에 의한 연소성 증가로 원단위를 대폭 절감할 수 있을뿐만 아니라 소결광의 생산성을 향상시킬수 있다.The present invention is to add starch sugar as an organic binder to the short stray light of the largest galliumite system between the particles during the cutting process of the sintered blended raw material to improve the assemblability of the sintered raw material to improve the air permeability of the sintered layer to improve the sintering productivity The present invention relates to a method for producing sintered ore, wherein the iron ore of the large blue-blue ore system with large particles and pores is set as nucleus particles, and the organic starch, which is an organic binder, is mixed with water at a rate of 4: 6 in the quantitative cutting device of the raw material of the sintered bin, and then sprinkled with water. As a result, the secondary raw material of the next fine powder is accumulated in the cutting belt to increase the cohesive force to improve the size of the granulated particles.The organic binder is transferred to the brownish blue system having large particles and pores that are cut out in the sintering bin during the assembly process of the sintered raw material. By adding Bundang, the particle size of pseudo particle is increased by increasing the binding force between nuclear and fine particles. Not only can the raw unit be greatly reduced, but also the productivity of sintered ore can be improved.

Description

소결광 제조 방법{sinter manufacture method}Sintered ore manufacturing method

본 발명은 DL(Dwight Lloyd)식 소결기를 사용하여 제철용 고로 장입원료인 소결광 제조시 소결원료의 조립성 및 생산성을 향상시키는 방법에 관한 것으로, 특히 소결 배합원료의 절출공정중 입자간 가장 큰 갈철광 계통의 단미광에 유기점결제로 전분당을 첨가하여 소결원료의 조립성을 개선하여 소결층 통기가 향상되어 소결 생산성을 향상시키도록 한 소결광 제조방법에 관한 것이다.The present invention relates to a method for improving the assemblability and productivity of a sintered raw material in the production of a sintered ore as a blast furnace charging raw material using a DL (Dwight Lloyd) type sintering machine. The present invention relates to a method for producing a sintered ore by adding starch sugar as an organic binder to a short tail light of the system to improve granulation of the sintered raw material, thereby improving aeration of the sintered layer to improve sintering productivity.

일반적으로 DL(Dwight Lloyd)식 속결공정에서는 다수의 분철광석 및 부원료를 고르게 혼합적치후 사용하는 일명 브랜딩(blending)광석을 50%이상 사용하고, 단일광종 일명 단미광을 20% 사용하며, 나머지 부원료, 코크스, 무연탄을 사용한다.In general, DL (Dwight Lloyd) type fastening process uses 50% or more of branded ore, which is used after evenly mixing a plurality of iron ore and secondary raw materials, and uses 20% of single mineral or so-called single tailings. Use coke, anthracite.

상기 연,원료들은 도 1 과 같이 소결빈의 정량절출장치(CFW)에 의해 순서대로 일정량이 절출되어 드럼믹서(41)에 넣어 혼합 및 수분첨가를 행하여 소결 배합원료를 조립화시켜 소결기에 일정한 층후의 높이로 장입하고, 점화로(10)에 의해 표면점화후 하방으로부터 공기를 강제로 흡입(52)하면서 소결 배합원료의 소성을 진행시켜 소결광을 제조한다.The lead and raw materials are cut out in order by a CFW of a sintering bin as shown in FIG. 1, and then put into a drum mixer 41 to mix and add water to assemble the sintered blended raw materials to form a uniform layer in the sintering unit. It charges to the following height, and fires 52 the sintering compounding raw material, forcibly sucking air 52 from below after surface ignition by the ignition furnace 10, and manufacturing a sintered ore.

상기에서 소결배합 원료의 조립은 수분(6.0∼7.5%)과 생석회(1.0∼1.8%)를 사용하여 조립입자의 추축이 되는 핵입자 주위에 1mm 이하의 미분입자들을 부착시켜 의사입자를 제조함으로써 배합원료의 조립입자를 증가시키고 미분부를 감소시키는 방법이다.The granulation of the sintered blended raw materials is prepared by attaching fine particles of 1 mm or less around the nucleus particles which are the particles of granulated particles using moisture (6.0 to 7.5%) and quicklime (1.0 to 1.8%) to produce pseudo particles. It is a method of increasing the granulated particles of raw materials and reducing fine parts.

이와같이, 소결배합 원료의 조립성이 개선되면 조립물의 미분부가 감소하여 소결광 제조시 하층부에서 흡입(52)하는 통기성이 향상되므로 인해 소결광 생산성을 향상시킬수가 있다.As such, when the granularity of the sintered blended raw material is improved, the fine powder portion of the granulated material is reduced, and thus the air permeability of the suction 52 at the lower layer is improved during the production of the sintered ore, thereby improving the sintered ore productivity.

특히, 통기성 확보를 위해서는 조립된 입자의 붕괴방지와 결합력의 증대에 의한 크기를 향상시키는 방법인데, 그 방법의 하나로 상기에서 언급한 생석회와 같은 결합력을 가진 결합제를 첨가하는 방법이다.In particular, in order to secure air permeability, there is a method of improving the size by preventing the collapse of the granulated particles and increasing the binding force. As one of the methods, a binder having a binding force such as quicklime is added.

상기의 문제점을 해소하기 위해 이전에 출원한 전분당을 이용한 소결광 제조방법(출원번호 1998-35750)이 있지만 소결 드럼믹서(41)에 전분당을 혼합하여 배합원료에 살수시킴에 따라 극 미문(-0.125mm) 핵입자(1∼2mm)에 붙지않고 일부는 극미분끼리 결합하여 조립입자의 평균입경이 저하되며, 고가의 전분당을 다량의 살수량(15∼20TH)과 혼합하여 살수함에 따라 원가상승의 문제점이 있다.In order to solve the above problems, there is a method of manufacturing a sintered ore using the previously applied starch sugar (application number 1998-35750), but the starch sugar is mixed in the sintered drum mixer 41 and sprayed on the blended raw material to give a very fine (- 0.125mm) It does not adhere to the nucleus particles (1 ~ 2mm) and some of them are combined with each other to reduce the average particle size of the granulated particles, and the cost is increased by mixing the expensive starch sugar with a large amount of water spray (15 ~ 20TH). There is a problem of ascension.

따라서, 본 발명은 상기와 같은 종래의 문제점을 해소하기 위해 창안된 것으로서, 소결 배합원료의 절출 과정중 입자가 크고 기공이 많아 핵입자의 역할을 할 수 있는 갈철광 계통의 단미광에 유기 점결제를 일정량씩 첨가시켜 쉽게 부착되게하여 소결광 배합원료 조립성을 향상시켜 생산성을 증가시키도록 하는데 그 목적이 있다.Therefore, the present invention was devised to solve the conventional problems as described above, and the organic binder is applied to the short taillight of the iron ore system which can act as nuclear particles because the particles are large and have large pores during the cutting process of the sintered blended raw material. The purpose is to increase the productivity by adding a certain amount so as to be easily attached to improve the assembly of the sintered ore blend raw materials.

도 1 은 종래의 소결광 배합원료 정량절출 방법의 흐름도.1 is a flow chart of a conventional sintered ore blended raw material quantification method.

도 2 는 본 발명 소결광 배합원료 정량절출 방법의 흐름도.2 is a flow chart of the sintered ore blended raw material quantification method of the present invention.

도 3 은 본 발명 소결광 배합원료에 유기점결제가 첨가되는 개략도.Figure 3 is a schematic diagram of the organic binder is added to the sintered ore blending raw material of the present invention.

도 4 는 본 발명 살수시의 결합제 흐름도.Figure 4 is a binder flow chart when spraying the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : 점화로 26 : 정량절출장치10: ignition furnace 26: metering unit

41 : 드럼믹서 52 : 흡인41: drum mixer 52: suction

61 : 벨트 낙하부위61: belt dropping portion

이하, 첨부도면을 참조하여 본 고안에 따른 바람직한 실시예에 대하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment according to the present invention.

본 발명에 의한 소결광 제조방법의 실시예는,An embodiment of the sintered ore manufacturing method according to the present invention,

분철광석과 부원료를 혼합, 적치한후 사용하는 브랜딩광석과 열원인 분코크스 및 부원료를 혼합, 조립화시켜 소결기에 장입시킨후 점화로의 점화에 의해 하층부에서 흡인하는 흡입압에 의해 소성을 진행시켜 소결광을 제조하는 방법에 있어서,After mixing and placing the powdered iron ore and the subsidiary materials, the branding ore used and the powdered coke and the subsidiary materials are mixed, granulated and charged into a sintering machine, followed by firing by suction pressure sucked from the lower layer by ignition of the ignition furnace. In the method of manufacturing the sintered ore,

입자와 기공이 큰 갈청광 계통의 철광석을 핵입자로 설정하여 소결빈의 원료 정량절출 장치에서 절출시 유기점결제인 전당분을 물과 4:6 으로 혼합한후 살수시켜 차기 미분의 부원료가 절출 밸트에 쌓이게 하여 결합력을 증대시켜 조립입자의 크기를 향상시킴이 바람직하다.The iron ore of the brownish blue system having large particles and pores is set as nuclear particles, and when the organic material is extracted in a quantitative extraction device of a sintering bin, the organic binder starch is mixed with water at 4: 6, and then sprayed to remove the next fine powder. It is desirable to increase the size of the granulated particles by increasing the bonding strength by stacking on the belt.

상기 전당분과 물의 결합제를 살수시,When spraying the binder of the starch sugar and water,

펠렛 속도(P.S) * 층후 * 폭 * 비중에 의해 배합원료 총량(Y)을 계산하는 과정과,The process of calculating the total compounding quantity (Y) by the pellet speed (P.S) * after layer * width * specific gravity,

상기 계산된 배합원료 총량(Y)과 6번의 갈청광 계통의 사용하고자 하는 비율(ratio)값을 곱하는 과정과,Multiplying the calculated blended raw material amount (Y) by the ratio value to be used for the number 6 brown blue light system;

상기 계산된 갈철광 계통의 6번량의 10% 만큼 살수용액이 설정되어 유기점결제인 전당분은 살수량의 40%, 희석재인 물은 60%로 제어하여 살수하는 과정을 포함함이 바람직하다.It is preferable that the watering solution is set as much as 10% of the calculated number 6 of the iron ore system, so that organic starch, starch sugar is 40% of the amount of water sprayed, and diluent water is controlled to 60%.

도 2 는 본 발명 소결광 배합원료 정량절출 방법의 흐름도이고, 도 3 은 본 발명 소결광 배합원료에 유기점결제가 첨가되는 개략도이며, 도 4 는 본 발명 살수시의 결합제 흐름도로서, 이를 참조하여 설명하면 다음과 같다.2 is a flow chart of the method for quantitatively cutting the sintered ore blended raw material of the present invention, and FIG. 3 is a schematic diagram of an organic binder added to the sintered ore blended raw material of the present invention, and FIG. As follows.

조립과정중 핵입자의 역할을 할 수 있는 갈철광을 소결빈(1∼15)중 6번 빈(bin)(6)에 입조시키는데, 이와같이 하는 이유는 1∼5번 빈에서 브랜딩 광석이 절출된후 미분의 부원료가 절출되기 전에 핵입자의 역할을 할 수 있는 갈철광을 절출이 되게한후 일정량의 유기 점결제와 물을 혼합한 용액을 완료된 정량졀출 장치(26)의 후단에서 벨트낙하부위(61)에서 살수가 되도록 한후, 미분인 다수의 생석회, 규사, 석회석, 사문암이 절출되어 유기 점결제가 부착된 갈철광 계통의 단미광 상부로 운송용 벨트에 실리며, 열원인 반광, 분코크스가 절출되어 드럼믹서에입조되어 일정량의 수분첨가에 의해 혼합과 조립이 이루어진다.During the assembly process, the brownish iron ore, which can act as a nuclear particle, is incorporated into bin 6 of the sintering bins 1 to 15. The reason for this is that after the branding ore is excised from bins 1 to 5, Before the fine powder is excavated, the fertilized ore, which can act as a nuclear particle, is excised and then a predetermined amount of the organic caking agent and water is mixed. After the water is sprayed on, a number of fine limes, silica sand, limestone and serpentine are excised to be loaded on the transport belt to the top of the short tailings of the iron ore system with organic binders, and the semi-heat and powdered coke are heat-extracted drum mixers. The mixture is granulated and granulated by adding a certain amount of moisture.

상기의 핵입자에 유기점결제 첨가량은 물과 4;6 으로 혼합하고, 살수량은 핵입자의 역할을 할 단미 사용비에 10%가 살수되게 한다.The amount of the organic binder added to the nuclear particles is mixed with water 4 and 6, and the amount of water is sprayed so that 10% of the water is used in the single use ratio that will serve as the nuclear particles.

상기와 같이 물과 유기 점결제를 4:6 으로 하는 이유는 물보다 유기 점결제가 4% 이하시 점결제의 효과가 떨어지며, 4% 이상시는 결합력의 효과는 있으나 점결제의 점성의 증가로 고르게 살수가 되지않아 조립입자의 편차를 유도하여 물과 점결제의 비율을 4:6 으로 하였으며, 살수량의 설정은 도 1 과 같이 기공이 많은 갈철광 계통의 단미광을 많이 사용시 점결제 살수량을 사용비에 10%로 하였는데, 10% 이하시 효과가 적고 10% 이상시는 벨트에 점결제가 흐르는 현상이 발생되기 때문이다.As mentioned above, the reason why the water and organic binder is 4: 6 is that when the organic binder is 4% or less than the water, the effect of the binder is decreased. The ratio of water and caking agent was set to 4: 6 by inducing the variation of granulated particles because it was not sprayed, and the amount of caking agent was used when using a lot of short tailings of the brownish pore-type ironite system as shown in FIG. The ratio was set at 10%, because less than 10% of the effect is less than 10%, and a binder flows through the belt.

[표 1]TABLE 1

상기 표 1 과 같이 갈철광 계통인 얀디(yandi)광은 평균입경 및 기공율, 수분 흡수능력이 크기 때문에 핵입자로서 사용 소결빈에서 절출시 유기점결제를 살수하고, 상대적으로 입자가 작은 생석회, 규사, 석회석, 규석 및 브랜딩 광석을 유기점결제를 결합 본드로 핵입자에 부착시켜 배합원료의 조립서을 크게하여 생산성을 향상시킨다.As shown in Table 1, the yandi light of the iron ore system has an average particle diameter, porosity, and water absorption ability, so that the organic binder is sprinkled when cutting out from the sintering bin used as nuclear particles. Limestone, silica and branding ore are attached to the nucleus particles with an organic binder as a bonding bond to increase the assembly order of the blended raw materials to improve productivity.

- 실시예 -Examples

소결 배합원료의 조립공정에서 유기점결제로 전분당을 사용하는데, 상기 전분당은 옥수수 전분에 당화효소 및 수분을 가하여 당화, 정제, 농축 과정을 거쳐 게조된 것을 사용한다.Starch sugar is used as an organic binder in the assembling process of sintered blended raw materials. The starch sugar is prepared by adding saccharifying enzyme and water to corn starch, followed by saccharification, purification and concentration.

[표 2] TABLE 2

상기 전분당의 화학 조성 및 성상은 표 2 에 나타나며, 주로 C, H, O 원소로 구성되고, Ash 및 알칼리(Na,K) 함량은 매우 낮으며, 연소온도는 235∼540℃ 이다.The chemical composition and properties of the starch sugar are shown in Table 2, mainly composed of C, H, O elements, ash and alkali (Na, K) content is very low, the combustion temperature is 235 ~ 540 ℃.

상기 전분당의 주요 구성물질은 당(saccharoid) 48.7%, 전분의 가수분해 생성물인 덱스트린(dextrin) 27.8% 및 수분 23.5% 이다.The main constituents of the starch sugar are 48.7% of saccharoid, 27.8% of dextrin, a hydrolysis product of starch, and 23.5% of moisture.

[표 3] TABLE 3

소결원료의 배합조건을 표 3 과 같이 나타내며, 브랜딩 철광석은 적철광계 분광석 4종을 원료 야적장에서 부원료와 균일하게 혼합된 광석을 분석한 평균입경이며, 갈철광계 광석은 호주광인 얀디광과 로베리버(roberiver)를 교대로 사용한다.The blending conditions of the sintered raw materials are shown in Table 3, and the branded iron ores are the average particle diameters of four types of hematite spectroscopy analyzed from the raw material yard uniformly mixed with the subsidiary materials. Alternately use (roberiver).

상기 부원료는 통상 소결에서 사용하는 석회석, 사문암, 규사를 사용하고, 열원으로 분코크스, 반광을 사용하여 소결 실기 조업을 실시한다.The secondary raw materials are usually limestone, serpentine and silica sand used in sintering, and sintering practical operation is performed using powdered coke and semi-glossy as heat sources.

원료 정량절출(CFW) 장치에 의해 갈철광 계통인 단미광이 절출시 유기점결제와 물을 4:6 으로 혼합한 용액을 갈철광 사용비보다 2배인 4.0%에 해당하는 용액이 살수된 후 차기 원료가 절출되는 브랜딩 광석이 유기점결제가 묻어있는 핵입자인 갈철광 계통의 단미광에 부착되면 유기점결제의 접착력에 의해 조립입자의 크기가 증가하며, 미립인 규사 생석회가 절출 벨트위에 쌓임에 의해 철광석과 부원료간의 결합력 증대로 조립입자가 향상되고, 드럼믹서에서 살수와 혼합에 의해 완전한 조립의 형태를 갖춘 배합원료를 얻는다.When the short tailing light, which is a limonite system, is cut by the raw material quantitative extraction (CFW) device, a solution containing an organic binder and water in a 4: 6 ratio is sprinkled with a solution corresponding to 4.0%, which is twice the ratio of the use of the iron ore. When the branded ore to be cut is attached to the short tailings of the iron ore system, which is a nucleus particle with organic binder, the size of the granulated particles is increased by the adhesive force of the organic binder, and the fine silica sand lime is accumulated on the cutting belt. Increased cohesion between the subsidiary materials improves the granulated particles, and by mixing and spraying in a drum mixer, a blended raw material having a form of complete granulation is obtained.

[표 4] TABLE 4

표 4 는 표 3 에 의한 배합원료의 배합조건시 유기점결제 첨가전과 첨가후의 조립입자의 크기를 드럼믹서 후단에서 결과를 나타낸다.Table 4 shows the results of the granulated particles before and after the addition of the organic binder in the mixing condition of the blending raw materials according to Table 3 at the rear end of the drum mixer.

그리고, 소결광 배합원료의 절출과 유기점결제를 첨가한후 조립입자의 평균입도를 측정한 결과 점결제를 첨가하지 않을시에 1.70mm에서 유기점결제인 전당분을 첨가시 2.01mm로 평균입자의 크기가 증가한다.After cutting the sintered ore blend raw material and adding the organic binder, the average particle size of the granulated particles was measured, and when the binder was not added, the average particle size was 1.70mm and 2.01mm when the starch, which is the organic binder, was added. Increases in size

[표 5] TABLE 5

상기 방법에 의한 조업결과에 의해 얻어진 배합원료로 소결광을 제조시 소결 생산성 조업지수의 변화를 상기 표 5 와 같이 나타낸다.The change of the sinter productivity operating index at the time of manufacturing a sintered ore from the compounding raw material obtained by the operation result by the said method is shown in Table 5 above.

또한, 얻어진 소결광 배합원료를 이용하여 소결작업을 실시한 결과 상기 표 5 와 같이 생산성이 1.0t/dm3향상되고, 통기저항 지수인 배풍압이 130 mmAq 저하되며, 풍량이 600 Nm3/min 으로 증가되어 유기점결제의 첨가효과를 확인할 수 있다.In addition, as a result of performing the sintering operation using the obtained sintered ore blending raw material, the productivity is increased 1.0t / dm 3 as shown in Table 5 above, the back pressure of the air permeability index is reduced by 130 mmAq, and the air volume increases to 600 Nm 3 / min. The addition effect of the organic binder can be confirmed.

또한, 도 4 와 같이 펠렛 속도(Pallet Speed: P.S) * 층후 * 폭 * 비중에 의해 배합원료 총량(Y)이 계산되면 6번의 갈청광 계통의 사용하고자 하는 비율(ratio)값을 곱하여 핵입자의 사용량을 계산하고, 계산된 갈철광 계통의 6번량의 10% 만큼 살수용액이 설정되어 유기점결제인 전당분은 살수량의 40%, 희석재인 물은 60%로 제어되어 살수된다(s10∼s50).In addition, as shown in FIG. 4, when the total compounding amount (Y) is calculated based on pellet speed (PS) * layer thickness * width * specific gravity, multiply the ratio values of the six brown blue light systems by using the ratio of the nuclear particles. The amount of water used is calculated, and the spraying solution is set as much as 10% of the calculated amount of lmonite system, so that the organic binder starch is controlled at 40% of the amount of water sprayed and 60% of the diluent water is controlled (s10∼s50). .

이상에서 설명한 바와 같이 본 발명에 의하면, 소결원료의 조립공정중 소결빈에 절출되는 원료의 입자와 기공이 큰 갈청광계 계통에 유기점결제로 전분당을 첨가함으로써, 핵입자와 미립입자의 결합력 증대로 의사입자 입경을 크게하여 소결기에 장입됨에 따라 통기성 향상에 의한 연소성 증가로 원단위를 대폭 절감할 수 있을뿐만 아니라 소결광의 생산성을 향상시킬수 있다.As described above, according to the present invention, by adding starch sugar as an organic binder to the particles of raw materials cut into the sintering bin during the granulation process of the sintered raw material and the large blue-blue light system, the binding force between the nuclear particles and the fine particles is increased. As the particle size of the furnace is charged to the sintering machine, the raw unit can be greatly reduced by increasing the combustibility by improving the air permeability, and the productivity of the sintered ore can be improved.

Claims (2)

분철광석과 부원료를 혼합, 적치한후 사용하는 브랜딩광석과 열원인 분코크스 및 부원료를 혼합, 조립화시켜 소결기에 장입시킨후 점화로의 점화에 의해 하층부에서 흡인하는 흡입압에 의해 소성을 진행시켜 소결광을 제조하는 방법에 있어서,After mixing and placing the powdered iron ore and the subsidiary materials, the branding ore used and the powdered coke and the subsidiary materials are mixed, granulated and charged into a sintering machine, followed by firing by suction pressure sucked from the lower layer by ignition of the ignition furnace. In the method of manufacturing the sintered ore, 입자와 기공이 큰 갈청광 계통의 철광석을 핵입자로 설정하여 소결빈의 원료 정량절출 장치에서 절출시 유기점결제인 전당분을 물과 4:6 으로 혼합한후 살수시켜 차기 미분의 부원료가 절출 밸트에 쌓이게 하여 결합력을 증대시켜 조립입자의 크기를 향상시키도록 하는 것을 특징으로 하는 소결광 제조방법.The iron ore of the brownish blue system having large particles and pores is set as nuclear particles, and when the organic material is extracted in a quantitative extraction device of a sintering bin, the organic binder starch is mixed with water at 4: 6, and then sprayed to remove the next fine powder. Sintered ore manufacturing method characterized in that to accumulate on the belt to increase the bonding strength to improve the size of the granulated particles. 제 1 항에 있어서, 상기 전당분과 물의 결합제를 살수시The method of claim 1, wherein when the binder of the starch sugar and water 펠렛 속도(P.S) * 층후 * 폭 * 비중에 의해 배합원료 총량(Y)을 계산하는 과정과,The process of calculating the total compounding quantity (Y) by the pellet speed (P.S) * after layer * width * specific gravity, 상기 계산된 배합원료 총량(Y)과 6번의 갈청광 계통의 사용하고자 하는 비율(ratio)값을 곱하는 과정과,Multiplying the calculated blended raw material amount (Y) by the ratio value to be used for the number 6 brown blue light system; 상기 계산된 갈철광 계통의 6번량의 10% 만큼 살수용액이 설정되어 유기점결제인 전당분은 살수량의 40%, 희석재인 물은 60%로 제어하여 살수하는 과정을 포함함을 특징으로 하는 소결광 제조방법.The sintered ore is characterized in that the spraying solution is set as much as 10% of the number 6 of the calculated iron ore system, so that the organic starch, the starch is 40% of the amount of water sprayed, the water diluent is controlled to 60% Manufacturing method.
KR10-2000-0077367A 2000-12-16 2000-12-16 sinter manufacture method KR100469299B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0077367A KR100469299B1 (en) 2000-12-16 2000-12-16 sinter manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0077367A KR100469299B1 (en) 2000-12-16 2000-12-16 sinter manufacture method

Publications (2)

Publication Number Publication Date
KR20020084909A KR20020084909A (en) 2002-11-16
KR100469299B1 true KR100469299B1 (en) 2005-01-31

Family

ID=27682501

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0077367A KR100469299B1 (en) 2000-12-16 2000-12-16 sinter manufacture method

Country Status (1)

Country Link
KR (1) KR100469299B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242698B1 (en) * 2010-12-27 2013-03-12 주식회사 포스코 Manufacturing method of mixing raw material for sintering
KR101245321B1 (en) * 2010-12-28 2013-03-25 주식회사 포스코 Manufacturing method of mixing raw material for sintering

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030054033A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Method for manufacturing the blending material for the sintering process
KR101449456B1 (en) * 2012-11-23 2014-10-13 주식회사 포스코 Method for manufacturing blending material for sintering process
CN113249564B (en) * 2021-05-11 2023-03-03 宁波钢铁有限公司 Intelligent pile changing method for sintering and blending ore

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134123A (en) * 1989-10-18 1991-06-07 Nkk Corp Manufacture of sintered ore
JPH06212292A (en) * 1993-01-14 1994-08-02 Kawasaki Steel Corp Production of particle for sintering
KR19980038068A (en) * 1996-11-23 1998-08-05 김종진 Sintered ore manufacturing method using organic binder
JPH11193423A (en) * 1997-10-30 1999-07-21 Kobe Steel Ltd Iron oxide pellet and its manufacture, and reduced iron pellet and its manufacture
KR20000015709A (en) * 1998-08-31 2000-03-15 이구택 Manufacturing method of sintered ore using starch sugar
JP2002285251A (en) * 2001-01-17 2002-10-03 Kobe Steel Ltd Method for producing sintered ore

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134123A (en) * 1989-10-18 1991-06-07 Nkk Corp Manufacture of sintered ore
JPH06212292A (en) * 1993-01-14 1994-08-02 Kawasaki Steel Corp Production of particle for sintering
KR19980038068A (en) * 1996-11-23 1998-08-05 김종진 Sintered ore manufacturing method using organic binder
JPH11193423A (en) * 1997-10-30 1999-07-21 Kobe Steel Ltd Iron oxide pellet and its manufacture, and reduced iron pellet and its manufacture
KR20000015709A (en) * 1998-08-31 2000-03-15 이구택 Manufacturing method of sintered ore using starch sugar
JP2002285251A (en) * 2001-01-17 2002-10-03 Kobe Steel Ltd Method for producing sintered ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242698B1 (en) * 2010-12-27 2013-03-12 주식회사 포스코 Manufacturing method of mixing raw material for sintering
KR101245321B1 (en) * 2010-12-28 2013-03-25 주식회사 포스코 Manufacturing method of mixing raw material for sintering

Also Published As

Publication number Publication date
KR20020084909A (en) 2002-11-16

Similar Documents

Publication Publication Date Title
CN101903542B (en) Method for production of raw material for use in the production of sintered ore
CN105002352B (en) A kind of preparation method of high performance pellet binder
CN102127636B (en) Method for preparing low-SiO2 high-performance sinter ore
CN108642272A (en) A kind of brown ocher high mixture ratio sintering method
CN104060083B (en) Sintering method of vanadium titanium magnetite
CN107287414A (en) A kind of raw material for reducing agglomeration for iron mine NOx emission is prepared and sintering method
CN107304461B (en) Strength hybrid technique and its device for sintering production
CN107557572A (en) A kind of preparation method of sintering deposit
CN104278145B (en) Method for producing sintering ore
CN1198948C (en) Raw material for sintering in form of pseudo grain and method for producing the same
CN109055731A (en) A kind of dust granulating process and agglomeration for iron mine technique
CN103710536A (en) Preparation method of pellet binder with high performance
CN112553462A (en) Sintered ore containing sintered dedusting ash pellets and preparation method thereof
KR100469299B1 (en) sinter manufacture method
CN103725875B (en) High-performance pellet
CN101445870B (en) Joint adding method for producing fuel flux by sintering iron ore powder and device thereof
CN104843709A (en) Lime pellet and preparation method thereof
CN108796212A (en) A kind of method of the compound fine iron breeze production sinter of self-fluxing nature
CN107974558A (en) Binding agent, carbonaceous pelletizing for producing carbonaceous pelletizing and preparation method thereof
KR101242698B1 (en) Manufacturing method of mixing raw material for sintering
CN105420491A (en) Iron ore sintering method
CN109207718A (en) The method for preparing stainless steel raw material sinter using nickel slag
CN112126773B (en) Sintering method for sintering CDQ powder
CN104498707B (en) A kind of manufacture method of green pellets
KR102033028B1 (en) Manufacturing method of sintered ore

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130121

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140121

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160120

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee