JP2004002902A - Method and apparatus for producing polybutylene terephthalate - Google Patents

Method and apparatus for producing polybutylene terephthalate Download PDF

Info

Publication number
JP2004002902A
JP2004002902A JP2003322376A JP2003322376A JP2004002902A JP 2004002902 A JP2004002902 A JP 2004002902A JP 2003322376 A JP2003322376 A JP 2003322376A JP 2003322376 A JP2003322376 A JP 2003322376A JP 2004002902 A JP2004002902 A JP 2004002902A
Authority
JP
Japan
Prior art keywords
reactor
polymerization
main body
stirring
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003322376A
Other languages
Japanese (ja)
Inventor
Hidekazu Nakamoto
中元 英和
Susumu Harada
原田  進
Norifumi Maeda
前田 法史
Shuji Yamaguchi
山口 修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003322376A priority Critical patent/JP2004002902A/en
Publication of JP2004002902A publication Critical patent/JP2004002902A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for continuously producing a polybutylene terephthalate (PBT) which keeps the number of reactors necessary for the reaction to a minimum and minimizes the agitation consumption power necessary for the reaction. <P>SOLUTION: The apparatus for producing a polybutylene terephthalte (PBT) shall have a total of three reactors of one esterification reactor, one initial polymerization reactor and one final polymerization reactor, and the esterification reactor and the initial polymerization reactor shall have no external agitation power source, and the final polymerization reactor shall be a reactor of the horizontal-uniaxial low-speed rotation type. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明はポリブチレンテレフタレート,ポリエチレンテレフタレート等のポリエステル系高分子の連続製造方法および装置に関するものである。 The present invention relates to a method and apparatus for continuously producing polyester-based polymers such as polybutylene terephthalate and polyethylene terephthalate.

 ポリブチレンテレフタレート(以下PBTと記す)樹脂は結晶化特性に優れ、機械的性質,電気特性,耐熱性などが優れているため近年、電機,電子部品,機械部品,自動車用途等に適用され、着実に需要を伸ばしている。 Polybutylene terephthalate (hereinafter abbreviated as PBT) resin has excellent crystallization properties and excellent mechanical properties, electrical properties, heat resistance, etc., and has recently been applied to electrical equipment, electronic parts, mechanical parts, automotive applications, etc. Demand is growing.

 従来、一般的なPBTの製造方法としては原料としてジメチルテレフタレートを主成分とするテレフタル酸ジアルキルエステルと1,4−ブタンジオール(以下、BDと記す)を主成分とするグリコールを適当な割合で混合槽に入れ、エステル交換触媒を添加,調整した後、ポンプにより所定の反応温度に設定されたエステル交換反応槽へ送る。 Conventionally, as a general method for producing PBT, a dialkyl terephthalate having dimethyl terephthalate as a main component and a glycol having 1,4-butanediol (hereinafter referred to as BD) as a main component are mixed at an appropriate ratio as raw materials. The mixture is placed in a tank, the transesterification catalyst is added and adjusted, and then sent to a transesterification reaction tank set at a predetermined reaction temperature by a pump.

 このエステル交換反応は撹拌翼付きの撹拌槽を2から3個直列に配置し、副反応物としてでるメタノールとBDの分解により生成されるテトラヒドロフラン(以下、THFと記す)と水とを蒸留塔で分離する。次に重合触媒を添加し重合反応工程へ行く。まず、前重合工程として立形撹拌槽や横形の撹拌槽が複数台設置され、さらに最終重合工程として横形の撹拌槽が設置されている。これらの重合工程の槽には副反応物として出るBD,THF,水を除去するためにコンデンサーが設置され、高温度の減圧雰囲気で運転される。 In this transesterification reaction, two to three stirring tanks with stirring blades are arranged in series, and methanol, which is a by-product, tetrahydrofuran (hereinafter referred to as THF) generated by decomposition of BD and water are distilled in a distillation column. To separate. Next, a polymerization catalyst is added and the process proceeds to a polymerization reaction step. First, a plurality of vertical stirring tanks and horizontal stirring tanks are installed as a pre-polymerization step, and a horizontal stirring tank is installed as a final polymerization step. Condensers are installed in the tanks of these polymerization steps to remove BD, THF, and water that are produced as by-products, and the tanks are operated in a high-temperature, reduced-pressure atmosphere.

 従来のPBTの連続製造工程では反応槽の数が4から6缶あり、それぞれの反応槽には撹拌翼とその動力源が装備され、また副反応物を分離除去するための蒸留塔やコンデンサーが設置されている。これらの製造工程では高温度の反応状態に長時間さらされるので、重合反応した樹脂の一部は熱分解反応により結合部が断裂して重合度が低下し、樹脂の酸価(ポリマー末端基のカルボキシル基濃度)が上昇し、品質が悪化する。さらに重合工程は減圧雰囲気で運転されるために真空手段は別の装置によって操作する必要があり、製造装置の運転には高額の維持費と装置経費を必要としている。 In the conventional continuous production process of PBT, the number of reactors is 4 to 6 cans, each reactor is equipped with a stirring blade and its power source, and a distillation column and condenser for separating and removing by-products are installed. is set up. In these manufacturing processes, the resin is exposed to a high-temperature reaction state for a long time, so that a part of the polymerized resin is broken by a thermal decomposition reaction so that the degree of polymerization is reduced, and the acid value of the resin (polymer end group Carboxyl group concentration), and the quality deteriorates. Further, since the polymerization step is operated in a reduced-pressure atmosphere, the vacuum means must be operated by another apparatus, and the operation of the production apparatus requires high maintenance costs and equipment costs.

 この種の従来技術として特開昭52−51495号公報が挙げられる。 従 来 Japanese Patent Application Laid-Open No. 52-51495 is known as this kind of prior art.

特開昭52−51495号公報JP-A-52-51495

 本発明の問題は高分子量ポリブチレンテレフタレートの生産のための公知の方法を改善するものであり、装置全体の効率を向上し、工場設備のエネルギー節約により経済的に操作するものである。 The problem of the present invention is to improve the known process for the production of high molecular weight polybutylene terephthalate, to increase the efficiency of the whole apparatus and to operate more economically by saving energy of factory equipment.

 本発明の目的は、上記従来技術を改善し、必要最小限の反応器構成により、樹脂が製造中に受ける熱分解を押さえ、最少のエネルギーで熱安定性に優れた成形性の良い重合物や耐加水分解性に優れた樹脂を効率良く反応させる連続重縮合装置及び連続重縮合方法を提供することにある。 An object of the present invention is to improve the above-mentioned conventional technology and to suppress the thermal decomposition of the resin during the production by the minimum necessary reactor configuration, to obtain a polymer having good moldability and excellent thermal stability with minimum energy. An object of the present invention is to provide a continuous polycondensation apparatus and a continuous polycondensation method for efficiently reacting a resin having excellent hydrolysis resistance.

 上記目的は、PBT製造の原料をテレフタル酸(以下、TPAと記す)とBDとし、直接エステル化反応工程,重合反応工程を3つあるいは4つの反応槽で構成し、撹拌動力を必要とする槽を最少とし、滞留時間を短縮することにより樹脂の製造中にうける高温の熱履歴を最少とし、樹脂中に未反応の末端カルボキシル基を減少させることによって達成される。 The above objective is to use terephthalic acid (hereinafter referred to as TPA) and BD as raw materials for PBT production, a direct esterification reaction step and a polymerization reaction step composed of three or four reaction tanks, and a tank requiring stirring power. This is achieved by minimizing the thermal history of the high temperatures experienced during resin production by reducing the residence time and reducing the unreacted terminal carboxyl groups in the resin.

 必要最小限の反応器構成により、最少のエネルギーコストで品質の良いPBT重合物を効率良く生産することができる。 に よ り With the minimum required reactor configuration, high quality PBT polymer can be efficiently produced with minimum energy cost.

 本発明によれば、PBTの連続製造設備を直接エステル化工程を1つ、初期重合工程,最終重合工程の合計3つの反応器とすることにより、装置全体の効率を向上し、製造設備のエネルギー節約により経済的に操作するものである。 ADVANTAGE OF THE INVENTION According to this invention, the efficiency of the whole apparatus is improved by making the continuous production apparatus of PBT into one reactor of a direct esterification process and three reactors of an initial polymerization process and a final polymerization process, and the energy of the production equipment is improved. It operates more economically with savings.

 本発明によれば、PBTの連続製造設備を直接エステル化工程を1つ、初期重合工程,最終重合工程の合計3つの反応器に高粘度処理用の反応器を追加することにより、塊状重合処理で高重合度のPBTを製造でき、製造設備のエネルギー節約となる。 According to the present invention, a bulk polymerization treatment is performed by adding a reactor for high viscosity treatment to a total of three reactors of a direct esterification process and a total of three reactors of an initial polymerization process and a final polymerization process. Can produce a PBT having a high degree of polymerization, thereby saving energy in production equipment.

 さらに、本発明によれば、PBTの連続製造設備の第2反応器以降を高重合度の製造ラインとそれより低い重合度の製造ラインに分岐することにより、多品種のPBTを製造可能となる。また、これらの品種の生産量の調整も可能となり、経済的にPBTの連続製造設備を運転可能となる。 Further, according to the present invention, a wide variety of PBTs can be produced by branching the second and subsequent reactors of the PBT continuous production facility into a high polymerization degree production line and a lower polymerization degree production line. . In addition, the production amount of these varieties can be adjusted, and the PBT continuous production facility can be operated economically.

 本発明の典型的な態様を下記する、すなわち、
(1)テレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類とを反応させて、平均重合度2.2 から5以下のオリゴマーを製造する第1反応器、第1反応器からのオリゴマーを重縮合させて、平均重合度25から40の低重合物を製造する第2反応器、第2反応器からの低重合ポリマーをさらに重縮合させ、平均重合度70から130まで重縮合させ、熱安定性が良く耐加水分解性の優れた高分子量ポリエステルを製造する第3反応器とから成るポリブチレンテレフタレートの連続製造装置、またはテレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類とを反応させて、平均重合度2.2 から5以下のオリゴマーを製造する第1反応器、該成生物を重縮合させて、平均重合度25から40の低重合物を製造する第2反応器、該低重合物をさらに平均重合度70から130まで重縮合させ高分子量ポリエステルを製造する第3反応器、該ポリエステルを平均重合度150から200まで重縮合させ、熱安定性が良く耐加水分解性の優れた高分子量ポリエステルを製造する第4反応器から成る、ポリブチレンテレフタレートの連続製造装置において、
(i)第1反応器と第2反応器は外部動力源による撹拌機能を持たない反応器を使用しないこと。
(ii)第1反応器は概略円筒状容器形の反応器で、容器本体の下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物及び反応副生物が流通する開口部を持ち、容器本体内の長手方向に本体の内壁に近接して形成するカランドリヤ式の熱交換器を処理液中に浸漬するように設けた装置とし、容器本体下部より供給された処理液は熱交換器により所定の反応温度に加熱され、その際に生成する揮発性の副生成物ガスと処理液の温度差により生じる密度差によって容器内を自然対流して撹拌,混合すること。
(iii)第2反応器は概略円筒状容器形の流通式反応器であり、容器内に内筒開口部を持つ二重円筒構造を有し、該二重円筒構造の下部に被処理液の入口を有し、処理液はその上部に設けられた二重円筒状構造の内筒の外側の多管式熱交換器の管側を通って所定の反応温度に加熱され容器本体上方に流動して内管開口レベルに到達し、内筒を流下し、本体の上部には揮発物及び反応副生物が流通する開口部を設けてあること。
(iv)第8反応器は横形の円筒状容器形の反応器で、その容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータを設けてあり、本体内部の撹拌ロータが処理液の粘度に応じて複数個の撹拌翼ブロックで構成され、撹拌翼は撹拌ロータの中心部に回転シャフトを持たないこと。
(v)第4反応器は横形の概略円筒状容器形の反応器でその容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータより構成され、ロータはそれぞれ撹拌翼をもっていることを特徴とする。
Exemplary embodiments of the present invention are described below:
(1) An oligomer having an average degree of polymerization of 2.2 to 5 or less is produced by reacting an aromatic dicarboxylic acid containing terephthalic acid as a main component or a derivative thereof with a glycol containing 1,4-butanediol as a main component. The second reactor, which produces a low polymer having an average degree of polymerization of 25 to 40 by polycondensing the oligomer from the first reactor and the first reactor, and further polycondensing the low polymer from the second reactor A polybutylene terephthalate continuous production apparatus comprising a third reactor for producing a high molecular weight polyester having good thermal stability and excellent hydrolysis resistance, which is subjected to polycondensation from an average degree of polymerization of 70 to 130, or a terephthalic acid. An aromatic dicarboxylic acid or its derivative as a main component is reacted with a glycol as a main component in 1,4-butanediol to form an orifice having an average degree of polymerization of 2.2 to 5 or less. A first reactor for producing sesame; a second reactor for producing a low polymer having an average degree of polymerization of 25 to 40 by polycondensing the product; and further polymerizing the low polymer to an average degree of polymerization of 70 to 130. A third reactor for producing a high molecular weight polyester by condensation and a fourth reactor for producing a high molecular weight polyester having good thermal stability and excellent hydrolysis resistance by polycondensing the polyester with an average degree of polymerization of 150 to 200; In the continuous production apparatus of polybutylene terephthalate comprising
(I) Do not use a reactor having an agitation function by an external power source for the first and second reactors.
(Ii) The first reactor is a substantially cylindrical vessel-shaped reactor, having an inlet and an outlet for the liquid to be treated at the lower part of the vessel body, and an opening through which volatiles and reaction by-products flow at the upper part of the body. And a calandria type heat exchanger formed in the container main body in the longitudinal direction and close to the inner wall of the main body so as to be immersed in the processing liquid, and the processing liquid supplied from the lower part of the container main body is heated. Heating to a predetermined reaction temperature by an exchanger, and stirring and mixing by natural convection in the vessel due to a density difference caused by a temperature difference between a volatile by-product gas generated at that time and a processing liquid.
(Iii) The second reactor is a flow-type reactor having a substantially cylindrical container shape, and has a double cylindrical structure having an inner cylindrical opening in a container, and a lower part of the double cylindrical structure is provided with a liquid to be treated. The processing liquid has an inlet, and the processing liquid is heated to a predetermined reaction temperature through the tube side of the multi-tube heat exchanger outside the inner cylinder of the double cylindrical structure provided at the upper part thereof, and flows above the container body. To reach the inner tube opening level, flow down the inner tube, and have an opening at the top of the main body through which volatiles and reaction by-products flow.
(Iv) The eighth reactor is a horizontal cylindrical container-type reactor having an inlet and an outlet for the liquid to be treated at one lower end and the other lower end in the longitudinal direction of the container main body, respectively. There is provided a stirring rotor that rotates in proximity to the inside of the main body in the longitudinal direction inside the main body, the stirring rotor inside the main body is constituted by a plurality of stirring blade blocks according to the viscosity of the processing liquid, The stirring blades shall not have a rotating shaft in the center of the stirring rotor.
(V) The fourth reactor is a horizontal, substantially cylindrical container-type reactor having an inlet and an outlet for the liquid to be treated at one lower end and the other lower end in the longitudinal direction of the container main body, respectively. And a stirring rotor that rotates in the longitudinal direction inside the main body and close to the inside of the main body, and each of the rotors has a stirring blade.

(2)テレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類とを第1反応器で反応させて、平均重合度2.2 から5以下のオリゴマーを製造する第1工程、該成生物を第2反応器で重縮合させて、平均重合度25から40の低重合物を製造する第2工程、該低重合物をさらに第3反応器で平均重合度70から130まで重縮合させ、熱安定性が良く耐加水分解性の優れた高分子量ポリエステルを製造する第3工程から成るポリブチレンテレフタレートの連続製造法に於いて、またはテレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類とを第1反応器で反応させて、平均重合度2.2 から5以下のオリゴマーを製造する第1工程、該成生物を第2反応器で重縮合させて、平均重合度25から40の低重合物を製造する第2工程、該低重合物をさらに第3反応器で平均重合度70から130まで重縮合させ高分子量ポリエステルを製造する第3工程、該重合物をさらに第4反応器で平均重合度150から200まで重縮合させ、熱安定性が良く耐加水分解性の優れた高分子量ポリエステルを製造する第4工程から成るポリブチレンテレフタレートの連続製造法において前記(1)に記載の(i),(ii),(iii),(iv),(v)の特徴を有する反応器を使用すること、原料であるテレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類とのモル比が1:1.7〜1:3.0の範囲で供給し、第1工程の温度は220℃〜250℃、圧力は33kPa〜150kPa、第2工程の温度は230℃〜255℃、圧力は100kPa〜0.133kPa 、第3工程及び第4工程の温度は230℃〜
255℃、圧力は0.665kPa〜0.067kPaの範囲で実施すること、第3及び4反応器の撹袢翼の回転数範囲を0.5rpmから10rpm とすること、第1工程,第2工程,第3工程の合計反応時間が4から7.5 時間の間で運転すること、または第1工程,第2工程,第3工程,第4工程の合計反応時間が6から8.5 時間の間で運転すること、テレフタル酸を主成分とする芳香族ジカルボン酸と1,−4ブタンジオールを主成分とするグリコール類は前者と後者のモル比1:1.7〜1:3.0に調整したスラリーはエステル化反応触媒あるいは重合反応触媒と添加して第1工程に供給すること、第3工程の第3反応器に並列して複数台の第3反応器を設け、第3,第4工程の第3,第4反応器の主たる系列で製造する品種の異なる重合度の品種のポリブチレンテレフタレートを製造したり、第3反応器毎に操作条件を調整することにより、製造する品種の増加,詳細な品質調整管理,生産量の制御を行うことを特徴とする。
(2) An aromatic dicarboxylic acid containing terephthalic acid as a main component or a derivative thereof and a glycol containing 1,4-butanediol as a main component are reacted in a first reactor to obtain an average degree of polymerization of 2.2 to 5 A first step of producing the following oligomer, a second step of producing a low polymer having an average degree of polymerization of 25 to 40 by polycondensing the product in a second reactor, and further subjecting the low polymer to a third reaction In a continuous process for producing polybutylene terephthalate comprising a third step of producing a high molecular weight polyester having good thermal stability and excellent hydrolysis resistance by polycondensation to an average degree of polymerization of 70 to 130 in a vessel, or terephthalic acid Of an aromatic dicarboxylic acid or a derivative thereof having as a main component a glycol having 1,4-butanediol as a main component in a first reactor to form an oligomer having an average degree of polymerization of 2.2 to 5 or less. A second step of producing a low polymer having an average degree of polymerization of 25 to 40 by polycondensing the product in a second reactor, and further subjecting the low polymer to a third reactor. The third step of producing a high molecular weight polyester by polycondensation from an average degree of polymerization of 70 to 130, and the polymer is further polycondensed to an average degree of polymerization of 150 to 200 in a fourth reactor, and has good heat stability and hydrolysis resistance. (I), (ii), (iii), (iv) and (v) according to the above (1) in a continuous process for producing polybutylene terephthalate comprising a fourth step of producing a high molecular weight polyester excellent in the above. And a molar ratio of the aromatic dicarboxylic acid or its derivative mainly composed of terephthalic acid as a raw material to the glycol mainly composed of 1,4-butanediol is 1: 1.7. ~ 1: 3.0 range, the first Degree of temperature 220 ° C. to 250 DEG ° C., the pressure is 33KPa~150kPa, temperature of the second step is 230 ° C. to 255 ° C., the pressure is 100KPa~0.133KPa, temperature of the third step and the fourth step 230 ° C. ~
255 ° C., the pressure is in the range of 0.665 kPa to 0.067 kPa, the rotation speed of the stirring blades of the third and fourth reactors is from 0.5 rpm to 10 rpm, the first step, the second step The total reaction time of the third step is between 4 and 7.5 hours, or the total reaction time of the first step, the second step, the third step and the fourth step is 6 to 8.5 hours. The aromatic dicarboxylic acid containing terephthalic acid as the main component and the glycols containing 1,4-butanediol as the main component have a molar ratio of the former to the latter of 1: 1.7 to 1: 3.0. The prepared slurry is added to the esterification reaction catalyst or the polymerization reaction catalyst and supplied to the first step. A plurality of third reactors are provided in parallel with the third reactor in the third step, Different polymerization degrees of different grades produced in the main series of 4th and 3rd reactors It is characterized in that by increasing the number of types of polybutylene terephthalate produced or adjusting the operating conditions for each third reactor, the number of types of polybutylene terephthalate to be produced, detailed quality adjustment management, and control of the production amount are performed.

 図1に本発明の一実施例を示す。図1は本発明のPBTの連続製造プロセスの装置講成図である。工業的なポリエステルの製造方法として、直接エステル化法が、経済的に非常に有利であるので、最近ではポリエステルの製造には直接エステル化方法が多く採用されている。図において1はPBTの原料であるTPAとBDを所定の割合で混合,撹拌する原料調整槽である。製造プロセスの中にはこの段階で重合反応触媒や安定剤,品質調整剤などの添加物を加える場合があるが、本実施例では重合反応触媒や添加剤はエステル化反応槽の入口直前の原料供給ライン2へ触媒投入ライン10から投入し、エステル化反応槽へ供給する。重合反応触媒としては有機チタン,有機錫,有機ジルコニア等の公知の金属化合物があげられ、使用する触媒の種類や組み合わせにより、反応速度が異なるだけでなく、生成するPBTの色相及び熱安定性等の品質に大きな影響を及ぼすことが良く知られている。特に有機チタン化合物の触媒は周囲に存在する水分の影響を受け、触媒作用が減少することが知られている。この影響を最小限にするために本実施例ではエステル化反応槽入り口の直前で触媒を添加している。 FIG. 1 shows an embodiment of the present invention. FIG. 1 is an apparatus training diagram of a continuous PBT manufacturing process of the present invention. As an industrial polyester production method, the direct esterification method is very economically advantageous. Therefore, in recent years, the direct esterification method has often been adopted for the production of polyester. In FIG. 1, reference numeral 1 denotes a raw material adjusting tank for mixing and stirring TPA and BD, which are raw materials of PBT, at a predetermined ratio. In the production process, additives such as a polymerization reaction catalyst, a stabilizer, and a quality control agent may be added at this stage. In this embodiment, the polymerization reaction catalyst and the additives are used as raw materials immediately before the entrance to the esterification reaction tank. The catalyst is supplied from the catalyst supply line 10 to the supply line 2 and supplied to the esterification reaction tank. Examples of the polymerization catalyst include known metal compounds such as organic titanium, organic tin, and organic zirconia. Depending on the type and combination of the catalyst used, not only the reaction rate differs, but also the hue and thermal stability of the PBT produced. It is well-known that it has a great effect on the quality of the product. In particular, it is known that the catalyst of an organic titanium compound is affected by the moisture present in the surroundings, and the catalytic action is reduced. In this embodiment, the catalyst is added immediately before the entrance of the esterification reaction tank to minimize this effect.

 このことにより添加した触媒は失活割合を最少化出来るので触媒の投入量を減少させ、色相の良い樹脂を製造することが出来る。さらにこれらの反応は触媒の存在化で高温で長時間行われるために種々の副反応が伴い、重合物が着色したり、THFの含有量や末端カルボキシル基濃度が適正値以上に増加して、PBTの品質劣化及び強度の低下などの物理的性質が低下したりする。 こ と This allows the added catalyst to minimize the deactivation ratio, thereby reducing the amount of catalyst to be added and producing a resin having a good hue. Furthermore, since these reactions are carried out at a high temperature for a long time in the presence of a catalyst, various side reactions are involved, and the polymer is colored, and the content of THF and the concentration of terminal carboxyl groups are increased to appropriate values. Physical properties such as quality deterioration and strength of the PBT are deteriorated.

 このような問題点を改良するために新しい触媒の開発が試みられているが、現在最も多く工業的に使用されている有機チタンが価格や性能面で優れている。しかし、この触媒を用いても生成したポリエステル重合物の着色は避けられない。このために安定剤として燐系安定剤(例えば、リン酸,トリメチルホスフェート,トリフェニルホスフェート等)を併用して改善している。また、別の製造プロセスにおいては重合触媒や安定剤の投入位置を工夫して品質を安定させている。通常のプロセスでは触媒の量はチタン金属換算濃度で20から100ppm を安定剤の量は必要に応じてP金属濃度で0から600ppm を用いるのが好ましい。 新 し い New catalysts have been developed to solve these problems, but the most industrially used organic titanium is currently superior in price and performance. However, even if this catalyst is used, coloring of the produced polyester polymer cannot be avoided. For this reason, the use of a phosphorus-based stabilizer (for example, phosphoric acid, trimethyl phosphate, triphenyl phosphate, etc.) as a stabilizer has been improved. Further, in another manufacturing process, the quality is stabilized by devising a position where a polymerization catalyst and a stabilizer are charged. In a normal process, the amount of the catalyst is preferably 20 to 100 ppm in terms of titanium metal, and the amount of the stabilizer is preferably 0 to 600 ppm in terms of P metal, if necessary.

 以上のように調整された原料と触媒は第1エステル化反応槽3へ原料を供給する供給ライン2と別の所で調整されて該供給ライン2に合流する触媒添加ライン10を経由して供給される。エステル化反応槽(第1反応器)3の外周部には処理液を反応温度に保つためにジャケット構造(図示せず)になっており液の内部には液の加熱手段としてカランドリア式熱交換器4が設置され外部からの熱源により多管内を流動する処理液を加熱し、エステル化反応工程で生成する揮発性のガスによる密度変化と温度差による相乗効果によって自然循環のみにより内部の液を循環しながら反応を進行させる。 The raw material and the catalyst adjusted as described above are supplied via a catalyst addition line 10 which is adjusted at a different place from the supply line 2 for supplying the raw material to the first esterification reaction tank 3 and joins the supply line 2. Is done. The outer periphery of the esterification reaction tank (first reactor) 3 has a jacket structure (not shown) for keeping the processing liquid at a reaction temperature, and a calandria type heat exchange as a liquid heating means is provided inside the liquid. The processing solution flowing in the multi-tube is heated by an external heat source, and the internal liquid is only circulated by natural circulation due to the synergistic effect of the density change and the temperature difference caused by the volatile gas generated in the esterification reaction step. The reaction proceeds while circulating.

 ここで最も望ましい反応器の型はエステル化反応により生成した副反応物の自然蒸発作用を利用して反応器内の処理液を自然循環させるカランドリア型が望ましい。この形の反応器は外部の撹拌動力源を必要としないため装置構成が単純でしかも撹拌軸の軸封装置も不要となり反応器の制作コストが安価となるという利点がある。このような反応器の一例としてJP−A−10−85501に示す様な装置が望ましい。しかし、本発明はこの装置に限定されるものではなくプロセス上の理由から撹拌翼を持った反応器を使用しても差し支えない。 Here, the most desirable reactor type is a calandria type in which the processing solution in the reactor is naturally circulated by utilizing the spontaneous evaporation of by-products produced by the esterification reaction. Since this type of reactor does not require an external stirring power source, there is an advantage that the apparatus configuration is simple, a shaft sealing device for the stirring shaft is not required, and the production cost of the reactor is reduced. As an example of such a reactor, an apparatus as shown in JP-A-10-85501 is desirable. However, the present invention is not limited to this apparatus, and a reactor having a stirring blade may be used for process reasons.

 第1反応器3において、反応により生成する水は水蒸気の形をとり、気化したBD蒸気及び副生するTHF蒸気と共に気相部5を形成する。このときの推奨すべき反応条件としては温度は220℃から250℃で減圧あるいは微加圧条件が望ましい。特に圧力条件は原料のBDとTPAのモル比(以後B/Tという)によって最適圧力条件が決定される。B/T=2.0以上(2.0を含む)では大気圧以上の場合でも処理液中のBD濃度が確保されるために所定の滞留時間で目標のエステル化率に到達可能であるが、B/T=2.0以下(2.0 を含まぬ)になるとエステル化率が低下して、後の重合工程の反応負荷が増大し、真空系及びそれに関係する補器類に不都合が生じる問題が起きる。 In the first reactor 3, the water generated by the reaction takes the form of water vapor, and forms the gas phase 5 together with the vaporized BD vapor and the by-produced THF vapor. As reaction conditions to be recommended at this time, the temperature is preferably from 220 ° C. to 250 ° C. and reduced pressure or slightly pressurized condition is desirable. In particular, the optimum pressure condition is determined by the molar ratio of BD and TPA of the raw material (hereinafter referred to as B / T). When B / T = 2.0 or more (including 2.0), even if the pressure is at or above atmospheric pressure, the BD concentration in the processing solution is ensured. , B / T = 2.0 or less (excluding 2.0), the esterification rate decreases, the reaction load in the subsequent polymerization step increases, and the vacuum system and auxiliary equipment related thereto become disadvantageous. The resulting problem arises.

 このためにB/T=2.0以下(2.0を含まぬ)では反応圧力条件を大気圧以下の減圧条件とすることが有効である。減圧することにより、BDの沸点が低下し、反応温度を低くすることが出来る。通常は反応温度を低下した場合反応速度は低下するが、本実施例の構造の様な自然循環式の反応器では減圧したことにより反応副生物のガス容積が増加して、反応器内の循環性能が増して反応条件の改善に効果がある。 た め For this reason, when B / T = 2.0 or less (excluding 2.0), it is effective to set the reaction pressure condition to a reduced pressure condition at or below atmospheric pressure. By reducing the pressure, the boiling point of BD decreases and the reaction temperature can be lowered. Normally, when the reaction temperature is lowered, the reaction rate is reduced. However, in a natural circulation type reactor such as the structure of this embodiment, the gas volume of the reaction by-product increases due to the reduced pressure, and the circulation in the reactor is reduced. It is effective for improving the reaction conditions by increasing the performance.

 また減圧することによりエステル化反応の副生物である水分の離脱速度も向上し、正反応速度定数が大きくなる。さらにエステル化反応速度が向上することによりエステル化反応時間が短縮され、副反応生成物であるTHFの量が減少する効果が反応温度の低下の効果に相乗されて効いてくるのでTHF生成量を大幅に低減できる。このときの推奨すべき反応温度は220℃〜250℃であるが、特に圧力が50〜80kPaの大気圧以下の時は滞留時間が1.5〜2.4時間、反応温度225℃〜230℃がエステル化反応速度の向上、THF生成量の低減に大幅な効果がある。この時のTHF成生量は原料TPAのモル分率で15〜25mol%/h 程度である。 By reducing the pressure, the rate of desorption of water, which is a by-product of the esterification reaction, is also improved, and the positive reaction rate constant is increased. Further, the esterification reaction time is shortened by improving the esterification reaction rate, and the effect of reducing the amount of THF as a by-product is exerted in synergy with the effect of lowering the reaction temperature. It can be greatly reduced. The recommended reaction temperature at this time is 220 ° C. to 250 ° C., especially when the pressure is 50 to 80 kPa or less at atmospheric pressure, the residence time is 1.5 to 2.4 hours, and the reaction temperature is 225 ° C. to 230 ° C. Has a significant effect on improving the esterification reaction rate and reducing the amount of THF produced. The amount of THF formed at this time is about 15 to 25 mol% / h 2 in terms of the mole fraction of the raw material TPA.

 処理液中から出た揮発分である気相部5のガスはその第1エステル化反応槽3の上方に設けられた蒸留塔(図示せず)により水とTHF及びBDとに分離され、水とTHFは系外に除去され、BDは精製工程等を経て再び系内あるいは原料用として蒸留塔下部より
BD循環ライン35によりBDタンク33に戻される。循環BDはBDタンク33から
BD供給ライン34により原料調整槽1に供給されるが、BDタンク33内の循環BDは必要に応じてBD精製処理(図示せず)を行い原料BDの純度を調整する。さらに必要に応じて、初期重合機14,最終重合機18に設置される減圧装置の湿式コンデンサー(図示せず)から排出された循環BDをBD循環ライン36よりBDタンク33に戻し、BD原単位をさらに向上させる。この場合、新BDは第3反応器18の湿式コンデンサーへ新BD供給ライン39より供給し、BD循環ライン37から第2反応器14の湿式コンデンサーへ供給し、BD循環ライン36よりBDタンク33に供給する。
The gas in the gas phase 5, which is a volatile component coming out of the processing liquid, is separated into water, THF and BD by a distillation column (not shown) provided above the first esterification reaction tank 3, and And THF are removed out of the system, and the BD is returned to the BD tank 33 via a BD circulation line 35 from the lower part of the distillation tower for use in the system or as a raw material again through a purification step or the like. The circulating BD is supplied from the BD tank 33 to the raw material adjustment tank 1 through the BD supply line 34. The circulating BD in the BD tank 33 is subjected to a BD purification process (not shown) as necessary to adjust the purity of the raw material BD. I do. Further, if necessary, the circulating BD discharged from the wet condenser (not shown) of the decompression device installed in the initial polymerization machine 14 and the final polymerization machine 18 is returned to the BD tank 33 through the BD circulation line 36, and the BD basic unit is used. To further improve. In this case, the new BD is supplied from the new BD supply line 39 to the wet condenser of the third reactor 18, is supplied from the BD circulation line 37 to the wet condenser of the second reactor 14, and is supplied from the BD circulation line 36 to the BD tank 33. Supply.

 エステル化反応槽3で所定のエステル化率に到達した処理液は連絡管6を経由して初期重合反応槽(第2反応器)16に供給される。連絡管6の途中には処理液流量を調整する制御バルブ7が設けられている。本バルブにより第1反応器の液面を一定に制御し反応時間を一定に保つ。処理液はエステル化反応槽3で所定のエステル化率に到達したとき、連絡管11の途中に設けたオリゴマーポンプ12により初期重合槽(第2反応器)14に供給される。初期重合槽に供給された処理液は多管式熱交換器15により所定の反応温度に加熱され重縮合反応を行い重合度を上昇させる。このときの反応条件としては230℃から255℃で圧力は100kPaから0.133kPa 、滞留時間は1.0〜1.5時間で重合度25から40程度まで反応させる。 (4) The processing solution that has reached a predetermined esterification rate in the esterification reaction tank 3 is supplied to the initial polymerization reaction tank (second reactor) 16 via the communication pipe 6. A control valve 7 for adjusting the flow rate of the processing liquid is provided in the middle of the communication pipe 6. With this valve, the liquid level in the first reactor is controlled to be constant, and the reaction time is kept constant. When the treatment liquid reaches a predetermined esterification rate in the esterification reaction tank 3, it is supplied to the initial polymerization tank (second reactor) 14 by the oligomer pump 12 provided in the middle of the communication pipe 11. The treatment liquid supplied to the initial polymerization tank is heated to a predetermined reaction temperature by the multitubular heat exchanger 15 to perform a polycondensation reaction to increase the degree of polymerization. At this time, the reaction conditions are 230 ° C. to 255 ° C., the pressure is 100 kPa to 0.133 kPa, the residence time is 1.0 to 1.5 hours, and the degree of polymerization is from 25 to 40.

 本実施例で示した初期重合槽14は撹拌翼を持たない反応器を用いて説明しているがこの反応器を限定するものではない。しかし、初期重合段階においては反応は重合反応速度が律束段階であり反応に必要な熱量を十分に供給すれば反応は順調に進行していく。この観点から処理液は撹拌翼で不必要な撹拌作用を受ける必要はなく重縮合反応によって生成するBDが系外に離脱するだけでよい。さらに製造する樹脂の品質を良好に保ち、副生するTHFの量を抑制するために反応温度は出来るだけ低めで運転するほうが良く、推奨すべき反応温度は250℃以下(250℃を含む)が望ましい。このような操作に最適な反応器としてはJP−A−10−76102に示す様な装置が最適である。反応により発生するBD及び水とTHFは減圧雰囲気に保たれた気相部16に集まり、その下流側に設けられたコンデンサーで凝縮した後に系外へ排出される。初期重合槽(第2反応器)14で所定の反応時間を経過した処理液は連絡管17により最終重合機(第3反応器)18に供給される。最終重合機では外部動力源21により駆動される中心部に撹拌軸の無い撹拌翼19により良好な表面更新作用を受けながらさらに重縮合反応を進め重合度を上昇させ目的の重合度のポリマーを製造する。 初期 Although the initial polymerization tank 14 shown in the present embodiment is described using a reactor having no stirring blade, this reactor is not limited. However, in the initial polymerization stage, the reaction is a stage in which the polymerization reaction rate is controlled, and the reaction proceeds smoothly if a sufficient amount of heat required for the reaction is supplied. From this viewpoint, the treatment liquid does not need to be subjected to unnecessary stirring action by the stirring blade, and it is sufficient that the BD generated by the polycondensation reaction is released from the system. Furthermore, in order to maintain the quality of the resin to be produced well and to suppress the amount of by-product THF, it is better to operate the reaction at a temperature as low as possible. The recommended reaction temperature is 250 ° C or less (including 250 ° C). desirable. As an optimal reactor for such an operation, an apparatus as shown in JP-A-10-76102 is optimal. The BD, water and THF generated by the reaction are collected in the gas phase 16 maintained in a reduced pressure atmosphere, condensed by a condenser provided downstream thereof, and then discharged outside the system. After a predetermined reaction time has passed in the initial polymerization tank (second reactor) 14, the processing liquid is supplied to a final polymerization machine (third reactor) 18 through a communication pipe 17. In the final polymerization machine, a polycondensation reaction is further promoted while undergoing a good surface renewing action by a stirring blade 19 having no stirring shaft at the center driven by the external power source 21 to increase the polymerization degree and produce a polymer having a desired polymerization degree. I do.

 最終重合機(第3反応器)として最適な装置としては特開平16−77348号に記載の装置が表面更新性能,消費動力特性が最も優れている。このときの反応条件としては
230℃から255℃で圧力は0.665kPaから0.067kPaで重合度70から
130程度まで反応させる。処理液の粘度範囲が広いので従来、2槽で縮重合を行っていたが、本最終重合機一台の装置で縮重合が可能となり大幅な装置コストの低減が得られる。第1反応器3から第3反応器18における全滞留時間は4〜7.5 時間であるのがよいが、品質面から、重合工程全体の滞留時間は2から4時間が最適な範囲である。また、滞留時間は必要に応じて、温度と圧力を調整することにより長くすることが可能であり、例えば生産量を減少させる場合に、品質の変動を最小限に保つために実施されることがある。特にPBTの品質の評価項目の1つであるポリマー酸価の値を出来るだけ低くするには、反応温度を250℃以下(250℃を含む)にすることが望ましい。
As an apparatus most suitable as a final polymerization machine (third reactor), an apparatus described in JP-A-16-77348 has the best surface renewal performance and power consumption characteristics. At this time, the reaction conditions are 230 ° C. to 255 ° C., the pressure is 0.665 kPa to 0.067 kPa, and the degree of polymerization is from 70 to 130. Conventionally, polycondensation was carried out in two tanks because the viscosity range of the treatment liquid was wide. However, polycondensation can be carried out with one apparatus of the final polymerization machine, and a significant reduction in equipment cost can be obtained. The total residence time in the first to third reactors 3 to 18 is preferably from 4 to 7.5 hours, but from the viewpoint of quality, the residence time of the entire polymerization step is in the optimal range of 2 to 4 hours. . Also, the residence time can be lengthened by adjusting the temperature and pressure, if necessary, e.g., when reducing production, implemented to keep quality fluctuations to a minimum. is there. In particular, in order to lower the value of the polymer acid value, which is one of the evaluation items of the quality of PBT, as much as possible, it is desirable to set the reaction temperature to 250 ° C. or lower (including 250 ° C.).

 以上の装置構成においてPBTを連続製造すると従来の装置構成と比較して、反応器の数が減少しているために装置の製作経費が節約出来るのと装置数の減少に伴い装置に付随する蒸留塔やコンデンサーを減少させ、それらを連結する配管,計装部品,バルブ類を大幅に節約できると共に真空源や熱媒装置等のユーティリティ関係費が大幅に低下するのでランニングコストを安く出来る利点がある。 When the PBT is continuously manufactured in the above-described apparatus configuration, the number of reactors is reduced as compared with the conventional apparatus configuration, so that the manufacturing cost of the apparatus can be reduced. It has the advantage that the number of towers and condensers can be reduced and the piping, instrumentation parts, valves, etc. connecting them can be greatly saved, and the running costs can be reduced because the utility-related costs such as vacuum sources and heating medium devices are greatly reduced. .

 また、さらに高いIV値のPBTを得るには最終重合機(第3反応器)18の後にもう1つの最終重合器(第4反応器)を設置することにより製造することが可能である。この実施例を図2に示す。第1反応器,第2反応器,第3反応器までの構成及び作用は図1の実施例の説明と同様であるので省略する。新BDの供給は第4反応器28の湿式コンデンサーへ供給し、第3反応器23の湿式コンデンサーへのBD循環ライン38により供給し、図1の実施例と同様の作用を行う。第3反応器で重合度70から130程度まで反応した処理液20は第3反応器18と第4反応器23を連結する連絡管の間に設けたポリマーポンプ22により第4反応器23に送られる。第4反応器23での処理液の粘度は数百
kPa・sと高粘度になっているので第3反応器18で使用した方式の撹拌装置はもはや使えない即ち、回転する撹拌翼に処理液が付着滞留する供回り現象が起きる。このために高粘度液処理用の撹拌装置を持った反応器を用いなければならない。この反応器として最適な装置としては特公平6−21159号,特開昭48−102894号(日本特許第
1024745号)に記載の装置のような2軸式の装置が高粘度液処理として優れている。特に本実施例では特開昭48−102894号(日本特許第1024745号)に記載のメガネ翼式重合器を用いて説明するが、本発明においてこの重合器を限定するものではない。
Further, in order to obtain a PBT having a higher IV value, the PBT can be produced by installing another final polymerization reactor (fourth reactor) after the final polymerization reactor (third reactor) 18. This embodiment is shown in FIG. The configuration and operation of the first, second and third reactors are the same as in the embodiment of FIG. The supply of the new BD is supplied to the wet condenser of the fourth reactor 28 and the BD circulation line 38 to the wet condenser of the third reactor 23, and the same operation as the embodiment of FIG. 1 is performed. The processing liquid 20 reacted in the third reactor to a degree of polymerization of about 70 to 130 is sent to the fourth reactor 23 by the polymer pump 22 provided between the connecting pipe connecting the third reactor 18 and the fourth reactor 23. Can be Since the viscosity of the processing liquid in the fourth reactor 23 is as high as several hundred kPa · s, the stirring device of the type used in the third reactor 18 can no longer be used. The phenomenon that the stagnation occurs is caused. For this purpose, a reactor having a stirring device for treating a high-viscosity liquid must be used. As the most suitable apparatus for this reactor, a two-shaft apparatus such as the apparatus described in Japanese Patent Publication No. Hei 6-21159 and Japanese Patent Application Laid-Open No. 48-102894 (Japanese Patent No. 10224745) is excellent for high viscosity liquid treatment. I have. In particular, in this embodiment, the explanation will be made by using a spectacle wing type polymerization apparatus described in JP-A-48-102894 (Japanese Patent No. 10224745), but the invention is not limited to this polymerization apparatus.

 第4反応器23はメガネ形状の撹拌翼24を90度の位相差をつけて、所定の間隔で外部動力源25に駆動される撹拌軸に取りつけ、この撹拌軸を2本90度の位相差をつけて構成した二軸式の重合装置である。入口より供給された処理液はお互いの撹拌翼が中央から外側へ回転する構成のために外側に引き伸ばされる。この時に処理液は良好な表面更新作用を受け処理液の内部から揮発成分を蒸発させて反応が促進され、さらに粘度が上昇し高重合度のポリマー24として排出される。このときの反応条件として、温度は230℃から255℃で圧力は0.665kPaから0.067kPaで滞留時間は0.7から1.5時間で重合度150から200程度まで反応させる。 The fourth reactor 23 attaches a pair of glasses-shaped stirring blades 24 to the stirring shaft driven by the external power source 25 at predetermined intervals with a phase difference of 90 degrees. This is a two-shaft polymerization device configured with a mark. The processing liquid supplied from the inlet is extended outward due to the configuration in which the stirring blades rotate from the center to the outside. At this time, the treatment liquid undergoes a good surface renewal action, evaporating volatile components from the inside of the treatment liquid to promote the reaction, and further increases the viscosity to be discharged as the polymer 24 having a high polymerization degree. The reaction conditions are as follows: the temperature is from 230 ° C. to 255 ° C., the pressure is from 0.665 kPa to 0.067 kPa, the residence time is from 0.7 to 1.5 hours, and the degree of polymerization is from 150 to 200.

 さらに品種の異なるポリブチレンテレフタレートを同時に生産する場合の実施例を図3により説明する。図3の実施例は図2に示した高重合度のポリブチレンテレフタレートを製造する設備にもう1つの第3反応器26を並列に設置したものである。新BDは供給ライン39より第4反応器と第3反応器のそれぞれの湿式コンデンサーに供給され、実施例の図1及び図2で説明したと同様にBD循環ライン38,39,36を経由してBDタンク33へ集められる。また第3反応器18,26は図1の実施例で説明した反応器を用いて説明するが、本発明においてこの重合器を限定するものではない。第2反応器14より出た処理液は連絡管17の途中で分岐し、その1部は流量調整バルブ31を経由して、第3反応器18に導かれ、一方他の分岐した1部は分岐連絡管30,流量調節バルブ32を経て第3反応器26に導かれる。 (3) An embodiment in which polybutylene terephthalate of a different type is simultaneously produced will be described with reference to FIG. In the embodiment shown in FIG. 3, another third reactor 26 is installed in parallel with the equipment for producing polybutylene terephthalate having a high degree of polymerization shown in FIG. The new BD is supplied to the respective wet condensers of the fourth reactor and the third reactor from the supply line 39, and passes through the BD circulation lines 38, 39, and 36 as described with reference to FIGS. To the BD tank 33. The third reactors 18 and 26 will be described using the reactor described in the embodiment of FIG. 1, but the present invention is not limited to this reactor. The processing liquid discharged from the second reactor 14 branches off in the middle of the communication pipe 17, and one part of the processing liquid is guided to the third reactor 18 via the flow control valve 31, while the other part is branched. It is led to the third reactor 26 via the branch connecting pipe 30 and the flow control valve 32.

 ここで、本発明の実施例は2つに分岐する例について説明するが、2分割に限定するものではない。分岐した一方の処理液は第3反応器18,第4反応器23を通過することにより高重合度のポリブチレンテレフタレートを製造する。他方の処理液は第3反応器26により上記の重合度より低いポリブチレンテレフタレートを製造する。この系列のポリブチレンテレフタレート製品は流量調整バルブ31,32を調節することにより任意の割合で製造することができる。また、図3の実施例には示さないが、さらに第3反応器を追加することにより、第3反応器26と異なる反応条件を設定し、例えば同一重合度でも酸価の異なる品種のポリブチレンテレフタレート製造や、僅かに重合度を変えたポリブチレンテレフタレートの製造と生産量の調整が可能となる。尚、第3,第4反応器の撹拌翼の回転数範囲は0.5〜10rpmとする。 Here, the embodiment of the present invention will be described with respect to an example of branching into two, but is not limited to two. One of the branched treatment liquids passes through the third reactor 18 and the fourth reactor 23 to produce polybutylene terephthalate having a high degree of polymerization. The other processing solution produces polybutylene terephthalate having a lower polymerization degree than the above-mentioned degree of polymerization in the third reactor 26. This series of polybutylene terephthalate products can be manufactured at any desired ratio by adjusting the flow control valves 31,32. Although not shown in the example of FIG. 3, by adding a third reactor, reaction conditions different from those of the third reactor 26 are set. Production of terephthalate, production of polybutylene terephthalate with a slightly changed degree of polymerization, and adjustment of the production amount can be performed. The rotation speed range of the stirring blades of the third and fourth reactors is 0.5 to 10 rpm.

 (具体例)
 以下具体例を上げて本発明を具体的を説明するが、本発明はこれらの具体例に限定されるものではない。具体例の極限粘度はフェノール50wt%,テトラクロロエタン50
wt%の溶媒を用い30℃でオストワルド粘度計で測定して求めた値である。酸価はベンジルアルコールを溶媒とし、PBTを230℃,5分間加熱溶解し、中和滴定して測定した値である。表1に示した如く、PBTはTPAとBDの直接エステル化法の連続運転により製造したものである。具体例1〜3は減圧エステル化反応条件でPBTを製造したもので溶融重合のみで極限粘度0.85dl/g を達成した。実施例1に示す様に減圧エステル化反応の場合、反応温度が低く、滞留時間が短い条件で酸価が10eq/ton と高品質のPBTが得られた。この時の全反応時間は5.2 時間であり、本発明の装置構成と反応条件により効率良くポリブチレンテレフタレートが連続製造できることを確認した。また、PBTの酸価を低くするには最終重合反応工程の温度を低くすることと滞留時間を短くすることが有効である。
(Concrete example)
Hereinafter, the present invention will be described specifically with reference to specific examples, but the present invention is not limited to these specific examples. The limiting viscosity of a specific example is 50% by weight of phenol and 50% of tetrachloroethane.
It is a value determined by measuring with an Ostwald viscometer at 30 ° C. using a wt% solvent. The acid value is a value measured by dissolving PBT under heating at 230 ° C. for 5 minutes using benzyl alcohol as a solvent and performing neutralization titration. As shown in Table 1, PBT was produced by continuous operation of the direct esterification method of TPA and BD. In Examples 1 to 3, PBT was produced under reduced pressure esterification reaction conditions, and an intrinsic viscosity of 0.85 dl / g was achieved only by melt polymerization. As shown in Example 1, in the case of the esterification reaction under reduced pressure, a high-quality PBT having an acid value of 10 eq / ton was obtained under the conditions of a low reaction temperature and a short residence time. The total reaction time at this time was 5.2 hours, and it was confirmed that polybutylene terephthalate can be efficiently produced continuously by the apparatus configuration and reaction conditions of the present invention. In order to reduce the acid value of PBT, it is effective to lower the temperature in the final polymerization reaction step and to shorten the residence time.

 むろん、具体例1〜3の減圧条件にかぎらず、加圧条件であってもエステル化反応を行うことは可能である。 Of course, the esterification reaction can be performed not only under the reduced pressure conditions of Examples 1 to 3 but also under a pressurized condition.

Figure 2004002902
Figure 2004002902

 本発明はポリブチレンテレフタレート,ポリエチレンテレフタレート等のポリエステル系高分子の連続製造に適用できる。 The present invention is applicable to continuous production of polyester polymers such as polybutylene terephthalate and polyethylene terephthalate.

本発明の一実施例を示すPBTの連続製造プロセスの装置構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an apparatus configuration diagram of a PBT continuous manufacturing process showing one embodiment of the present invention. 本発明の他の実施例を示すPBTの連続製造プロセスの装置構成図である。FIG. 11 is a diagram illustrating the configuration of a continuous PBT manufacturing process according to another embodiment of the present invention. 本発明の他の実施例を示すPBTの連続製造プロセスの装置構成図である。FIG. 11 is a diagram illustrating the configuration of a continuous PBT manufacturing process according to another embodiment of the present invention.

符号の説明Explanation of reference numerals

 1…原料調整槽、2…原料供給ライン、3…第1エステル化反応槽、4…熱交換器、5…気相部、6…連絡管、7…制御バルブ、10…触媒供給ライン、11…連絡管、12…オリゴマーポンプ、14…初期重合槽、15…熱交換器、16…気相部、17…連絡管、18,23,26…最終重合機、19,23,27…撹拌翼、20,24,28…ポリマー、21,25,29…撹拌動力源、22…ポリマーポンプ、31,32…流量調整バルブ。 DESCRIPTION OF SYMBOLS 1 ... Raw material adjustment tank, 2 ... Raw material supply line, 3 ... 1st esterification reaction tank, 4 ... Heat exchanger, 5 ... Gas phase part, 6 ... Connecting pipe, 7 ... Control valve, 10 ... Catalyst supply line, 11 ... connecting pipe, 12 ... oligomer pump, 14 ... initial polymerization tank, 15 ... heat exchanger, 16 ... gas phase section, 17 ... connecting pipe, 18, 23, 26 ... final polymerization machine, 19, 23, 27 ... stirring blade , 20, 24, 28 ... polymer, 21, 25, 29 ... stirring power source, 22 ... polymer pump, 31, 32 ... flow control valve.

Claims (17)

 テレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類とを反応させて、平均重合度2.2 から5以下のオリゴマーを製造する第1反応器、第1反応器からのオリゴマーを重縮合させて、平均重合度25から40の低重合物を製造する第2反応器、第2反応器からの該低重合ポリマーをさらに重縮合させ、平均重合度70から130まで重縮合させ熱安定性が良く耐加水分解性の優れた高分子量ポリエステルを製造する第3反応器とから成るポリブチレンテレフタレートを製造する装置において、第1反応器と第2反応器は外部動力源による撹拌機能を持たない反応器を使用する、ポリブチレンテレフタレートの連続製造装置。 First, an oligomer having an average degree of polymerization of 2.2 to 5 or less is produced by reacting an aromatic dicarboxylic acid having terephthalic acid as a main component or a derivative thereof with glycols having 1,4-butanediol as a main component. A second reactor for producing a low polymer having an average degree of polymerization of 25 to 40 by polycondensing the oligomer from the first reactor and the low polymer obtained from the second reactor; An apparatus for producing polybutylene terephthalate, comprising: a third reactor for producing a high molecular weight polyester having good thermal stability and excellent hydrolysis resistance by polycondensation from an average degree of polymerization of 70 to 130; (2) A continuous production apparatus for polybutylene terephthalate using a reactor having no stirring function by an external power source.  テレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類とを反応させて、平均重合度2.2 から5以下のオリゴマーを製造する第1反応器、該成生物を重縮合させて、平均重合度25から40の低重合物を製造する第2反応器、該低重合物をさらに平均重合度70から130まで重縮合させ高分子量ポリエステルを製造する第3反応器、該ポリエステルをさらに平均重合度150から200まで重縮合させ、熱安定性が良く耐加水分解性の優れた高分子量ポリエステルを製造する第4反応器から成るポリブチレンテレフタレートを製造する装置において、第1反応器と第2反応器は外部動力源による撹拌機能を持たない反応器を使用する、ポリブチレンテレフタレートの連続製造装置。 First, an oligomer having an average degree of polymerization of 2.2 to 5 or less is produced by reacting an aromatic dicarboxylic acid having terephthalic acid as a main component or a derivative thereof with glycols having 1,4-butanediol as a main component. A second reactor for producing a low polymer having an average degree of polymerization of 25 to 40 by polycondensing the formed product with an adult product, and further polymerizing the low polymer to an average degree of polymerization of 70 to 130 to produce a high molecular weight polyester. Polybutylene terephthalate comprising a third reactor to be produced and a fourth reactor to further polycondensate the polyester to an average degree of polymerization of 150 to 200 to produce a high molecular weight polyester having good thermal stability and excellent hydrolysis resistance. In the manufacturing apparatus, the first reactor and the second reactor use a reactor having no stirring function by an external power source, and a continuous production of polybutylene terephthalate. Apparatus.  請求項1または2に於いて第1反応器は概略円筒状容器形の反応器で、容器本体の下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物及び反応副生物が流通する開口部を持ち、容器本体の長手方向に本体の内壁に近接して形成するカランドリヤ式の熱交換器を処理液中に浸漬するように設けた装置とし、容器本体下部より供給された処理液は熱交換器により所定の反応温度に加熱され、その際に生成する揮発性の副生成物ガスと処理液の温度差により生じる密度差によって容器内を自然対流して撹拌,混合する装置。 The first reactor according to claim 1 or 2, wherein the first reactor is a substantially cylindrical container-shaped reactor, having an inlet and an outlet for a liquid to be treated at a lower portion of a container body, and a volatile substance and a reaction by-product at an upper portion of the body. Has an opening through which a calandria type heat exchanger formed close to the inner wall of the main body in the longitudinal direction of the main body is provided so as to be immersed in the processing liquid, and is supplied from the lower part of the main body of the container. A processing liquid is heated to a predetermined reaction temperature by a heat exchanger, and is stirred and mixed by natural convection in a container due to a density difference caused by a temperature difference between a volatile by-product gas generated at that time and the processing liquid. .  請求項1または2に於いて第2反応器は概略円筒状容器形の流通式反応器であり、容器内に内筒開口部を持つ二重円筒構造を有し、二重円筒構造の外側の下部に被処理液の入口を有し、処理液はその上部に設けられた二重円筒状構造の内筒の外側の多管式熱交換器の管側を通って所定の反応温度に加熱され容器本体上方に流動して内管開口レベルに到達し、内筒を流下し、本体の上部には揮発物及び反応副生物が流通する開口部を設けてある装置。 The second reactor according to claim 1 or 2, wherein the second reactor is a flow-type reactor having a substantially cylindrical container shape, and has a double cylindrical structure having an inner cylindrical opening in the container. The lower part has an inlet for the liquid to be treated, and the processing liquid is heated to a predetermined reaction temperature through the tube side of the multi-tube heat exchanger outside the inner cylinder having a double cylindrical structure provided at the upper part. A device that flows above the container body to reach the inner tube opening level, flows down the inner cylinder, and has an opening at the top of the body through which volatiles and reaction by-products flow.  請求項1または2に於いて第3反応器は横形の円筒状容器形の反応器で、その容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータを設けてあり、本体内部の撹拌ロータが処理液の粘度に応じて複数個の撹拌翼ブロックで構成され、撹拌翼は撹拌ロータの中心部に回転シャフトを持たない装置。 The third reactor according to claim 1 or 2, wherein the third reactor is a horizontal cylindrical container-type reactor having an inlet and an outlet for a liquid to be treated at one lower end and one lower end in the longitudinal direction of the container body, respectively. A stirring rotor having an outlet for volatiles at the top of the main body and rotating in the longitudinal direction inside the main body and close to the inside of the main body is provided, and the stirring rotor inside the main body has a plurality of stirring blades according to the viscosity of the processing liquid. An agitator with no rotating shaft at the center of the agitation rotor.  請求項2において、第4反応器は横形の概略円筒状容器形の反応器でその容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち、本体内部の長手方向に本体の内側に近接して回転する2つの撹拌ロータより構成される撹拌翼をもった反応器である装置。 In claim 2, the fourth reactor is a horizontal, substantially cylindrical container-type reactor, and has an inlet and an outlet for the liquid to be treated at one lower end and the lower end at the other end in the longitudinal direction of the container main body. An apparatus which is a reactor having a stirring blade composed of two stirring rotors having an outlet for volatiles and rotating close to the inside of the main body in the longitudinal direction inside the main body.  テレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類とを第1反応器で反応させて、平均重合度2.2 から5以下のオリゴマーを製造する第1工程、該成生物を第2反応器で重縮合させて、平均重合度25から40の低重合物を製造する第2工程、該低重合物をさらに第3反応器で平均重合度70から130まで重縮合させ熱安定性が良く耐加水分解性の優れた高分子量ポリエステルを製造する第3工程から成るポリブチレンテレフタレートを製造する方法において、第3反応器は横形の円筒状容器形の反応器でその容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータを設けてあり、本体内部の撹拌ロータが処理液の粘度に応じて複数個の撹拌翼ブロックで構成され、撹拌翼は撹拌ロータの中心部に回転シャフトを持たないポリブチレンテレフタレートの連続製造方法。 An oligomer having an average degree of polymerization of 2.2 to 5 or less is obtained by reacting an aromatic dicarboxylic acid containing terephthalic acid as a main component or a derivative thereof with glycols containing 1,4-butanediol as a main component in a first reactor. A second step of producing a low polymer having an average degree of polymerization of 25 to 40 by polycondensing the product in a second reactor; and further averaging the low polymer in a third reactor. In the method for producing polybutylene terephthalate, which comprises the third step of producing a high molecular weight polyester having good thermal stability and excellent hydrolysis resistance by polycondensing from a polymerization degree of 70 to 130, the third reactor has a horizontal cylindrical shape. The container-type reactor has an inlet and an outlet for the liquid to be treated at one lower end and the lower end at the other end in the longitudinal direction of the container body, has an outlet for volatiles at the upper part of the body, and has a main body in the longitudinal direction inside the body. Inside Is provided, and the stirring rotor inside the main body is composed of a plurality of stirring blade blocks according to the viscosity of the processing liquid, and the stirring blade does not have a rotating shaft at the center of the stirring rotor. A continuous production method of polybutylene terephthalate.  テレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類とを第1反応器で反応させて、平均重合度2.2から5以下のオリゴマーを製造する第1工程、該成生物を第2反応器で重縮合させて、平均重合度25から40の低重合物を製造する第2工程、該低重合物をさらに第3反応器で平均重合度70から130まで重縮合させ高分子量ポリエステルを製造する第3工程、該重合物をさらに第4反応器で平均重合度150から200まで重縮合させ熱安定性が良く耐加水分解性の優れた高分子量ポリエステルを製造する第4工程から成るポリブチレンテレフタレートを製造する方法において、第3反応器は横形の概略円筒状容器形の反応器でその容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち、本体内部の長手方向に本体の内側に近接して回転する2つの撹拌ロータを設けてあり、本体内部の撹拌ロータが処理液の粘度に応じて複数個の撹袢翼ブロックで構成され、撹拌翼は撹拌ロータの中心部に回転シャフトを持たず、第4反応器は横形の概略円筒状容器形の反応器でその容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち、本体内部の長手方向に本体の内側に近接して回転する2つの撹拌ロータより構成される撹拌翼をもった反応器であるポリブチレンテレフタレートの連続製造方法。 An oligomer having an average degree of polymerization of 2.2 to 5 or less, which is obtained by reacting an aromatic dicarboxylic acid containing terephthalic acid as a main component or a derivative thereof with glycols containing 1,4-butanediol as a main component in a first reactor. A second step of producing a low polymer having an average degree of polymerization of 25 to 40 by polycondensing the product in a second reactor; and further averaging the low polymer in a third reactor. The third step of producing a high molecular weight polyester by polycondensation from a polymerization degree of 70 to 130, and further polymerizing the polymer in an average polymerization degree of 150 to 200 in a fourth reactor to have good heat stability and excellent hydrolysis resistance. In the method for producing polybutylene terephthalate comprising the fourth step of producing a high-molecular-weight polyester, the third reactor is a horizontal, substantially cylindrical container-shaped reactor and includes a lower end of one end in the longitudinal direction of the container body. And two stirring rotors, each having an inlet and an outlet for the liquid to be treated at the bottom of the other end, having an outlet for volatiles at the top of the main body, and rotating close to the inside of the main body in the longitudinal direction inside the main body. Yes, the stirring rotor inside the main body is composed of a plurality of stirring blade blocks according to the viscosity of the processing liquid, the stirring blade does not have a rotating shaft at the center of the stirring rotor, and the fourth reactor is a horizontal cylinder. The reactor has a shape of a container, and has an inlet and an outlet for the liquid to be treated at one lower end and the lower end at the other end in the longitudinal direction of the container body, an outlet for volatile matter at the upper part of the body, and a main body in the longitudinal direction inside the body. A continuous production method of polybutylene terephthalate, which is a reactor having a stirring blade composed of two stirring rotors rotating close to the inside of the container.  テレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類とを第2反応器で反応させて、平均重合度2.2 から5以下のオリゴマーを製造する第1工程、該生成物を第2反応器で重縮合させて、平均重合度25から40の低重合物を製造する第2工程、該低重合物をさらに第3反応器で平均重合度70から130まで重縮合させ熱安定性が良く耐加水分解性の優れた高分子量ポリエステルを製造する第3工程とから成るポリブチレンテレフタレートを製造する方法において、原料であるテレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類を、前者と後者とのモル比が1:1.7〜1:3.0の範囲で供給する、連続製造装置。 An oligomer having an average degree of polymerization of 2.2 to 5 or less is obtained by reacting an aromatic dicarboxylic acid containing terephthalic acid as a main component or a derivative thereof with glycols containing 1,4-butanediol as a main component in a second reactor. A second step of producing a low polymer having an average degree of polymerization of 25 to 40 by subjecting the product to polycondensation in a second reactor, and further averaging the low polymer in a third reactor. A third step of producing a high molecular weight polyester having good thermal stability and excellent hydrolysis resistance by polycondensation from a polymerization degree of 70 to 130, wherein terephthalic acid as a raw material is used as a main component. A glycol having an aromatic dicarboxylic acid or a derivative thereof and 1,4-butanediol as main components is supplied in a molar ratio of the former to the latter in the range of 1: 1.7 to 1: 3.0. It continued manufacturing equipment.  請求項7において、原料であるテレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類を前者と後者とのモル比が1:1.7〜1:3.0の範囲で供給し、第1工程の温度は220℃〜250℃、圧力は33kPa〜150kPa、第2工程の温度は230℃〜255℃、圧力は100kPa〜0.133kPa 、第3工程の温度は230℃〜255℃、圧力は0.665kPa〜0.067kPaの範囲で実施する連続製造方法。 8. The method according to claim 7, wherein the molar ratio of the aromatic dicarboxylic acid or its derivative mainly composed of terephthalic acid as a raw material and the glycol mainly composed of 1,4-butanediol is 1: 1.7. Is supplied in the range of 工程 1: 3.0, the temperature of the first step is 220 ° C. to 250 ° C., the pressure is 33 kPa to 150 kPa, the temperature of the second step is 230 ° C. to 255 ° C., and the pressure is 100 kPa to 0.133 kPa. A continuous production method in which the third step is performed at a temperature of 230 ° C. to 255 ° C. and a pressure of 0.665 kPa to 0.067 kPa.  請求項8において、原料であるテレフタル酸を主成分とする芳香族ジカルボン酸またはその誘導体と1,−4ブタンジオールを主成分とするグリコール類を前者と後者とのモル比が1:1.7〜1:3.0の範囲で供給し、第1工程の温度は220℃〜250℃、圧力は33kPa〜150kPa、第2工程の温度は230℃〜255℃、圧力は100kPa〜0.133kPa 、第3工程及び第4工程の温度は230℃〜255℃、圧力は0.665kPa〜0.067kPaの範囲で実施する連続製造方法。 9. The composition according to claim 8, wherein the molar ratio of the aromatic dicarboxylic acid or its derivative mainly composed of terephthalic acid as a raw material and the glycol mainly composed of 1,4-butanediol is 1: 1.7. Is supplied in the range of 工程 1: 3.0, the temperature of the first step is 220 ° C. to 250 ° C., the pressure is 33 kPa to 150 kPa, the temperature of the second step is 230 ° C. to 255 ° C., and the pressure is 100 kPa to 0.133 kPa. A continuous manufacturing method in which the temperature of the third step and the fourth step is 230 ° C. to 255 ° C., and the pressure is 0.665 kPa to 0.067 kPa.  請求項7において、第3反応器の撹袢翼の回転数範囲を0.5rpmから10rpm とする連続製造方法。 (8) The continuous production method according to (7), wherein the rotation speed of the stirring blade of the third reactor is from 0.5 rpm to 10 rpm.  請求項8において、第3及び4反応器の撹袢翼の回転数範囲を0.5rpmから10rpm とする連続製造方法。 (10) The continuous production method according to (8), wherein the rotation speed range of the stirring blades of the third and fourth reactors is 0.5 rpm to 10 rpm.  請求項7において、第1工程,第2工程,第3工程の合計反応時間が4から7.5時間の間で運転する連続製造方法。 The continuous production method according to claim 7, wherein the total reaction time of the first step, the second step, and the third step is operated between 4 and 7.5 hours.  請求項8において、第1工程,第2工程,第3工程,第4工程の合計反応時間が6から8.5 時間の間で運転する連続製造方法。 The method according to claim 8, wherein the total reaction time of the first step, the second step, the third step, and the fourth step is between 6 and 8.5 hours.  請求項7または請求項8において、テレフタル酸を主成分とする芳香族ジカルボン酸と1,−4ブタンジオールを主成分とするグリコール類は前者と後者のモル比1:1.7〜1:3.0に調整したスラリーはエステル化反応触媒あるいは重合反応触媒とを添加して第1工程に供給する連続製造方法。 In Claim 7 or Claim 8, the aromatic dicarboxylic acid containing terephthalic acid as a main component and the glycols containing 1,4-butanediol as a main component have a molar ratio of the former to the latter of 1: 1.7 to 1: 3. A continuous production method in which the slurry adjusted to 2.0 is added with an esterification reaction catalyst or a polymerization reaction catalyst and supplied to the first step.  請求項8において、第3工程の第3反応器に並列して複数台の第3反応器を設ける連続製造方法。

9. The continuous production method according to claim 8, wherein a plurality of third reactors are provided in parallel with the third reactor in the third step.

JP2003322376A 2000-03-09 2003-09-16 Method and apparatus for producing polybutylene terephthalate Withdrawn JP2004002902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322376A JP2004002902A (en) 2000-03-09 2003-09-16 Method and apparatus for producing polybutylene terephthalate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000070986 2000-03-09
JP2003322376A JP2004002902A (en) 2000-03-09 2003-09-16 Method and apparatus for producing polybutylene terephthalate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000283783A Division JP3489554B2 (en) 2000-03-09 2000-09-13 Continuous production equipment for polybutylene terephthalate

Publications (1)

Publication Number Publication Date
JP2004002902A true JP2004002902A (en) 2004-01-08

Family

ID=30445601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322376A Withdrawn JP2004002902A (en) 2000-03-09 2003-09-16 Method and apparatus for producing polybutylene terephthalate

Country Status (1)

Country Link
JP (1) JP2004002902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8143367B2 (en) * 2006-01-24 2012-03-27 Lurgi Zimmer Gmbh Method for the esterification of terephtalic acid with butanediol, method for the manufacture of polybutylene terephtalate and a device therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316747A (en) * 1997-05-19 1998-12-02 Hitachi Ltd Process and apparatus for producing polyethylene terephthalate
JPH1192555A (en) * 1997-09-19 1999-04-06 Hitachi Ltd Production of polyester and apparatus thereof
JPH11335453A (en) * 1998-05-28 1999-12-07 Hitachi Ltd Production of poly(ethylene terethalate) and manufacturing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316747A (en) * 1997-05-19 1998-12-02 Hitachi Ltd Process and apparatus for producing polyethylene terephthalate
JPH1192555A (en) * 1997-09-19 1999-04-06 Hitachi Ltd Production of polyester and apparatus thereof
JPH11335453A (en) * 1998-05-28 1999-12-07 Hitachi Ltd Production of poly(ethylene terethalate) and manufacturing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8143367B2 (en) * 2006-01-24 2012-03-27 Lurgi Zimmer Gmbh Method for the esterification of terephtalic acid with butanediol, method for the manufacture of polybutylene terephtalate and a device therefor

Similar Documents

Publication Publication Date Title
KR100351783B1 (en) Process and apparatus for producing polybutylene terephthalate
JP3847765B2 (en) Continuous production method of polybutylene terephthalate
KR102532693B1 (en) Continuous process for producing polybutylene terephthalate using purified terephthalic acid and 1,4-butane diol
JP2000095851A (en) Production of polyethylene terephthalate
WO2007026650A1 (en) Polybutylene terephthalate and process for production thereof
JP3489554B2 (en) Continuous production equipment for polybutylene terephthalate
JP3713894B2 (en) Method and apparatus for producing polyethylene terephthalate
JP2000344874A (en) Method and apparatus for producing polybutylene terephthalate
JP2004002902A (en) Method and apparatus for producing polybutylene terephthalate
JP2006089761A (en) Method for producing polybutylene terephthalate and apparatus for producing the same
JP2000327762A (en) Production and manufacturing equipment for polybutylene terephthalate
JPH11335453A (en) Production of poly(ethylene terethalate) and manufacturing equipment
JP3489459B2 (en) Method for producing polyethylene terephthalate
JPH11302366A (en) Production of polyethylene terephthalate and apparatus for the production
JP2004137454A (en) Method for producing polybutylene terephthalate
JP3264258B2 (en) Method and apparatus for producing polycarbonate
JP4003699B2 (en) Polyester manufacturing method
JP5906778B2 (en) Method and apparatus for producing polybutylene terephthalate
JP2006152252A (en) Polybutylene terephthalate and its production process
JP2005105262A (en) Polybutylene terephthalate and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A711 Notification of change in applicant

Effective date: 20060823

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

RD02 Notification of acceptance of power of attorney

Effective date: 20070906

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101118