JPH1192555A - Production of polyester and apparatus thereof - Google Patents
Production of polyester and apparatus thereofInfo
- Publication number
- JPH1192555A JPH1192555A JP25470997A JP25470997A JPH1192555A JP H1192555 A JPH1192555 A JP H1192555A JP 25470997 A JP25470997 A JP 25470997A JP 25470997 A JP25470997 A JP 25470997A JP H1192555 A JPH1192555 A JP H1192555A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- polyester
- stirring
- main body
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ポリエチレンテレ
フタレ−ト、ポリブチレンテレフタレート等のポリエス
テル系高分子の連続製造方法および装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for continuously producing polyester polymers such as polyethylene terephthalate and polybutylene terephthalate.
【0002】[0002]
【従来の技術】従来、ポリエチレンテレフタレ−ト等の
重縮合系高分子の製造方法としては原料としてテレフタ
ル酸とエチレングリコールをエステル化のために適当な
割合で混合槽に入れ、ポンプによりエステル化反応槽へ
送る。このエステル化工程は撹拌翼付きの撹拌槽を2か
ら3個直列に配置し、副反応物としてでる水を蒸留塔で
分離する。次に前重合工程として立形撹拌槽や横形の撹
拌槽が複数台設置されさらに最終重合工程として横形の
撹拌槽が設置されている。これらの重合工程の槽には副
反応物として出るエチレングリコールを除去するために
コンデンサーが設置され、減圧雰囲気で運転される。従
来のポリエステル製造工程では反応槽の数が4から6缶
あり、それぞれの反応槽には撹拌翼とその動力源が装備
され、また副反応物を分離除去するための蒸留塔やコン
デンサーが設置されている。さらに重合工程は減圧雰囲
気で運転されるために真空手段はべつの装置によって操
作しなければならず、製造装置の運転には高額の維持費
と装置経費を必要としている。2. Description of the Related Art Conventionally, as a method for producing a polycondensation polymer such as polyethylene terephthalate, terephthalic acid and ethylene glycol as raw materials are put into a mixing tank at an appropriate ratio for esterification and esterified by a pump. Send to reaction tank. In this esterification step, two or three stirring tanks with stirring blades are arranged in series, and water produced as a by-product is separated by a distillation column. Next, a plurality of vertical stirring tanks and horizontal stirring tanks are installed as a pre-polymerization step, and a horizontal stirring tank is installed as a final polymerization step. A condenser is installed in the tank for these polymerization steps to remove ethylene glycol as a by-product, and the vessel is operated in a reduced pressure atmosphere. In the conventional polyester production process, the number of reaction vessels is 4 to 6 cans, each reaction vessel is equipped with a stirring blade and its power source, and a distillation column and a condenser for separating and removing by-products are installed. ing. Further, since the polymerization process is operated in a reduced-pressure atmosphere, the vacuum means must be operated by another apparatus, and the operation of the production apparatus requires high maintenance costs and equipment costs.
【0003】[0003]
【発明が解決しようとする課題】本発明の問題は高分子
量ポリエステルの生産のための公知の方法を改善したも
のであり、装置全体の効率を向上し、工場設備のエネル
ギー節約により経済的に操作するものである。SUMMARY OF THE INVENTION The problem of the present invention is an improvement over known processes for the production of high molecular weight polyesters, which increases the efficiency of the entire apparatus and saves energy in plant equipment, thereby operating economically. Is what you do.
【0004】本発明の目的は、上記従来技術を改善し、
必要最小限の反応器構成により、最少のエネルギーで品
質の良い重合物を効率良く反応させる連続重縮合装置及
び連続重縮合方法を提供することにある。An object of the present invention is to improve the above prior art,
An object of the present invention is to provide a continuous polycondensation apparatus and a continuous polycondensation method for efficiently reacting a high-quality polymer with minimum energy by using a minimum necessary reactor configuration.
【0005】[0005]
【課題を解決するための手段】上記目的は、エステル化
工程、前重合工程、最終重合工程をそれぞれ一槽とし、
撹拌動力を必要とする槽は最終重合工程のみとすること
によって達成される。The object of the present invention is to provide an esterification step, a pre-polymerization step, and a final polymerization step as one tank,
A vessel requiring stirring power is achieved by only the final polymerization step.
【0006】[0006]
【発明の実施の形態】図1に本発明の一実施例を示す。
図1は本発明をポリエチレンテレフタレートの連続製造
プロセスの装置構成図である。工業的なポリエステルの
製造方法として、直接エステル化法が、経済的に非常に
有利であるので、最近では直接エステル化方法が多く採
用されている。図において31はポリエチレンテレフタ
レートの原料であるTPA(テレフタル酸)とEG(エ
チレングリコール)を所定の割合で混合、撹拌する原料
調整槽である。製造プロセスの中にはこの段階で重合反
応触媒や安定剤、色調調整剤などの添加物を加える場合
がある。重合反応触媒としてはアンチモン、チタン、ゲ
ルマニウム、錫、亜鉛、等の金属化合物があげられ、使
用する触媒の種類や組み合わせにより、反応速度が異な
るだけでなく、生成するポリエステルの色相及び熱安定
性が異なることが良く知られている。さらにこれらの反
応は触媒の存在化で高温で長時間行われるために種々の
副反応が伴い、重合物が黄色に着色したり、ジエチレン
グリコール(DEG)の含有量や末端カルボキシル基濃
度が適正値以上に増加して、ポリエステルの融点及び強
度の低下などの物理的性質が低下したりする。このよう
な問題点を改良するために新しい触媒の開発が試みられ
ているが、現在最も多く工業的に使用されているアンチ
モン化合物、特に三酸価アンチモンが価格や性能面で優
れている。しかし、この触媒を用いても生成したポリエ
ステル重合物の着色は避けられない。このために安定剤
として燐系安定剤(例えばトリメチルホスフェート、ト
リフェニルホスフェート)を併用して改善している。ま
た、別の製造プロセスにおいては重合触媒や安定剤の投
入位置を工夫して品質を安定させている。通常のプロセ
スでは触媒の量は200から400ppmを安定剤の量
は50から200ppmを用いるのが好ましい。以上の
ように調整された原料はエステル化反応槽33へ原料を
供給する供給ライン32を経由して行く。エステル化反
応槽(第1反応器)33の外周部には処理液を反応温度
に保つためにジャケット構造(図示せず)になっており
液の内部には液の加熱手段として多缶式熱交換機34が
設置され外部からの熱源により処理液を加熱し、自然循
環により内部の液を循環しながら反応を進行させる。こ
こで最も望ましい反応器の型はエステル化反応を自己の
反応により生成する副反応物の蒸発作用を利用して反応
器内の処理液を自然循環させるカランドリア型が望まし
い。この形の反応器は外部の撹拌動力源を必要としない
ため装置構成が単純でしかも撹拌軸の軸封装置も不要と
なり反応器の制作コストが安価となる利点がある。この
ような反応器の一例として図2に示す様な装置が望まし
い。図2に本装置の一実施例を示す。被処理液52は立
形の蒸発缶1内の下部に設けた入口53より流入し、多
管式熱交換器4の複数の伝熱管内(図示していない)側
を流れ加熱され、自然対流により上昇する。ここで被処
理液52の低沸点成分の一部は蒸発しベーパー管55より
装置外に放出される。残りの被処理液52は蒸発缶51の
内壁と多管式熱交換器54のシェルの外壁との間を自然
対流により流下し、多管式熱交換器4のシェル下部に設
けられた円筒状の助走空間56に流入する。ここで処理
液の流れは乱れの少ない整流されたものになり、さらに
多管式熱交換器54の管内の平均流速は自然対流で流下
する平均流速よりも増速されているのでより均一な速度
分布で複数の伝熱管に流入し、各被処理液は再び均一に
加熱され自然対流による循環を繰り返す。この過程で徐
々に低沸点成分は蒸発し、適当な対流時間を経た後に濃
縮された被処理液59は出口60を通って系外へ導き出さ
れる。ここで、円滑な増速流を発生させるためには、伝
熱管の総流路面積よりも円筒状の助走空間の流路面積を
大きく設計し、さらに蒸発缶51の内壁と多管式熱交換
器54のシェルの外壁との間に形成されるに二重管部分
の流路面積を助走空間の流路面積よりも大きくすること
により達成される。なお、57は熱媒の入口、58は熱媒
の出口を示し、蒸発缶51の回りは断熱材あるいはジャケ
ットにより囲まれている(図示せず)。従って、本実施例
の蒸発缶では熱交換器の軸方向に沿って速度分布が均一
なため被処理液はより均一な蒸発あるいは反応をするこ
とができ、より良好な製品品質を短い滞留時間で得るこ
とができる効果がある。被処理液52が固体粒子と液体
の混合物(以下スラリーと記述する)の場合も、自然循
環する被処理液52は多管式熱交換器54のシェル下部に
設けられた円筒状の助走空間56に流入するが、円錐状
の部材62に沿ってより円滑に上昇するために、固体粒
子が底部に沈殿することがない。被処理液がスラリーの
場合は蒸発缶の底部に内部循環する被処理液を上昇させ
るための円錐状の部材を設けることにより、スラリーに
含まれる固体粒子の沈殿を防ぐことができる。ここで、
円錐状の部材はある曲率を持っていても良い。従って、
本実施例の蒸発缶ではスラリーの自然循環により好適な
蒸発缶を提供できる効果があり、信頼性のある良好な品
質の製品を得ることができる。しかし、本発明において
この装置を限定するものではなくプロセス上の理由から
撹拌翼を持った反応器を使用しても差し支えない。第1
反応器において、反応により生成する水は水蒸気とな
り、気化したEG蒸気と気相部5を形成する。このとき
の推奨すべき反応条件としては温度は240度から28
0度で加圧条件が望ましい。気相部5のガスはその上流
側に設けられた精留塔(図示せず)により水とEGとに
分離され、水は系外に除去され、EGは再び系内に戻さ
れる。本発明の利点としてエステル化工程を一つの反応
器で処理することにより精留塔の数を一つにすることが
可能となり、精留塔の制作経費だけでなく配管やバルブ
の数制御装置の数などを削減でき大幅な装置コストの低
減となる。エステル化反応槽33で所定の反応時間経過
した処理液は所定のエステル化率に到達し、連絡管36
により初期重合槽(第2反応器)37に供給される。こ
のとき処理液は熱交換器38により所定の反応温度に加
熱され重縮合反応を行い重合度を上昇させる。このとき
の反応条件としては270度から290度で圧力は26
6Paから133Paで重合度20から40程度まで反
応させる。本実施例で示した初期重合槽は撹拌翼を持た
ない反応器を用いて説明しているがこの反応器を限定す
るものではない。しかし、初期重合段階においては反応
は重合反応速度が反応の速度の律束となっている段階で
あり反応に必要な熱量を十分に供給すれば反応は順調に
進行していく。この観点から処理液は撹拌翼で不必要な
撹拌作用を受ける必要はなく重縮合反応によって生成す
るEGが系外に離脱するだけでよい。このような操作に
最適な反応器としては図3に示す様な装置が望ましい。
図において、71は竪長円筒状の容器本体で外周を熱媒
ジャケット72で覆われており、本体71中央長手方向に
上部が開放した下降管73が取り付けられている。本体7
1内下部には下降管73に平行に複数個の伝熱管74が取
り付けられ、この伝熱管74の上部の下降管73の外側に
は螺旋状の邪魔板75が複数個取付けられる。それぞれ
の邪魔板75は本体71内壁との間に揮発物を逃がす隙間
83を有して本体71内を上下方向に仕切り、複数個の滞
留室84を形成している。本体71内上部、すなわち下降
管73及び最上部の邪魔板75Cの上端には被処理液と揮
発物とを分離するための空間76を持つ。また、下降貫
73の内部には被処理液を薄膜流下させる下降管73の
内側に複数個のテーパ状の液受け88を取り付けてお
り、下降管73内を流下する被処理液をそれぞれの液受
け88に保持して順次下方に移動させることができるの
で、被処理液のショートパスを少なくし、効率良く揮発
物を蒸発分離して反応を進めることができる。このよう
な装置において、入口ノズル77より連続して供給され
た被処理液は、まず伝熱管74に入って加熱されながら
上昇し、最下部の滞留室84Aに達する。この滞留室8
4Aを徐々に上昇する間に重縮合反応が進み、生成した
エチレングリコール等の揮発物は邪魔板75外側の隙間
83から上部へ移動する。一方、被処理液は、邪魔板7
5の螺旋部に沿って旋回流を起こしながら上昇し、次の
滞留室84Bへ流入する。このとき旋回しながらスムー
スにつぎの滞留室84Bへ移動するので、逆流を起こす
ことも少なく、被処理液は順次滞留部を上昇し、効率良
く重縮合反応が進む。FIG. 1 shows an embodiment of the present invention.
FIG. 1 is an apparatus configuration diagram of a continuous production process of polyethylene terephthalate according to the present invention. As the industrial polyester production method, the direct esterification method is very economically advantageous, and thus the direct esterification method has recently been widely used. In the figure, reference numeral 31 denotes a raw material adjusting tank for mixing and stirring TPA (terephthalic acid) and EG (ethylene glycol) as raw materials of polyethylene terephthalate at a predetermined ratio. During the production process, additives such as a polymerization reaction catalyst, a stabilizer, and a color tone adjuster may be added at this stage. Examples of the polymerization reaction catalyst include metal compounds such as antimony, titanium, germanium, tin, and zinc.Depending on the type and combination of the catalysts used, not only the reaction rate differs, but also the hue and thermal stability of the resulting polyester. It is well known that they are different. Furthermore, these reactions are carried out at a high temperature for a long time in the presence of a catalyst, and are accompanied by various side reactions, and the polymer is colored yellow, and the content of diethylene glycol (DEG) and the terminal carboxyl group concentration are more than appropriate values. And physical properties such as a decrease in the melting point and strength of the polyester are reduced. Attempts have been made to develop new catalysts in order to solve such problems, but antimony compounds which are currently most industrially used, especially antimony triacid, are excellent in price and performance. However, even if this catalyst is used, coloring of the produced polyester polymer cannot be avoided. For this reason, phosphorus stabilizers (for example, trimethyl phosphate, triphenyl phosphate) have been used in combination as stabilizers for improvement. In another manufacturing process, the quality is stabilized by devising a position where a polymerization catalyst and a stabilizer are charged. In a typical process, it is preferable to use 200 to 400 ppm of the catalyst and 50 to 200 ppm of the stabilizer. The raw material adjusted as described above passes through a supply line 32 that supplies the raw material to the esterification reaction tank 33. The outer periphery of the esterification reaction tank (first reactor) 33 has a jacket structure (not shown) in order to keep the processing liquid at the reaction temperature. An exchanger 34 is provided to heat the processing liquid by a heat source from the outside, and to proceed the reaction while circulating the internal liquid by natural circulation. Here, the most desirable type of reactor is a calandria type in which the processing solution in the reactor is naturally circulated by utilizing the evaporating action of a by-product produced by the self-reaction of the esterification reaction. Since this type of reactor does not require an external stirring power source, there is an advantage that the apparatus configuration is simple, the shaft sealing device for the stirring shaft is not required, and the production cost of the reactor is low. As an example of such a reactor, an apparatus as shown in FIG. 2 is desirable. FIG. 2 shows an embodiment of the present apparatus. The liquid to be treated 52 flows from an inlet 53 provided at a lower portion in the vertical evaporator 1, flows through a plurality of heat transfer tubes (not shown) of the multi-tube heat exchanger 4, is heated, and is subjected to natural convection. To rise. Here, a part of the low boiling point component of the liquid to be treated 52 evaporates and is discharged from the vapor pipe 55 to the outside of the apparatus. The remaining liquid to be treated 52 flows down by natural convection between the inner wall of the evaporator 51 and the outer wall of the shell of the multitubular heat exchanger 54, and the cylindrical liquid provided at the lower part of the shell of the multitubular heat exchanger 4 Flows into the approach space 56 of. Here, the flow of the processing liquid is rectified with less turbulence, and the average flow velocity in the tubes of the multi-tube heat exchanger 54 is increased more than the average flow velocity flowing down by natural convection, so that a more uniform velocity is obtained. The liquid flows into the plurality of heat transfer tubes in a distribution, and each liquid to be treated is heated again uniformly and repeats circulation by natural convection. In this process, the components having a low boiling point gradually evaporate, and after a suitable convection time, the liquid to be treated 59 which is concentrated is led out of the system through the outlet 60. Here, in order to generate a smooth accelerated flow, the flow passage area of the cylindrical approach space is designed to be larger than the total flow passage area of the heat transfer tubes, and furthermore, the multi-tube heat exchange with the inner wall of the evaporator 51 is performed. This is achieved by making the flow area of the double pipe portion formed between the outer wall of the shell of the vessel 54 and the flow path area of the entrance space larger. Reference numeral 57 denotes an inlet for the heat medium, and 58, an outlet for the heat medium. The evaporator 51 is surrounded by a heat insulating material or a jacket (not shown). Therefore, in the evaporator of the present embodiment, the velocity distribution is uniform along the axial direction of the heat exchanger, so that the liquid to be treated can more uniformly evaporate or react, and a better product quality can be obtained with a short residence time. There is an effect that can be obtained. Even when the liquid to be treated 52 is a mixture of solid particles and a liquid (hereinafter, referred to as a slurry), the liquid to be treated 52 that naturally circulates is formed into a cylindrical approach space 56 provided at the lower part of the shell of the multi-tubular heat exchanger 54. , But rises more smoothly along the conical member 62 so that solid particles do not settle to the bottom. When the liquid to be treated is a slurry, by providing a conical member at the bottom of the evaporator for raising the liquid to be circulated internally, the solid particles contained in the slurry can be prevented from settling. here,
The conical member may have a certain curvature. Therefore,
The evaporator of the present embodiment has an effect of providing a suitable evaporator by natural circulation of the slurry, and a reliable and good quality product can be obtained. However, the present invention is not limited to this apparatus, and a reactor having a stirring blade may be used for process reasons. First
In the reactor, the water generated by the reaction becomes steam, and forms the vapor phase 5 with the vaporized EG vapor. The recommended reaction conditions at this time are as follows.
A pressure condition of 0 degrees is desirable. The gas in the gas phase 5 is separated into water and EG by a rectification tower (not shown) provided on the upstream side, the water is removed outside the system, and the EG is returned to the system again. As an advantage of the present invention, it is possible to reduce the number of rectification towers by treating the esterification step in one reactor, and not only the production cost of the rectification tower but also the control of the number of pipes and valves. The number and the like can be reduced, resulting in a significant reduction in equipment cost. The processing solution having passed a predetermined reaction time in the esterification reaction tank 33 reaches a predetermined esterification rate, and
Is supplied to the initial polymerization tank (second reactor) 37. At this time, the treatment liquid is heated to a predetermined reaction temperature by the heat exchanger 38 to cause a polycondensation reaction to increase the degree of polymerization. The reaction conditions at this time are 270 to 290 degrees and the pressure is 26.
The reaction is performed at a polymerization degree of about 20 to 40 at 6 Pa to 133 Pa. Although the initial polymerization tank shown in this example is described using a reactor having no stirring blade, this reactor is not limited. However, in the initial polymerization stage, the reaction is a stage in which the polymerization reaction rate is governed by the reaction speed, and the reaction proceeds smoothly if a sufficient amount of heat required for the reaction is supplied. From this viewpoint, the processing liquid does not need to be subjected to unnecessary stirring action by the stirring blade, and EG generated by the polycondensation reaction only needs to be released from the system. As an optimal reactor for such an operation, an apparatus as shown in FIG. 3 is desirable.
In the figure, reference numeral 71 denotes a vertically cylindrical container main body, the outer periphery of which is covered with a heat medium jacket 72, and a downcomer pipe 73 whose upper part is opened in the central longitudinal direction of the main body 71 is attached. Body 7
A plurality of heat transfer tubes 74 are attached to the inner lower portion of the tube 1 in parallel with the downcomer tube 73, and a plurality of spiral baffle plates 75 are attached to the outer side of the downcomer tube 73 above the heat transfer tube 74. Each baffle 75 is a gap between the inner wall of the main body 71 and the volatile substance.
The inside of the main body 71 is partitioned in the up and down direction with the inside 83, and a plurality of retention chambers 84 are formed. The upper part of the main body 71, that is, the upper end of the downcomer pipe 73 and the uppermost baffle 75C has a space 76 for separating the liquid to be treated and the volatile matter. Further, a plurality of tapered liquid receivers 88 are attached inside the descending pipe 73 for allowing the liquid to be treated to flow down the thin film inside the descent penetrator 73. Since the liquid can be successively moved downward while being held in the receiver 88, the number of short paths of the liquid to be treated can be reduced, and the reaction can proceed by evaporating and separating volatiles efficiently. In such an apparatus, the liquid to be treated continuously supplied from the inlet nozzle 77 first enters the heat transfer tube 74, rises while being heated, and reaches the lowermost retention chamber 84A. This staying room 8
The polycondensation reaction proceeds while gradually ascending 4A, and the generated volatile matter such as ethylene glycol moves upward from the gap 83 outside the baffle plate 75. On the other hand, the liquid to be treated is the baffle plate 7
5 while raising a swirling flow along the spiral portion of No. 5, and flows into the next staying chamber 84B. At this time, the liquid moves smoothly to the next retention chamber 84B while turning, so that the backflow is less likely to occur, and the liquid to be treated sequentially rises in the retention part, and the polycondensation reaction proceeds efficiently.
【0007】このようにして最上部の滞留室84Cに到
達した被処理液は下降管73の頂部82を乗り越えて下
降管73の内側を流下する。被処理液は下降管73の内
側を薄膜となって流下し、反応により生じた揮発物を蒸
発分離して、さらに重縮合反応を進めることができる。
このようにして揮発物を蒸発分離し、反応の進んだ被処
理液は出口ノズル78より系外に排出される。一方生成
した揮発物は本体内の上部空間6で被処理液(重合物)
の飛沫と分離し、揮発物の出口ノズル79より系外に排
出される。The liquid to be processed reaches the uppermost retaining chamber 84C in this manner, passes over the top 82 of the downcomer 73, and flows down inside the downcomer 73. The liquid to be treated flows down as a thin film inside the downcomer 73, and volatiles generated by the reaction are evaporated and separated, so that the polycondensation reaction can be further advanced.
In this manner, the volatile substances are evaporated and separated, and the liquid to be treated after the reaction is discharged from the outlet nozzle 78 to the outside of the system. On the other hand, the generated volatiles are treated liquid (polymer) in the upper space 6 in the main body.
And is discharged out of the system from the outlet nozzle 79 of the volatile matter.
【0008】このとき揮発物に被処理液(重合物)が同
伴する問題すなわち飛沫同伴が起こりやすいが、本発明
では螺旋状の邪魔板75により上部へ突沸する被処理液
及び揮発物を円周方向に向けることができ、飛沫同伴を
押さえることができる。このような装置により発生する
揮発物、即ちEGは減圧雰囲気に保たれた気相部9で気
化し、その上流側に設けられたコンデンサーで凝縮した
後に系外へ排出される。本発明の利点として初期重合工
程を一つの反応器で処理することによりコンデンサーの
数を一つにすることが可能となり、コンデンサーの製作
経費だけでなく配管やバルブの数制御装置の数などを削
減でき大幅な装置コストの低減となる。初期重合槽(第
2反応器)37で所定の反応時間を経過した処理液は連
絡管40により最終重合機(第3反応器)41に供給さ
れる。最終重合機では中心部に撹拌軸の無い撹拌翼42
により良好な表面更新作用を受けながらさらに重縮合反
応を進め重合度を上昇させ目的の重合度のポリマーを製
造する。最終重合機(第3反応器)として最適な装置と
しては図4、図15に記載の装置が表面更新性能、消費
動力特性が最も優れている。また、処理液の粘度範囲が
広いので従来、2槽に分割したりして処理していたもの
を一台の装置で可能となり大幅な装置コストの低減とな
る。図4により最終重合機について説明する。図4は本
発明の装置の縦断面を示す正面図である。図において、
1は横長円筒状の容器本体で外周を熱媒ジャケット(図
示せず)で覆われており、長手方向の両端に回転支持用
の軸3a、3bが取り付けられている。これらの回転支
持用の軸3a、3b間に撹拌ロータ4が取付けられ、一
方の回転軸3aは駆動装置(図示せず)に連結されてい
る。この撹拌ロータ4は両端に 5a、5b、5c、5d(本実
施例では4本の場合を示すがロータの大きさによって使
用する本数は決定される)と連結されるロータ支持部材
2a、2bを持ち、この支持部材2a、2b間に複数個
の撹拌ブロックから成る撹拌ロータ4を形成している。
支持部材2aは低粘度側部材で、2bは高粘度側支持部
材である。この支持部材2bは撹拌ロータ4の外径より
は小さく構成され、該支持部材の本体側面側にはカキト
リ部材13a、13bが設けられ、ロータの回転によっ
て本体側壁面の処理液を外周部へ押し出すように取り付
けられている。詳細な構成を図4のEE断面である図1
4に示す。撹拌ロータ4は入り口ノズル11側の低粘度
域はカキトリ板6aと6bにより構成されるバケット部と
バケット部から処理液を注ぎかける薄板円板7aおよび
中空円板8より構成される低粘度撹拌ブロック(詳細構
造は図5、9、10により説明する)が設けられてい
る。次に中粘度域は両側に中空円板8を配置し、その中
に同一外径の中空薄板7bを複数枚設置し、さらに外周
部にはこれらの部材を貫通したカキトリ板6cを放射状
に複数個設置して構成される中粘度撹拌ブロック(詳細
構造は図3、4、8、9により説明する)が設けられて
いる。さらに出口側には車輪型形状の円板9を複数個適
当な間隔で設置し車輪型形状の円板9の外周部にカキト
リ板10を設置して高粘度撹拌ブロック(詳細構造は図
8、13により説明する)が設けられている。また本体
1の他端下部には、被処理液の出口ノズル11が取り付
けられている。さらに、本体1の上部に揮発物の出口ノ
ズル14が設けられ、配管で凝縮器及び真空引き装置
(図示せず)に接続される。At this time, the problem that the liquid to be treated (polymer) accompanies the volatile substance, that is, the entrainment is liable to occur, but in the present invention, the liquid to be treated and the volatile substance bumping upward due to the spiral baffle plate 75 are circulated. It can be directed in the direction, and can suppress droplet entrainment. Volatiles, EG, generated by such a device are vaporized in the gas phase 9 maintained in a reduced-pressure atmosphere, condensed by a condenser provided on the upstream side thereof, and then discharged out of the system. As an advantage of the present invention, it is possible to reduce the number of condensers by processing the initial polymerization step in one reactor, thereby reducing not only the production cost of the condenser but also the number of piping and valves and the number of control devices. As a result, the cost of the apparatus is greatly reduced. The treatment liquid after a predetermined reaction time in the initial polymerization tank (second reactor) 37 is supplied to the final polymerization machine (third reactor) 41 through the communication pipe 40. In the final polymerization machine, a stirring blade 42 having no stirring shaft at the center
The polycondensation reaction is further promoted while receiving a better surface renewal action, thereby increasing the degree of polymerization to produce a polymer having a desired degree of polymerization. As the most suitable apparatus as the final polymerization machine (third reactor), the apparatuses shown in FIGS. 4 and 15 have the best surface renewal performance and power consumption characteristics. Further, since the viscosity range of the processing liquid is wide, the processing which has been conventionally performed by dividing the processing liquid into two tanks can be performed by one apparatus, and the cost of the apparatus can be greatly reduced. The final polymerization machine will be described with reference to FIG. FIG. 4 is a front view showing a longitudinal section of the device of the present invention. In the figure,
Reference numeral 1 denotes a horizontally long cylindrical container body whose outer periphery is covered with a heat medium jacket (not shown), and shafts 3a and 3b for rotation support are attached to both ends in the longitudinal direction. A stirring rotor 4 is mounted between the rotation supporting shafts 3a and 3b, and one of the rotation shafts 3a is connected to a driving device (not shown). The stirring rotor 4 has rotor support members 2a, 2b connected to 5a, 5b, 5c, 5d (in this embodiment, four are shown, but the number used is determined by the size of the rotor) at both ends. A stirring rotor 4 composed of a plurality of stirring blocks is formed between the supporting members 2a and 2b.
The support member 2a is a low viscosity side member, and 2b is a high viscosity side support member. The support member 2b is configured to be smaller than the outer diameter of the agitation rotor 4, and oyster members 13a and 13b are provided on the side of the main body of the support member, and the processing liquid on the side wall surface of the main body is pushed to the outer peripheral portion by rotation of the rotor. So that it is attached. FIG. 1 showing a detailed configuration of the EE section of FIG.
It is shown in FIG. The stirring rotor 4 has a low-viscosity stirrer block having a low-viscosity region on the inlet nozzle 11 side constituted by a bucket portion composed of oyster plates 6a and 6b, a thin disk 7a for pouring the processing liquid from the bucket portion, and a hollow disk 8. (The detailed structure will be described with reference to FIGS. 5, 9, and 10). Next, in the medium viscosity region, a hollow disk 8 is arranged on both sides, a plurality of hollow thin plates 7b having the same outer diameter are provided therein, and a plurality of oyster plates 6c penetrating these members are further radially provided on the outer peripheral portion. A medium-viscosity stirrer block (detailed structure will be described with reference to FIGS. 3, 4, 8, and 9) is provided. Further, on the outlet side, a plurality of wheel-shaped disks 9 are installed at appropriate intervals, and an oyster plate 10 is installed on the outer periphery of the wheel-shaped disks 9 to provide a high-viscosity stirring block (see FIG. 13 will be described. Further, an outlet nozzle 11 for the liquid to be treated is attached to the lower end of the other end of the main body 1. Further, a volatile matter outlet nozzle 14 is provided at an upper portion of the main body 1 and connected to a condenser and a vacuuming device (not shown) by piping.
【0009】このような装置において、入口ノズル11
より連続して供給された重合度の低い低粘度の被処理液
(プレポリマー)は、図5に示す低粘度撹拌ブロックで
まず撹拌される。このときの処理液の粘度は数Pasか
ら数十Pasである。低粘度撹拌ブロックは中空円板8
の外周部にカキトリ板6aと6bでバケットを形成する。
図に示したように回転するとバケット内に処理液をすく
い上げるように動作する。このときの処理液の流動状況
を模式的示したものが図9、10である。カキトリ板6
a、6bのバケット底部には小さな隙間δが形成されてい
る。このために低粘度の処理液91は撹拌ロータの回転
と共にバケットですくい上げられ(図9の100)、バ
ケットが回転により内側へ傾き処理液が中側へ流れ出す
(図9の101)と共に外側へも少しずつ漏れだし(図
9の102)て、バケットの内側と外側の両方に液膜1
01、102を形成する。さらに内側に流れ出した処理
液101は内側のバケット先端部に設置された薄板円板
7aに注がれ(図10の103)、薄板円板7a表面及び
薄板円板7aと薄板円板7aとの間の両方に薄い液膜を形
成し、広い蒸発表面積を確保することが出来る。これら
の作用はバケットが回転する毎に繰り返され、十分な蒸
発表面と良好な表面更新作用を得ることが出来る。この
ときの回転数は0.5から数rpmの低速回転(10r
pm以下)でも十分に良好な性能が得られ、撹拌消費動
力の低減に大きな効果が得られる。また処理液より蒸発
した副生物は中空円板8の中空部20a薄板円板7aの
中空部20aを通過し揮発物の出口ノズル14から排出
される。低粘度撹拌ブロックで所定の滞留時間を経過し
た処理液は粘度を数十Pas程度に上昇させて次の中粘
度撹拌ブロックへ到達する。中粘度撹拌翼ブロックの詳
細構造を図6、7に示す。中粘度撹拌翼ブロックは中空
円板8と薄板中空円板7b及びカキトリ板6cで構成さ
れており中空円板の孔径D1、薄板円板7bの孔径D3
は処理液の反応副生物のガス量に応じて最適の径になる
ように決定される。また薄板円板7bの孔径D2につい
ても処理液の粘度と反応ガス量に応じて最適径が決定さ
れる。数十Pasになった処理液92は図11、12に
示すように回転によってカキトリ板6cによって持ち上
げられ、さらにカキトリ板が回転によって傾斜するため
に液が垂れ下がり液膜104を形成する。液膜104は
回転と共に撹拌ロータの連結強度部材5aに垂れ掛かり
液膜は長く保持される。また中空円板8の中空部20a
の内部にも回転によって引きずりあげられた処理液が垂
れ下がり液膜105を形成する。また薄板円板7bも同
様に液膜107が形成されるが、さらに薄板円板7bに
設けられた小孔20bにも処理液が垂れ下がり液膜10
6を形成する。処理液はこのような液膜を形成しながら
大きな蒸発表面積と良好な表面更新作用によりさらに重
合度が上がり、処理液の粘度が高くなる。処理液粘度が
数百Pasになると次の高粘度用の撹拌ブロックで処理
される。高粘度用の撹拌ブロックは図8に示したような
車輪型の円板9の外周部にカキトリ板10aが取り付け
られている。このような車輪型円板9が水平方向に撹拌
強度部材5a,5b、5c、5dによって所定の間隔で
連結されている。このとき車輪型円板9の前後のカキト
リ板は10aと10bのように互い違いに設置され、カ
キトリ板の水平方向の長さは円板が回転したときにお互
いの先端部の軌跡が重なり合って槽内壁面全体を掻き取
るようになっている。図13に示すように数百Pasに
達した処理液93は撹拌翼の回転によりカキトリ板10
aによって液を持ち上げる。持ち上げられた処理液は回
転によって液が垂れ下がり液膜108を形成する。ま
た、このとき車輪型円板9の中空部にも液膜109が形
成され複雑な液面形状を創出する。処理液の粘度がさら
に上昇し数千Pasに達すると持ち上げられる液の量も
増大してくる。このような状態で回転数を早くすると処
理液が垂れ落ちる前に液を再び掻き上げてしまう供回り
現象を起こしてしまうので回転数は10rpm以下で運
転する必要がある。最適な運転範囲は処理液の粘度が高
いほど低くする必要があり、当方の実験では0.5から
6rpmの範囲が最適であった。以上のように撹拌及び
表面更新作用が繰り返されて重縮合反応が促進される。
そして反応により生成した揮発物は中空円板の中空部を
通って順次本体1内を長手方向に移動し、揮発物ノズル
14より系外に排出される。このようにして重合度が高
くなり高粘度となった被処理液は出口ノズル12より系
外に排出される。このとき高粘度となった処理液は出口
ノズル12の上部に溜まるが、撹拌ロータの支持部材2
b外径は撹拌ロータ4の外径より小さく構成されるので
支持部材2bには付着しない。また支持部材2bの本体
1の側面側にはカキトリ部材13a、13bが取り付け
られ処理液を本体外周部へ押しつけるので本体側壁面は
常にセルフクリーニングされ、付着滞留を防止してい
る。In such an apparatus, the inlet nozzle 11
The low-viscosity liquid to be treated (prepolymer) supplied more continuously and having a low degree of polymerization is first stirred in a low-viscosity stirring block shown in FIG. The viscosity of the processing liquid at this time is several Pas to several tens Pas. Low viscosity stirring block is hollow disk 8
The bucket is formed by the oyster plates 6a and 6b on the outer peripheral portion of.
When it rotates as shown in the figure, it operates to scoop up the processing liquid in the bucket. FIGS. 9 and 10 schematically show the flow state of the processing liquid at this time. Oyster board 6
Small gaps δ are formed at the bottoms of the buckets a and 6b. For this purpose, the low-viscosity processing liquid 91 is picked up by the bucket with the rotation of the stirring rotor (100 in FIG. 9), the bucket is tilted inward by the rotation, and the processing liquid flows out toward the inside (101 in FIG. 9), and also to the outside. Leak little by little (102 in FIG. 9), and apply the liquid film 1 to both the inside and outside of the bucket.
01 and 102 are formed. Further, the processing liquid 101 that has flowed inward is poured into the thin disk 7a provided at the tip of the inner bucket (103 in FIG. 10), and the surface of the thin disk 7a and the thin disk 7a and the thin disk 7a A thin liquid film is formed on both sides, and a wide evaporation surface area can be secured. These actions are repeated every time the bucket rotates, and a sufficient evaporation surface and a good surface renewal action can be obtained. At this time, the rotation speed is 0.5 to several rpm (10 rpm).
pm or less), a sufficiently good performance can be obtained, and a great effect can be obtained in reducing the power consumed by stirring. The by-product evaporated from the processing liquid passes through the hollow portion 20a of the hollow disk 8 and the hollow portion 20a of the thin disk 7a, and is discharged from the outlet nozzle 14 for volatile substances. The treatment liquid having passed a predetermined residence time in the low-viscosity stirring block raises the viscosity to about several tens Pas and reaches the next medium-viscosity stirring block. 6 and 7 show the detailed structure of the medium viscosity stirring blade block. The medium viscosity stirring blade block is composed of a hollow disk 8, a thin hollow disk 7b, and an oyster plate 6c, and has a hole diameter D1 of the hollow disk and a hole diameter D3 of the thin disk 7b.
Is determined so as to have an optimum diameter in accordance with the amount of the reaction by-product gas in the processing solution. The optimum diameter of the hole diameter D2 of the thin disk 7b is also determined according to the viscosity of the processing liquid and the amount of the reaction gas. As shown in FIGS. 11 and 12, the processing liquid 92 that has reached several tens Pas is lifted up by the oscillating plate 6c by rotation, and the oscillating plate is inclined by the rotation, so that the liquid hangs down to form a liquid film 104. The liquid film 104 hangs on the connection strength member 5a of the stirring rotor with rotation, and the liquid film is held for a long time. The hollow portion 20a of the hollow disk 8
The processing liquid dragged by the rotation also hangs down inside the liquid crystal to form a liquid film 105. The liquid film 107 is also formed on the thin disk 7b in the same manner, but the processing liquid further drips into the small holes 20b provided on the thin disk 7b.
6 is formed. While forming such a liquid film, the treatment liquid further increases the degree of polymerization due to a large evaporation surface area and a good surface renewal action, and the viscosity of the treatment liquid increases. When the viscosity of the treatment liquid reaches several hundred Pas, it is treated by the next high viscosity stirring block. In the stirring block for high viscosity, an oyster plate 10a is attached to an outer peripheral portion of a wheel-shaped disk 9 as shown in FIG. Such wheel-shaped discs 9 are connected in a horizontal direction at predetermined intervals by stirring strength members 5a, 5b, 5c, and 5d. At this time, the oyster plates before and after the wheel-shaped disk 9 are installed alternately as 10a and 10b. The entire inner wall is scraped. As shown in FIG. 13, the processing solution 93 having reached several hundred Pas is rotated by the stirring blades so that
Lift the liquid by a. The lifted processing liquid is dripped by rotation to form a liquid film 108. At this time, a liquid film 109 is also formed in the hollow portion of the wheel-shaped disc 9 to create a complicated liquid surface shape. When the viscosity of the processing liquid further increases and reaches several thousand Pas, the amount of the liquid lifted increases. If the number of revolutions is increased in such a state, a rotating phenomenon occurs in which the processing liquid is stirred up again before the treatment liquid drips. Therefore, it is necessary to operate at a number of revolutions of 10 rpm or less. The optimum operating range needs to be lowered as the viscosity of the processing solution increases, and in our experiments, the optimum range was 0.5 to 6 rpm. As described above, the stirring and the surface renewal action are repeated to promote the polycondensation reaction.
The volatiles generated by the reaction move sequentially in the longitudinal direction in the main body 1 through the hollow portion of the hollow disk and are discharged from the volatile matter nozzle 14 to the outside of the system. The liquid to be treated having a high degree of polymerization and a high viscosity is discharged from the outlet nozzle 12 to the outside of the system. At this time, the processing liquid having a high viscosity accumulates in the upper portion of the outlet nozzle 12, but the support member 2 of the stirring rotor 2
Since the outer diameter b is smaller than the outer diameter of the stirring rotor 4, it does not adhere to the support member 2b. Also, the oyster members 13a and 13b are attached to the side surface of the main body 1 of the support member 2b, and the processing liquid is pressed against the outer peripheral portion of the main body. Therefore, the side wall surface of the main body is always self-cleaned, thereby preventing the accumulation of adhesion.
【0010】このような装置でポリエチレンテレフタレ
−トを重合する場合には被処理液の中間重合物を入口ノ
ズル11より連続供給し、撹拌ロータ4で撹拌し表面を
更新して、重合反応で生じるエチレングリコール等の揮
発物を蒸発除去し、重縮合反応が進み高粘度の重合物と
なる。この間に分離したエチレングリコール等の揮発物
は出口ノズル14より排出される。この時の操作条件は
例えば液温度260〜300℃、圧力0.01〜10k
Pa、回転数1〜10rpmの範囲で行われる。そして
重合物は出口ノズル12より系外に排出される。この時
重合物は本体1内でほぼ完全なセルフクリーニング状態
で撹拌され、良好な表面更新を受けるので、滞留による
劣化もなく品質の良い製品重合物を効率良く得ることが
できる。同様にして本装置は、ポリエチレンナフタレー
ト、ポリアミド、ポリカーボネート等の重縮合系樹脂の
連続塊状重合に適用できる。また、図15の最終重合機
は図4に示した装置と基本構成は同一であるが、入口の
処理液粘度が比較的高い場合には低粘度翼の部分を省略
した装置の実施例について示したものである。また、高
粘度用の撹拌ブロックは車輪型形状の円板9を複数個適
当な間隔で設置し車輪型形状の円板9の外周部にカキト
リ板200を連結し、次の車輪型形状の円板9の間のカ
キトリ板200とは取付位置をずらして高粘度撹拌ブロ
ックを形成したものである。In the case of polymerizing polyethylene terephthalate with such an apparatus, an intermediate polymer of the liquid to be treated is continuously supplied from an inlet nozzle 11 and the surface is renewed by stirring with a stirring rotor 4 to carry out the polymerization reaction. The resulting volatile matter such as ethylene glycol is removed by evaporation, and the polycondensation reaction proceeds to form a polymer having a high viscosity. Volatile substances such as ethylene glycol separated during this time are discharged from the outlet nozzle 14. The operating conditions at this time are, for example, a liquid temperature of 260 to 300 ° C. and a pressure of 0.01 to 10 k.
It is performed in the range of Pa and the number of rotations of 1 to 10 rpm. Then, the polymer is discharged from the outlet nozzle 12 to the outside of the system. At this time, the polymer is stirred in the main body 1 in a substantially completely self-cleaning state and undergoes good surface renewal, so that a high quality product polymer can be efficiently obtained without deterioration due to stagnation. Similarly, the present apparatus can be applied to continuous bulk polymerization of polycondensation resins such as polyethylene naphthalate, polyamide, and polycarbonate. Although the final polymerization machine in FIG. 15 has the same basic configuration as the apparatus shown in FIG. 4, when the viscosity of the processing liquid at the inlet is relatively high, the embodiment of the apparatus in which the low-viscosity blade is omitted is shown. It is a thing. In addition, the stirring block for high viscosity is provided with a plurality of wheel-shaped disks 9 at appropriate intervals, and an oyster plate 200 is connected to the outer periphery of the wheel-shaped disks 9 to form the next wheel-shaped disk. The oscillating plate 200 between the plates 9 is such that a mounting position is shifted to form a high viscosity stirring block.
【0011】以上の装置構成においてポリエチレンテレ
フタレートを製造すると従来の装置構成と比較して、反
応器の数が減少しているために装置の経費が節約出来る
のと装置数の減少に伴い装置に付随する蒸留塔やコンデ
ンサーを減少させ、それらを連結する配管や計装部品や
バルブ類を大幅に節約できると共に真空源や熱媒装置等
のユーティリティ関係費が大幅に低下するのでランニン
グコストが安くなる利点がある。When polyethylene terephthalate is manufactured in the above-described apparatus configuration, the number of reactors is reduced as compared with the conventional apparatus configuration, so that the cost of the apparatus can be saved. The advantage is that the number of distillation columns and condensers to be used can be reduced, and piping, instrumentation parts, and valves that connect them can be greatly saved, and the running costs can be reduced because utility-related costs such as vacuum sources and heating medium devices are greatly reduced. There is.
【0012】[0012]
【発明の効果】本発明によれば、ポリエステルの連続製
造設備をエステル化工程、前重合工程、最終重合工程の
3つの反応器とすることにより、装置全体の効率を向上
し、工場設備のエネルギー節約により経済的に操作する
ものである。According to the present invention, the continuous production equipment for polyester is made up of three reactors of an esterification step, a pre-polymerization step and a final polymerization step, so that the efficiency of the whole apparatus is improved and the energy of the factory equipment is improved. It operates more economically with savings.
【図1】本発明によるポリエチレンテレフタレートの連
続製造プロセスの一実施例を示す構成図である。FIG. 1 is a configuration diagram showing one embodiment of a continuous production process of polyethylene terephthalate according to the present invention.
【図2】本発明による蒸発缶の一実施例を示す便宜的な
断面図である。FIG. 2 is a cross-sectional view for convenience showing an embodiment of the evaporator according to the present invention.
【図3】本発明の一実施例を示す縦断面正面図である。FIG. 3 is a longitudinal sectional front view showing one embodiment of the present invention.
【図4】本発明の一実施例を示す縦断面正面図である。FIG. 4 is a vertical sectional front view showing one embodiment of the present invention.
【図5】図4のA−A線断面図である。FIG. 5 is a sectional view taken along line AA of FIG. 4;
【図6】図1のB−B線断面図である。FIG. 6 is a sectional view taken along line BB of FIG. 1;
【図7】図4のC−C線断面図である。FIG. 7 is a sectional view taken along line CC of FIG. 4;
【図8】図4のD−D線断面図である。FIG. 8 is a sectional view taken along line DD of FIG. 4;
【図9】低粘度撹拌ブロックのバケット部の処理液の流
れの模式図である。FIG. 9 is a schematic diagram of a flow of a processing liquid in a bucket portion of a low-viscosity stirring block.
【図10】低粘度撹拌ブロックの薄板円板付近の処理液
の流れの模式図である。FIG. 10 is a schematic diagram of a flow of a processing liquid near a thin disk of a low-viscosity stirring block.
【図11】中粘度撹拌ブロックの中空円板付近の処理液
の流れの模式図である。FIG. 11 is a schematic diagram of a flow of a processing liquid near a hollow disk of a medium viscosity stirring block.
【図12】中粘度撹拌ブロックの薄板円板状の処理液の
流れの模式図である。FIG. 12 is a schematic diagram of a flow of a processing liquid in a thin disk shape of a medium viscosity stirring block.
【図13】高粘度撹拌ブロックの処理液の流れの模式図
である。FIG. 13 is a schematic diagram of a flow of a processing liquid in a high-viscosity stirring block.
【図14】図4のE−E線断面図である。FIG. 14 is a sectional view taken along line EE of FIG. 4;
【図15】本発明の一実施例を示す縦断面正面図であ
る。FIG. 15 is a longitudinal sectional front view showing one embodiment of the present invention.
1…容器本体、3a、3b…回転支持用の軸、4…撹拌
ロータ、5a、5b、5c、5d…撹拌ロータ構成用の
強度部材、2a、2b…ロータ支持部材、6a、6b、
6c…カキトリ板、7a、7b…薄板円板、8…中空円
板、9…車輪形円板、10、10a、10b…カキトリ
板、11…入口ノズル、12…出口ノズル、13a、1
3b…カキトリ部材、14…揮発物の出口ノズル、20
a、20b、20c…中空部、91、92、93…処理
液液面、100、101、102、103、104、1
05、106、107、109、110…液膜、200
…カキトリ板、31…原料調整槽、32…原料供給ライ
ン、33…エステル化反応槽、34…熱交換器、35…
気相部、36…連絡管、37…初期重合槽、38…熱交換
器、39…気相部、40…連絡管、41…最終重合機、42
…撹拌翼、43…ポリマー、44…撹拌動力源、51…蒸
発缶、52…被処理液、54…多管式熱交換器、56…
助走空間、62…円錐状部材、71…容器本体、72…
熱媒ジャケット、73…下降管、74…伝熱管、75…
螺旋状の邪魔板、76…揮発物分離空間、77…被処理
液の入口ノズル、78…被処理液の出口ノズル、79…
揮発物の出口ノズル。DESCRIPTION OF SYMBOLS 1 ... Container main body, 3a, 3b ... Rotation support shaft, 4 ... Stirring rotor, 5a, 5b, 5c, 5d ... Stirring member for stirring rotor construction, 2a, 2b ... Rotor support member, 6a, 6b,
6c: oyster plate, 7a, 7b: thin disk, 8: hollow disk, 9: wheel-shaped disk, 10, 10a, 10b: oyster plate, 11: inlet nozzle, 12: outlet nozzle, 13a, 1
3b ... Oyster member, 14 ... Volatile outlet nozzle, 20
a, 20b, 20c: hollow portion, 91, 92, 93: treatment liquid level, 100, 101, 102, 103, 104, 1
05, 106, 107, 109, 110 ... liquid film, 200
... Okitori plate, 31 ... Raw material adjusting tank, 32 ... Raw material supply line, 33 ... Esterification reaction tank, 34 ... Heat exchanger, 35 ...
Gas phase part, 36 ... Connecting pipe, 37 ... Initial polymerization tank, 38 ... Heat exchanger, 39 ... Gas phase part, 40 ... Connecting pipe, 41 ... Final polymerization machine, 42
... stirring blades, 43 ... polymer, 44 ... stirring power source, 51 ... evaporator, 52 ... liquid to be treated, 54 ... multi-tube heat exchanger, 56 ...
Running space, 62: conical member, 71: container body, 72 ...
Heat medium jacket, 73 ... downcomer, 74 ... heat transfer tube, 75 ...
Spiral baffle plate, 76: volatile matter separation space, 77: inlet nozzle of liquid to be treated, 78: outlet nozzle of liquid to be treated, 79 ...
Volatile outlet nozzle.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 宙夫 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (72)発明者 小田 親生 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroo Suzuki 794, Higashi-Toyoi, Kazamatsu, Kudamatsu, Yamaguchi Prefecture Inside the Kasado Plant of Hitachi, Ltd. Inside the Kasado Plant of Hitachi, Ltd.
Claims (18)
リコール類とを反応させて、平均重合度3から7以下の
オリゴエステルまたはポリエステルを製造する第1反応
器、該成生物を重縮合させて、平均重合度20から40
の低重合物を製造する第2反応器、該低重合物をさらに
重縮合させ、平均重合度90から180まで重縮合させ
高分子量ポリエステルを製造する第3反応器とを用いて
ポリエステルを製造する方法において、第1反応器と第
2反応器のうち少なくとも一つ以上の反応器は外部動力
源による撹拌機能を持たない反応器であることを特徴と
するポリエステルの連続製造方法。1. A first reactor for producing an oligoester or polyester having an average degree of polymerization of 3 to 7 or less by reacting an aromatic dicarboxylic acid or a derivative thereof with a glycol, Average degree of polymerization 20 to 40
A polyester is produced by using a second reactor for producing a low-polymerized product of the above, and a third reactor for further polycondensing the low-polymerized product and polycondensing from an average degree of polymerization of 90 to 180 to produce a high-molecular-weight polyester. In the method, at least one or more of the first and second reactors is a reactor having no stirring function by an external power source, and the method for continuous production of polyester.
リコール類とを反応させて、平均重合度3から7以下の
オリゴエステルまたはポリエステルを製造する第1反応
器、該成生物を重縮合させて、平均重合度20から40
の低重合物を製造する第2反応器、該低重合物をさらに
重縮合させ、平均重合度90から180まで重縮合させ
高分子量ポリエステルを製造する第3反応器とを用いて
ポリエステルを製造する方法において、第3反応器は横
形の円筒状容器本体長手方向の一端下部及び他端下部に
それぞれ被処理液の入口及び出口を有し、本体の上部に
揮発物の出口を持ち、本体内部の長手方向に本体の内側
に近接して回転する撹拌ロータを設けた装置とし、本体
内部の撹拌ロータが処理液の粘度に応じて複数個の撹拌
翼ブロックで構成され、撹拌ロータの中心部に回転シャ
フトを持たない撹袢翼をもった反応器であることを特徴
とするポリエステルの連続製造方法。2. A first reactor in which an aromatic dicarboxylic acid or a derivative thereof is reacted with a glycol to produce an oligoester or polyester having an average degree of polymerization of 3 to 7 or less. Average degree of polymerization 20 to 40
A polyester is produced by using a second reactor for producing a low-polymerized product of the above, and a third reactor for further polycondensing the low-polymerized product and polycondensing from an average degree of polymerization of 90 to 180 to produce a high-molecular-weight polyester. In the method, the third reactor has an inlet and an outlet for the liquid to be treated at one lower end and the lower end at the other end in the longitudinal direction of the horizontal cylindrical container body, has an outlet for volatiles at the upper part of the main body, A device equipped with a stirring rotor that rotates close to the inside of the main body in the longitudinal direction, and the stirring rotor inside the main body is composed of a plurality of stirring blade blocks according to the viscosity of the processing liquid, and rotates at the center of the stirring rotor. A continuous method for producing polyester, which is a reactor having a stirring blade without a shaft.
続製造方法において、原料である芳香族ジカルボン酸ま
たはその誘導体とグリコール類とのモル比が1:1.0
5〜1:2.0の範囲で供給し、第1反応器の温度は2
40度〜285度、圧力は大気圧から3×105Pa、
第2反応器の温度は250度〜290度、圧力は大気圧
から133Pa、第3反応器の温度は270度〜290
度、圧力は200から13.3Paの範囲で運転するこ
とを特徴とするポリエステルの連続製造方法。3. The method for continuously producing a polyester according to claim 1, wherein the molar ratio of the aromatic dicarboxylic acid or its derivative as a raw material to the glycol is 1: 1.0.
5 to 1: 2.0, and the temperature of the first reactor is 2
40 degrees to 285 degrees, the pressure is 3 × 10 5 Pa from atmospheric pressure,
The temperature of the second reactor is 250 to 290 degrees, the pressure is 133 Pa from the atmospheric pressure, and the temperature of the third reactor is 270 to 290.
A method for continuously producing a polyester, wherein the method is operated at a temperature and pressure in the range of 200 to 13.3 Pa.
法において、第3反応器の撹袢翼の回転数範囲を0.5
rpmから10rpmであることを特徴とするポリエス
テルの連続製造方法。4. A continuous production method of a polyester according to claim 3, wherein the rotation speed of the stirring blade of the third reactor is 0.5.
A continuous method for producing polyester, wherein the speed is from 10 rpm to 10 rpm.
続製造方法において、第1反応器、第2反応器、第3反
応器の合計反応時間が4から8時間の間で運転すること
を特徴とするポリエステルの連続製造方法。5. The method for continuously producing polyester according to claim 1, wherein the total reaction time of the first reactor, the second reactor, and the third reactor is operated between 4 and 8 hours. Continuous production method of polyester.
リコール類とを反応させて、平均重合度3から7以下の
オリゴエステルまたはポリエステルを製造する第1反応
器と、該成生物を重縮合させて、平均重合度20から4
0の低重合物を製造する第2反応器と、該低重合物をさ
らに重縮合させ、平均重合度90から180まで重縮合
させ高分子量ポリエステルを製造する第3反応器とから
なり、第1反応器と第2反応器のうち少なくとも一つ以
上の反応器は外部動力源による撹拌機能を持たない反応
器であることを特徴とするポリエステルの連続製造装
置。6. A first reactor for producing an oligoester or polyester having an average degree of polymerization of 3 to 7 or less by reacting an aromatic dicarboxylic acid or a derivative thereof with a glycol, and polycondensing the product. , Average degree of polymerization 20 to 4
And a third reactor for producing a high-molecular-weight polyester by subjecting the low-polymerized product to further polycondensation and polycondensing from an average degree of polymerization of 90 to 180 to produce a high-molecular-weight polyester. At least one reactor of the reactor and the second reactor is a reactor having no stirring function by an external power source, and is a continuous production apparatus for polyester.
リコール類とを反応させて、平均重合度3から7以下の
オリゴエステルまたはポリエステルを製造する第1反応
器と、該成生物を重縮合させて、平均重合度20から4
0の低重合物を製造する第2反応器と、該低重合物をさ
らに重縮合させ、平均重合度90から180まで重縮合
させ高分子量ポリエステルを製造する第3反応器とから
なり、この第3反応器は横形の円筒状容器本体長手方向
の一端下部及び他端下部にそれぞれ被処理液の入口及び
出口を有し、本体の上部に揮発物の出口を持ち、本体内
部の長手方向に本体の内側に近接して回転する撹拌ロー
タを設けた装置とし、本体内部の撹拌ロータが処理液の
粘度に応じて複数個の撹拌翼ブロックで構成され、撹拌
ロータの中心部に回転シャフトを持たない撹袢翼をもっ
た反応器であることを特徴とするポリエステルの連続製
造装置。7. A first reactor for producing an oligoester or polyester having an average degree of polymerization of 3 to 7 or less by reacting an aromatic dicarboxylic acid or a derivative thereof with a glycol, and polycondensing the resulting product. , Average degree of polymerization 20 to 4
And a third reactor for producing a high-molecular-weight polyester by polycondensing the low-polymer and further polycondensing the average polymerization degree from 90 to 180. The three reactors have an inlet and an outlet for the liquid to be treated at one end lower part and the other end lower part in the longitudinal direction of the horizontal cylindrical container body, respectively, have an outlet for volatile substances at the upper part of the body, and have a main body in the longitudinal direction inside the body. The stirring rotor inside the main body is provided with a plurality of stirring blade blocks according to the viscosity of the processing liquid, and does not have a rotating shaft at the center of the stirring rotor. A continuous production apparatus for polyester, which is a reactor having stirring blades.
誘導体とグリコール類とのモル比が1:1.05〜1:
2.0の範囲の混合物が供給され、温度は240度〜2
85度、圧力は大気圧から3×105Paの条件下で反
応が行われる第1反応器と、該第1反応器からの反応物
が供給され、温度は250度〜290度、圧力は大気圧
から133Paの条件下で反応が行われる第2反応器
と、該第2反応器からの反応物が供給され、温度は27
0度〜290度、圧力は200から13.3Paの条件
下で反応が行われる3反応器とからなることを特徴とす
るポリエステルの連続製造装置。8. The molar ratio of the starting material aromatic dicarboxylic acid or derivative thereof to glycols is from 1: 1.05 to 1: 1.
A mixture in the range of 2.0 is supplied, and the temperature is between 240 ° C and 2 ° C.
A first reactor in which a reaction is performed at a temperature of 85 ° C. and a pressure of 3 × 10 5 Pa from the atmospheric pressure, and a reactant from the first reactor are supplied. The temperature is 250 to 290 ° C., and the pressure is A second reactor in which the reaction is carried out under a condition of from atmospheric pressure to 133 Pa, a reactant from the second reactor, and a temperature of 27
An apparatus for continuously producing polyester, comprising: three reactors in which a reaction is performed under the conditions of 0 to 290 degrees and a pressure of 200 to 13.3 Pa.
リコール類とから高分子量ポリエステルを製造するプロ
セスの最終反応段に用いられ、横形の円筒状容器本体長
手方向の一端下部及び他端下部にそれぞれ被処理液の入
口及び出口を有し、本体の上部に揮発物の出口を持ち、
本体内部の長手方向に本体の内側に近接して回転する撹
拌ロータを設けた装置とし、本体内部の撹拌ロータが処
理液の粘度に応じて複数個の撹拌翼ブロックで構成さ
れ、撹拌ロータの中心部に回転シャフトを持たない撹袢
翼を有することを特徴とするポリエステル連続製造用反
応器。9. A process for producing a high-molecular-weight polyester from an aromatic dicarboxylic acid or a derivative thereof and a glycol, which is used in a final reaction stage, and is covered at one lower end and at the lower end in the longitudinal direction of a horizontal cylindrical container body, respectively. It has an inlet and an outlet for the processing liquid, and has an outlet for volatiles at the top of the main body,
A device provided with a stirring rotor that rotates close to the inside of the main body in the longitudinal direction inside the main body, wherein the stirring rotor inside the main body is composed of a plurality of stirring blade blocks according to the viscosity of the processing liquid, and the center of the stirring rotor is A reactor for continuous production of polyester, comprising a stirring blade having no rotating shaft in a part.
グリコール類とから高分子量ポリエステルを製造するプ
ロセスの最終反応段に用いられ、実質的に横型の円筒状
容器本体長手方向の一端下部及び他端下部にそれぞれ被
処理液の入口及び出口を有し、本体の上部に揮発物の出
口を持ち、本体内部の長手方向に本体の内側に近接して
回転する撹拌ロータを設けた装置の本体内部の撹拌ロー
タは処理液の粘度に応じて複数個の撹拌翼ブロックで構
成され、撹拌ロータの中心部に回転シャフトを持たない
撹拌ロータにおいて両端側の動力伝達軸と撹拌ロータ部
を連結する端板の外径を撹拌ロータの外径より小さくし
たことを特徴とするポリエステル連続製造用反応器。10. A lower end and a lower end of a substantially horizontal cylindrical container body used in a final reaction stage of a process for producing a high molecular weight polyester from an aromatic dicarboxylic acid or a derivative thereof and a glycol. The inside of the main body of the device having a stirring rotor which has an inlet and an outlet for the liquid to be treated, has an outlet for volatile substances at the top of the main body, and rotates in the longitudinal direction inside the main body and close to the inside of the main body. The rotor is composed of a plurality of stirring blade blocks in accordance with the viscosity of the processing liquid, and a stirring rotor having no rotating shaft at the center of the stirring rotor has an outer end plate connecting the power transmission shafts at both ends and the stirring rotor section. A reactor for continuous production of polyester characterized in that the diameter is smaller than the outer diameter of the stirring rotor.
入口側に低粘度撹拌用として複数個連結された撹拌ブロ
ックが設けられ、各撹拌ブロックは、両端に設けられた
中空の円板と、円板の外周部に設けられ、はカキトリ板
により処理液をすくい上げるバケット部と、カキトリ板
の内周側端面に近接してされた中空の薄板円板とからな
り、翼の回転によってバケット部に溜まった処理液が中
空の薄板円板に注がれて、液膜が薄板の円板間に形成さ
れる構造を有することを特徴とするポリエステル連続製
造用反応器。11. The reactor according to claim 10, wherein a plurality of stirring blocks connected for low-viscosity stirring are provided on the inlet side, and each stirring block has a hollow disk provided at both ends; The bucket is provided on the outer periphery of the disk, and comprises a bucket portion for scooping up the processing liquid by the oyster plate, and a hollow thin disk placed close to the inner peripheral end surface of the oyster plate. A reactor for continuous production of polyester, having a structure in which a pooled treatment liquid is poured into a hollow thin disk and a liquid film is formed between the thin disks.
バケット部は底部側のカキトリ板の水平方向の結合部に
処理液が流出する孔或いはわずかの隙間が設けられるこ
とを特徴とするポリエステル連続製造用反応器。12. The polyester continuous as claimed in claim 11, wherein said bucket portion is provided with a hole or a slight gap through which a processing liquid flows out at a horizontal joint portion of the bottom plate. Production reactor.
度撹拌用として複数個連結された撹拌ブロックが設けら
れ、各撹拌ブロックは、両端に設けられた中空の円板
と、円板の外周部に複数個放射状に設けられたカキトリ
板と、さらに中空円板の間に複数個設けられた円板の外
周と同一の大きさの中空薄板とからなり、該薄板には小
円孔が複数個形成されることを特徴とするポリエステル
連続製造用反応器。13. The reactor according to claim 10, further comprising a plurality of connected stirring blocks for medium viscosity stirring, wherein each of the stirring blocks has a hollow disk provided at both ends and an outer periphery of the disk. The part consists of a plurality of oyster plates provided radially, and a hollow thin plate having the same size as the outer periphery of the plurality of disks provided between the hollow disks, and a plurality of small circular holes are formed in the thin plate. A reactor for continuous production of polyester.
度撹拌用として撹拌ブロックが設けられ、この撹拌ブロ
ックは、複数個水平方向に配置されたカキトリ板付きの
車輪形状の円板とからなり、前後のカキトリ板の取り付
け位置を互い違いに設置されることを特徴とするポリエ
ステル連続製造用反応器。14. A reactor according to claim 10, wherein a stirring block is provided for high-viscosity stirring, and the stirring block comprises a plurality of wheel-shaped disks with an oyster plate arranged horizontally. And a reactor for continuous production of polyester, wherein the front and rear oyster plates are attached alternately.
ロータ部を連結する高粘度側の支持部材の外径は撹拌ロ
ータの外径より小さくされ、該支持部材の側面と槽内端
面の間に槽内壁面を近接して回転し、回転することによ
り壁面付近に付着した処理液を槽外周部へ送り出すよう
に配置されたカキトリ翼が設けられることを特徴とする
ポリエステル連続製造用反応器。15. The reactor according to claim 10, wherein the outer diameter of the high-viscosity side supporting member connecting the stirring rotor portion is smaller than the outer diameter of the stirring rotor, and between the side surface of the supporting member and the inner end surface of the tank. A reactor for continuous production of polyester, which is provided with an oscillating blade which is arranged so as to rotate the inner wall surface of the tank close to the tank and to send out the processing liquid attached near the wall surface to the outer periphery of the tank by rotating.
的に横型の円筒状容器本体長手方向の一端及び他端にそ
れぞれ被処理液の入口及び出口が設けられ、本体の上部
に揮発物の出口が設けられ、本体内部の長手方向に本体
の内側に近接して回転する撹拌ロータが設けられ、この
撹拌ロータは処理液の粘度に応じて複数個の撹拌翼ブロ
ックで構成され、高粘度側の撹拌翼ブロックを構成する
各々の仕切り円板間の外周カキトリ板を連結し、撹拌ロ
ータの中心部に回転シャフトを持たない撹拌ロータにお
いて端部側の動力伝達軸と撹拌ロータ部を連結する端板
の外径を撹拌ロータの外径より小さくすることを特徴と
するポリエステル連続製造用反応器。16. The reactor according to claim 10, wherein an inlet and an outlet for the liquid to be treated are provided at one end and the other end of the substantially horizontal cylindrical container main body in the longitudinal direction, respectively. An outlet is provided, and a stirring rotor that rotates close to the inside of the main body in the longitudinal direction of the inside of the main body is provided. The stirring rotor is configured by a plurality of stirring blade blocks according to the viscosity of the processing liquid. An end connecting the outer peripheral plate between the respective partition disks constituting the stirring blade block, and connecting the power transmission shaft on the end side and the stirring rotor portion in the stirring rotor having no rotating shaft at the center of the stirring rotor. A reactor for continuous production of polyester, wherein the outer diameter of the plate is smaller than the outer diameter of the stirring rotor.
グリコール類とから高分子量ポリエステルを製造するプ
ロセスの中間反応段に用いられ、実質的に竪型の円筒状
容器本体長手方向の一端下部側面及び下部中央にそれぞ
れ被処理液の入口及び出口を有し、本体の上部に揮発物
の出口を持ち本体外側を熱媒ジャケットで覆った装置に
おいて、本体内下部に熱交換部を設け、本体内中部に被
処理液を保持し順次下から上に移動させる螺旋状の邪魔
板を持つ滞留部を設け、本体内上部に気液分離のための
空間を設け、本体内中央部上下方向に被処理液を薄膜流
下させる下降管を設けたことを特徴とするポリエステル
連続製造用反応器。17. A side wall and a lower part at one end in a longitudinal direction of a substantially vertical cylindrical container main body, which is used in an intermediate reaction stage of a process for producing a high molecular weight polyester from an aromatic dicarboxylic acid or a derivative thereof and a glycol. In a device having an inlet and an outlet for the liquid to be treated at the center, a volatile substance outlet at the top of the main body, and the outside of the main body covered with a heat medium jacket, a heat exchange section is provided at the lower portion inside the main body, and at the middle inside the main body. A stagnation portion having a spiral baffle plate for holding the liquid to be treated and moving it sequentially from below is provided, a space for gas-liquid separation is provided in the upper part of the main body, and the liquid to be treated is vertically moved in the central part in the main body. A reactor for continuous production of polyester, comprising a downcomer for flowing down a thin film.
グリコール類とから高分子量ポリエステルを製造するプ
ロセスの初段反応段に用いられ、立形の円筒容器本体に
被処理液の入口及び出口を設け、上部には蒸気を排出す
るベーパー管を設け、前記円筒容器本体を熱媒ジャケッ
トで覆い、前記円筒容器本体の内部に管外側を熱媒によ
り加熱され、管内側に被処理液が上昇する多管式熱交換
器を内蔵した自然循環式蒸発缶において、前記円筒容器
本体の内壁と前記多管式熱交換器のシェルの外壁の間を
自然対流により流下する被処理液の平均速度が前記多管
式熱交換器の管内側を上昇する被処理液の平均流速より
も小さくし且つ前記多管式熱交換器の外側のシェル下部
に内部循環する被処理液を一様に流入させるための助走
空間をけたことを特徴とする自然循環式蒸発缶。18. A process for producing a high-molecular-weight polyester from an aromatic dicarboxylic acid or a derivative thereof and a glycol, which is used in the first reaction stage, wherein a vertical cylindrical container body is provided with an inlet and an outlet for a liquid to be treated. A multi-tube type in which a vapor tube for discharging steam is provided, the cylindrical container body is covered with a heat medium jacket, and the outside of the tube is heated by a heat medium inside the cylindrical container body, and the liquid to be treated rises inside the tube. In the natural circulation type evaporator having a built-in heat exchanger, the average velocity of the liquid to be treated flowing down by natural convection between the inner wall of the cylindrical container body and the outer wall of the shell of the multitubular heat exchanger is the multitubular type. An approach space for uniformly lowering the liquid to be treated, which is lower than the average flow rate of the liquid to be treated ascending inside the tubes of the heat exchanger and which is internally circulated in the lower part of the shell outside the multi-tube heat exchanger, is provided. That Natural circulation evaporator to the butterflies.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25470997A JP3489408B2 (en) | 1997-09-19 | 1997-09-19 | Continuous polyester production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25470997A JP3489408B2 (en) | 1997-09-19 | 1997-09-19 | Continuous polyester production equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003322375A Division JP3722138B2 (en) | 2003-09-16 | 2003-09-16 | Continuous polycondensation apparatus and continuous polycondensation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1192555A true JPH1192555A (en) | 1999-04-06 |
JP3489408B2 JP3489408B2 (en) | 2004-01-19 |
Family
ID=17268765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25470997A Expired - Lifetime JP3489408B2 (en) | 1997-09-19 | 1997-09-19 | Continuous polyester production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3489408B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000302874A (en) * | 1999-04-22 | 2000-10-31 | Teijin Ltd | Horizontal reactor |
WO2002066386A1 (en) * | 2001-02-23 | 2002-08-29 | Aquarius Ventures International, Ltd. | Process for selective refining of the di-hydrol polymer by temperature and pressure conditions below the critical point of water |
JP2004002902A (en) * | 2000-03-09 | 2004-01-08 | Hitachi Ltd | Method and apparatus for producing polybutylene terephthalate |
US6703454B2 (en) | 2000-12-07 | 2004-03-09 | Eastman Chemical Company | Adsorber system to replace water column in a polyester process |
JP2006328374A (en) * | 2005-04-26 | 2006-12-07 | Mitsubishi Chemicals Corp | Manufacturing method of polyester |
-
1997
- 1997-09-19 JP JP25470997A patent/JP3489408B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000302874A (en) * | 1999-04-22 | 2000-10-31 | Teijin Ltd | Horizontal reactor |
JP2004002902A (en) * | 2000-03-09 | 2004-01-08 | Hitachi Ltd | Method and apparatus for producing polybutylene terephthalate |
US6703454B2 (en) | 2000-12-07 | 2004-03-09 | Eastman Chemical Company | Adsorber system to replace water column in a polyester process |
WO2002066386A1 (en) * | 2001-02-23 | 2002-08-29 | Aquarius Ventures International, Ltd. | Process for selective refining of the di-hydrol polymer by temperature and pressure conditions below the critical point of water |
JP2006328374A (en) * | 2005-04-26 | 2006-12-07 | Mitsubishi Chemicals Corp | Manufacturing method of polyester |
Also Published As
Publication number | Publication date |
---|---|
JP3489408B2 (en) | 2004-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6096838A (en) | Method and apparatus for continuous polycondensation | |
JP3909357B2 (en) | Continuous production apparatus and reaction apparatus for polybutylene terephthalate | |
US8252888B2 (en) | Process for continuous preparation of high molecular weight polyesters by esterification of dicarboxylic acids and/or transesterification of dicarboxylic acids with diols and/or mixtures thereof and an apparatus therefor | |
CN1237091C (en) | Preparation method of poly-p-dioctyl phthalate butanediol ester and its manufacturing device | |
JP3489408B2 (en) | Continuous polyester production equipment | |
JP3722138B2 (en) | Continuous polycondensation apparatus and continuous polycondensation method | |
US4432940A (en) | Reactor | |
JP3713894B2 (en) | Method and apparatus for producing polyethylene terephthalate | |
CN101077907B (en) | Method and apparatus for continuous polycondensation | |
JP4599976B2 (en) | Polybutylene terephthalate production apparatus and method | |
WO2007098637A1 (en) | A prepolycondensation reactor | |
JP2000344874A (en) | Method and apparatus for producing polybutylene terephthalate | |
JPH0987392A (en) | Continuous production apparatus for polycondensation polymer and production process therefor | |
MXPA99002101A (en) | Method and apparatus for continuous polycondensation | |
JP2011116915A (en) | Polymerizer of polyester | |
JP5115512B2 (en) | Polyester production equipment | |
JPH11335453A (en) | Production of poly(ethylene terethalate) and manufacturing equipment | |
JP3736008B2 (en) | Forced circulation evaporator | |
JPH093200A (en) | Apparatus for continuous production of polycondensation polymer and method therefor | |
JP2000169574A (en) | Process and apparatus for manufacturing poycarbonate | |
JP2010248531A (en) | Apparatus for producing polybutylene terephthalate, and method therefor | |
JPH08311107A (en) | Continuous production apparatus and production process for polytcondensation type polymer | |
JPH11302366A (en) | Production of polyethylene terephthalate and apparatus for the production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |