JP3722138B2 -   Continuous polycondensation apparatus and continuous polycondensation method - Google Patents

  Continuous polycondensation apparatus and continuous polycondensation method Download PDF

Info

Publication number
JP3722138B2
JP3722138B2 JP2003322375A JP2003322375A JP3722138B2 JP 3722138 B2 JP3722138 B2 JP 3722138B2 JP 2003322375 A JP2003322375 A JP 2003322375A JP 2003322375 A JP2003322375 A JP 2003322375A JP 3722138 B2 JP3722138 B2 JP 3722138B2
Authority
JP
Japan
Prior art keywords
liquid
viscosity
stirring
main body
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003322375A
Other languages
Japanese (ja)
Other versions
JP2004002901A (en
JP2004002901A5 (en
Inventor
英和 中元
進 原田
康成 佐世
宙夫 鈴木
親生 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003322375A priority Critical patent/JP3722138B2/en
Publication of JP2004002901A publication Critical patent/JP2004002901A/en
Publication of JP2004002901A5 publication Critical patent/JP2004002901A5/en
Application granted granted Critical
Publication of JP3722138B2 publication Critical patent/JP3722138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、ポリエチレンテレフタレート,ポリブチレンテレフタレート等のポリエステル系高分子の連続製造に好適な連続重縮合装置及び連続重縮合方法に関するものである。 The present invention relates to a continuous polycondensation apparatus and a continuous polycondensation method suitable for continuous production of polyester polymers such as polyethylene terephthalate and polybutylene terephthalate.

従来、ポリエチレンテレフタレート等の重縮合系高分子の製造方法としては原料としてテレフタル酸とエチレングリコールをエステル化のために適当な割合で混合槽に入れ、ポンプによりエステル化反応槽へ送る。このエステル化工程は撹拌翼付きの撹拌槽を2から3個直列に配置し、副反応物としてでる水を蒸留塔で分離する。次に前重合工程として立形撹拌槽や横形の撹拌槽が複数台設置されさらに最終重合工程として横形の撹拌槽が設置されている。これらの重合工程の槽には副反応物として出るエチレングリコールを除去するためにコンデンサーが設置され、減圧雰囲気で運転される。従来のポリエステル製造工程では反応槽の数が4から6缶あり、それぞれの反応槽には撹拌翼とその動力源が装備され、また副反応物を分離除去するための蒸留塔やコンデンサーが設置されている。さらに重合工程は減圧雰囲気で運転されるために真空手段はべつの装置によって操作しなければならず、製造装置の運転には高額の維持費と装置経費を必要としている。   Conventionally, as a method for producing a polycondensation polymer such as polyethylene terephthalate, terephthalic acid and ethylene glycol as raw materials are put into a mixing tank at an appropriate ratio for esterification, and sent to an esterification reaction tank by a pump. In this esterification step, 2 to 3 stirring tanks with stirring blades are arranged in series, and water produced as a side reaction product is separated by a distillation tower. Next, a plurality of vertical stirring tanks and horizontal stirring tanks are installed as a prepolymerization process, and a horizontal stirring tank is installed as a final polymerization process. In these polymerization process tanks, a condenser is installed to remove ethylene glycol as a by-product, and the apparatus is operated in a reduced pressure atmosphere. In the conventional polyester manufacturing process, the number of reaction tanks is 4 to 6 cans, each reaction tank is equipped with a stirring blade and its power source, and a distillation tower and condenser for separating and removing byproducts are installed. ing. Furthermore, since the polymerization process is operated in a reduced-pressure atmosphere, the vacuum means must be operated by another apparatus, and the operation of the production apparatus requires high maintenance costs and apparatus costs.

特開平7−207009号公報Japanese Patent Laid-Open No. 7-207090

本発明の問題は高分子量ポリエステルの生産のための公知の方法を改善したものであり、装置全体の効率を向上し、工場設備のエネルギー節約により経済的に操作するものである。   The problem of the present invention is an improvement over known methods for the production of high molecular weight polyesters, which improves the overall efficiency of the apparatus and operates economically with energy savings in factory equipment.

本発明の目的は、上記従来技術を改善し、必要最小限の反応器構成により、最少のエネルギーで品質の良い重合物を効率良く反応させる連続重縮合装置及び連続重縮合方法を提供することにある。   It is an object of the present invention to provide a continuous polycondensation apparatus and a continuous polycondensation method that improve the above-described prior art and efficiently react a high-quality polymer with a minimum amount of energy with a minimum required reactor configuration. is there.

上記目的は、実質的に横型の円筒状容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口ノズル及び出口ノズルを有し、本体の上部に揮発物の出口ノズルを持ち、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータを設けた連続重縮合装置において、撹拌ロータは該撹拌ロータの中心部に回転シャフトを持たず複数本の強度部材と連結されるロータ支持部材を両端に持ち、該支持部材間に形成された処理液の粘度に応じた低粘度域,中粘度域,高粘度域の撹拌翼ブロックで構成され、該各々の攪拌翼ブロックが、被処理液の入口ノズル側の低粘度域に設けられ複数のカキトリ板により構成されるバケット部と該バケット部から処理液が注ぎかけられる薄板円板および中空円板とから成る低粘度撹拌ブロックと、中粘度域に設けられ両側に中空円板を配置しその中に同一外径の中空薄板を複数枚設置しさらに外周部にこれらの部材を貫通したカキトリ板を放射状に複数個設置して構成した中粘度撹拌ブロックと、被処理液の出口ノズル側の高粘度域に設けられ車輪型に中空部を有する円板を複数個適当な間隔で設置し該円板の外周部に前後互い違いにカキトリ板を設置した高粘度撹拌ブロックでなり、揮発物の出口ノズル側のロータ支持部材の本体側面側に攪拌ロータの回転によって本体側壁面の処理液を外周部へ押し出すカキトリ部材を有した連続重縮合装置とし、該連続重縮合装置を用い、重合度の低いプレポリマーを被処理液の入口ノズルより連続供給し、それぞれの撹拌ブロックによって液膜を形成しながら攪拌ロータを回転させて処理液を撹拌することにより、処理液の表面更新を行って揮発物を蒸発させ、前記被処理液の出口ノズル方向へ移動させて重合度を高めてポリエステル系高分子を重縮合させる連続重縮合方法とすることにより、達成される。 The above-mentioned object has an inlet nozzle and an outlet nozzle for the liquid to be treated at the lower end of the substantially horizontal cylindrical container main body in the longitudinal direction and a lower end of the other end, respectively, and an outlet nozzle for volatiles at the upper part of the main body. In a continuous polycondensation apparatus provided with a stirring rotor that rotates in the longitudinal direction inside and close to the inside of the main body, the stirring rotor does not have a rotating shaft at the center of the stirring rotor and is a rotor that is connected to a plurality of strength members A support member is provided at both ends, and is composed of stirring blade blocks in a low viscosity region, a medium viscosity region, and a high viscosity region corresponding to the viscosity of the treatment liquid formed between the support members. A low-viscosity agitation block comprising a bucket part provided in a low-viscosity area on the inlet nozzle side of the processing liquid, and a thin disk and a hollow disk into which the processing liquid is poured from the bucket part; During ~ A hollow disk is arranged on both sides, a plurality of hollow thin plates with the same outer diameter are installed in it, and a plurality of oyster plates that penetrate these members are installed radially on the outer periphery. A plurality of discs having a hollow portion in the wheel mold provided in the high viscosity region on the exit nozzle side of the viscosity stirring block and the liquid to be treated are installed at appropriate intervals, and oyster plates are alternately placed in the front and back on the outer peripheral portion of the disc. A continuous polycondensation device consisting of an installed high-viscosity stirring block and having a oyster member that pushes the processing liquid on the side wall of the main body to the outer periphery by rotation of the stirring rotor on the side of the main body of the rotor support member on the volatiles outlet nozzle side Using the continuous polycondensation device, a prepolymer having a low degree of polymerization is continuously supplied from the inlet nozzle of the liquid to be processed, and the processing liquid is stirred by rotating the stirring rotor while forming a liquid film by each stirring block. Thus, the surface of the treatment liquid is renewed to evaporate the volatiles and move toward the outlet nozzle of the liquid to be treated to increase the degree of polymerization and polycondensate the polyester polymer to form a continuous polycondensation method. Is achieved.

本発明によれば、ポリエステル系高分子の連続製造におけるエステル化工程,前重合工程,最終重合工程の内の最終重合工程で、処理液が数百Pasの処理液粘度から取扱うことができ数千Pasの処理液粘度まで上昇させることができるので、装置全体の効率向上し、工場設備のエネルギー節約により経済的に操作することができる
According to the present invention, the treatment liquid can be handled from the treatment liquid viscosity of several hundred Pas in the final polymerization process among the esterification process, the pre-polymerization process, and the final polymerization process in the continuous production of the polyester polymer. Since the viscosity of the Pas treatment solution can be increased, the efficiency of the entire apparatus is improved, and it can be operated economically by saving energy in factory equipment.

必要最小限の反応器構成により、最少のエネルギーで品質の良い重合物を効率良く反応させるという目的を、ポリエステルの連続製造設備をエステル化工程,前重合工程,最終重合工程の3つの反応器とすることにより実現した。   With the minimum required reactor configuration, the objective of efficiently reacting a high-quality polymer with the least energy is to use a continuous production facility for polyester with three reactors: esterification process, pre-polymerization process, and final polymerization process. It was realized by doing.

図1に本発明の一実施例を示す。図1は本発明をポリエチレンテレフタレートの連続製造プロセスの装置構成図である。工業的なポリエステルの製造方法として、直接エステル化法が、経済的に非常に有利であるので、最近では直接エステル化方法が多く採用されている。図において31はポリエチレンテレフタレートの原料であるTPA(テレフタル酸)とEG(エチレングリコール)を所定の割合で混合,撹拌する原料調整槽である。製造プロセスの中にはこの段階で重合反応触媒や安定剤,色調調整剤などの添加物を加える場合がある。重合反応触媒としてはアンチモン,チタン,ゲルマニウム,錫,亜鉛、等の金属化合物があげられ、使用する触媒の種類や組み合わせにより、反応速度が異なるだけでなく、生成するポリエステルの色相及び熱安定性が異なることが良く知られている。さらにこれらの反応は触媒の存在化で高温で長時間行われるために種々の副反応が伴い、重合物が黄色に着色したり、ジエチレングリコール(DEG)の含有量や末端カルボキシル基濃度が適正値以上に増加して、ポリエステルの融点及び強度の低下などの物理的性質が低下したりする。このような問題点を改良するために新しい触媒の開発が試みられているが、現在最も多く工業的に使用されているアンチモン化合物、特に三酸価アンチモンが価格や性能面で優れている。しかし、この触媒を用いても生成したポリエステル重合物の着色は避けられない。このために安定剤として燐系安定剤(例えばトリメチルホスフェート,トリフェニルホスフェート)を併用して改善している。また、別の製造プロセスにおいては重合触媒や安定剤の投入位置を工夫して品質を安定させている。通常のプロセスでは触媒の量は200から400ppmを安定剤の量は50から200ppmを用いるのが好ましい。   FIG. 1 shows an embodiment of the present invention. FIG. 1 is an apparatus configuration diagram of a continuous production process of polyethylene terephthalate according to the present invention. As an industrial polyester production method, the direct esterification method is economically very advantageous, and recently, the direct esterification method has been widely adopted. In the figure, 31 is a raw material adjustment tank in which TPA (terephthalic acid) and EG (ethylene glycol), which are polyethylene terephthalate raw materials, are mixed and stirred at a predetermined ratio. In the manufacturing process, additives such as a polymerization reaction catalyst, a stabilizer, and a color adjusting agent may be added at this stage. Examples of the polymerization reaction catalyst include metal compounds such as antimony, titanium, germanium, tin, and zinc. Not only the reaction rate varies depending on the type and combination of the catalyst used, but also the hue and thermal stability of the resulting polyester. It is well known that it is different. Furthermore, since these reactions are carried out at high temperatures for a long time due to the presence of a catalyst, various side reactions are involved, and the polymer is colored yellow, or the content of diethylene glycol (DEG) and the terminal carboxyl group concentration are more than appropriate values. The physical properties such as the melting point and strength of the polyester are lowered. In order to improve such problems, new catalysts have been developed. However, antimony compounds that are most commonly used industrially, particularly antimony triacid, are superior in price and performance. However, coloring of the produced polyester polymer is inevitable even when this catalyst is used. For this reason, a phosphorus stabilizer (for example, trimethyl phosphate, triphenyl phosphate) is used in combination as a stabilizer. Also, in another manufacturing process, the quality is stabilized by devising the input position of the polymerization catalyst and stabilizer. In a normal process, it is preferred to use 200 to 400 ppm of catalyst and 50 to 200 ppm of stabilizer.

以上のように調整された原料はエステル化反応槽33へ原料を供給する供給ライン32を経由して行く。エステル化反応槽(第1反応器)33の外周部には処理液を反応温度に保つためにジャケット構造(図示せず)になっており液の内部には液の加熱手段として多缶式熱交換機34が設置され外部からの熱源により処理液を加熱し、自然循環により内部の液を循環しながら反応を進行させる。ここで最も望ましい反応器の型はエステル化反応を自己の反応により生成する副反応物の蒸発作用を利用して反応器内の処理液を自然循環させるカランドリア型が望ましい。この形の反応器は外部の撹拌動力源を必要としないため装置構成が単純でしかも撹拌軸の軸封装置も不要となり反応器の制作コストが安価となる利点がある。このような反応器の一例として図2に示す様な装置が望ましい。   The raw material adjusted as described above goes through a supply line 32 for supplying the raw material to the esterification reaction tank 33. The outer periphery of the esterification reaction tank (first reactor) 33 has a jacket structure (not shown) in order to keep the treatment liquid at the reaction temperature. An exchanger 34 is installed to heat the treatment liquid with an external heat source, and the reaction proceeds while circulating the liquid inside by natural circulation. Here, the most desirable reactor type is preferably a Calandria type in which the processing liquid in the reactor is naturally circulated by utilizing the evaporation effect of a by-product generated by the self-reaction of the esterification reaction. Since this type of reactor does not require an external stirring power source, the configuration of the apparatus is simple, and a shaft sealing device for the stirring shaft is not required, and the production cost of the reactor is reduced. As an example of such a reactor, an apparatus as shown in FIG. 2 is desirable.

図2に本装置の一実施例を示す。被処理液52は立形の蒸発缶1内の下部に設けた入口53より流入し、多管式熱交換器4の複数の伝熱管内(図示していない)側を流れ加熱され、自然対流により上昇する。ここで被処理液52の低沸点成分の一部は蒸発しベーパー管55より装置外に放出される。残りの被処理液52は蒸発缶51の内壁と多管式熱交換器54のシェルの外壁との間を自然対流により流下し、多管式熱交換器4のシェル下部に設けられた円筒状の助走空間56に流入する。ここで処理液の流れは乱れの少ない整流されたものになり、さらに多管式熱交換器54の管内の平均流速は自然対流で流下する平均流速よりも増速されているのでより均一な速度分布で複数の伝熱管に流入し、各被処理液は再び均一に加熱され自然対流による循環を繰り返す。この過程で徐々に低沸点成分は蒸発し、適当な対流時間を経た後に濃縮された被処理液59は出口60を通って系外へ導き出される。ここで、円滑な増速流を発生させるためには、伝熱管の総流路面積よりも円筒状の助走空間の流路面積を大きく設計し、さらに蒸発缶51の内壁と多管式熱交換器54のシェルの外壁との間に形成されるに二重管部分の流路面積を助走空間の流路面積よりも大きくすることにより達成される。なお、57は熱媒の入口、58は熱媒の出口を示し、蒸発缶51の回りは断熱材あるいはジャケットにより囲まれている(図示せず)。   FIG. 2 shows an embodiment of this apparatus. The liquid 52 to be treated flows from an inlet 53 provided in the lower part of the vertical evaporator 1, and flows and heats in a plurality of heat transfer tubes (not shown) of the multi-tube heat exchanger 4, thereby natural convection. It rises by. Here, a part of the low boiling point component of the liquid 52 to be treated is evaporated and discharged from the vapor pipe 55 to the outside of the apparatus. The remaining liquid to be treated 52 flows down by natural convection between the inner wall of the evaporator 51 and the outer wall of the shell of the multitubular heat exchanger 54, and has a cylindrical shape provided at the bottom of the shell of the multitubular heat exchanger 4. It flows into the run-up space 56. Here, the flow of the processing liquid is rectified with less turbulence, and the average flow velocity in the tube of the multi-tube heat exchanger 54 is increased more than the average flow velocity flowing down by natural convection, so that the velocity is more uniform. It flows into a plurality of heat transfer tubes in a distribution, and each liquid to be treated is heated again uniformly and repeats circulation by natural convection. In this process, the low boiling point components gradually evaporate, and the liquid 59 to be treated which has been concentrated after an appropriate convection time is led out of the system through the outlet 60. Here, in order to generate a smooth accelerated flow, the flow passage area of the cylindrical run-up space is designed to be larger than the total flow passage area of the heat transfer tubes, and further, the inner wall of the evaporator 51 and the multitubular heat exchange are designed. This is achieved by making the flow area of the double pipe portion formed between the outer wall of the shell of the vessel 54 larger than the flow area of the running space. In addition, 57 shows the inlet of a heat medium, 58 shows the outlet of a heat medium, and the circumference | surroundings of the evaporator 51 are enclosed by the heat insulating material or the jacket (not shown).

従って、本実施例の蒸発缶では熱交換器の軸方向に沿って速度分布が均一なため被処理液はより均一な蒸発あるいは反応をすることができ、より良好な製品品質を短い滞留時間で得ることができる効果がある。被処理液52が固体粒子と液体の混合物(以下スラリーと記述する)の場合も、自然循環する被処理液52は多管式熱交換器54のシェル下部に設けられた円筒状の助走空間56に流入するが、円錐状の部材62に沿ってより円滑に上昇するために、固体粒子が底部に沈殿することがない。被処理液がスラリーの場合は蒸発缶の底部に内部循環する被処理液を上昇させるための円錐状の部材を設けることにより、スラリーに含まれる固体粒子の沈殿を防ぐことができる。ここで、円錐状の部材はある曲率を持っていても良い。従って、本実施例の蒸発缶ではスラリーの自然循環により好適な蒸発缶を提供できる効果があり、信頼性のある良好な品質の製品を得ることができる。しかし、本発明においてこの装置を限定するものではなくプロセス上の理由から撹拌翼を持った反応器を使用しても差し支えない。   Therefore, in the evaporator according to the present embodiment, since the velocity distribution is uniform along the axial direction of the heat exchanger, the liquid to be treated can perform more uniform evaporation or reaction, and better product quality can be achieved with a short residence time. There is an effect that can be obtained. Even when the liquid 52 to be processed is a mixture of solid particles and liquid (hereinafter referred to as slurry), the liquid 52 to be naturally circulated is a cylindrical running space 56 provided in the lower part of the shell of the multi-tubular heat exchanger 54. However, since the particles rise more smoothly along the conical member 62, the solid particles do not settle at the bottom. When the liquid to be treated is a slurry, precipitation of solid particles contained in the slurry can be prevented by providing a conical member for raising the liquid to be treated internally circulated at the bottom of the evaporator. Here, the conical member may have a certain curvature. Therefore, the evaporator according to the present embodiment has an effect that a suitable evaporator can be provided by natural circulation of the slurry, and a reliable and good quality product can be obtained. However, in the present invention, this apparatus is not limited, and a reactor having a stirring blade may be used for process reasons.

第1反応器において、反応により生成する水は水蒸気となり、気化したEG蒸気と気相部5を形成する。このときの推奨すべき反応条件としては温度は240度から280度で加圧条件が望ましい。気相部5のガスはその上流側に設けられた精留塔(図示せず)により水とEGとに分離され、水は系外に除去され、EGは再び系内に戻される。本発明の利点としてエステル化工程を一つの反応器で処理することにより精留塔の数を一つにすることが可能となり、精留塔の制作経費だけでなく配管やバルブの数制御装置の数などを削減でき大幅な装置コストの低減となる。エステル化反応槽33で所定の反応時間経過した処理液は所定のエステル化率に到達し、連絡管36により初期重合槽(第2反応器)37に供給される。このとき処理液は熱交換器38により所定の反応温度に加熱され重縮合反応を行い重合度を上昇させる。このときの反応条件としては270度から290度で圧力は266Paから133Paで重合度20から40程度まで反応させる。   In the first reactor, water produced by the reaction becomes water vapor, and forms vapor phase portion 5 with vaporized EG vapor. At this time, as recommended reaction conditions, the temperature is 240 ° C. to 280 ° C., and pressurized conditions are desirable. The gas in the gas phase section 5 is separated into water and EG by a rectification tower (not shown) provided on the upstream side thereof, the water is removed from the system, and the EG is returned to the system again. As an advantage of the present invention, the number of rectification towers can be reduced to one by treating the esterification process in one reactor, and not only the production cost of the rectification tower but also the number of pipes and valves can be controlled. The number of devices can be reduced, resulting in a significant reduction in equipment costs. The processing liquid that has passed a predetermined reaction time in the esterification reaction tank 33 reaches a predetermined esterification rate, and is supplied to an initial polymerization tank (second reactor) 37 through a communication pipe 36. At this time, the treatment liquid is heated to a predetermined reaction temperature by the heat exchanger 38 and undergoes a polycondensation reaction to increase the degree of polymerization. At this time, the reaction conditions are 270 to 290 degrees, the pressure is 266 to 133 Pa, and the polymerization degree is about 20 to 40.

本実施例で示した初期重合槽は撹拌翼を持たない反応器を用いて説明しているがこの反応器を限定するものではない。しかし、初期重合段階においては反応は重合反応速度が反応の速度の律束となっている段階であり反応に必要な熱量を十分に供給すれば反応は順調に進行していく。この観点から処理液は撹拌翼で不必要な撹拌作用を受ける必要はなく重縮合反応によって生成するEGが系外に離脱するだけでよい。   Although the initial polymerization tank shown in the present embodiment is described using a reactor having no stirring blade, this reactor is not limited. However, in the initial polymerization stage, the reaction is a stage in which the polymerization reaction rate is a rule of the reaction rate, and the reaction proceeds smoothly if a sufficient amount of heat necessary for the reaction is supplied. From this point of view, the treatment liquid does not need to be subjected to unnecessary stirring action by the stirring blade, and EG generated by the polycondensation reaction only needs to be removed from the system.

このような操作に最適な反応器としては図3に示す様な装置が望ましい。図において、71は竪長円筒状の容器本体で外周を熱媒ジャケット72で覆われており、本体71中央長手方向に上部が開放した下降管73が取り付けられている。本体71内下部には下降管73に平行に複数個の伝熱管74が取り付けられ、この伝熱管74の上部の下降管73の外側には螺旋状の邪魔板75が複数個取付けられる。それぞれの邪魔板75は本体71内壁との間に揮発物を逃がす隙間83を有して本体71内を上下方向に仕切り、複数個の滞留室84を形成している。本体71内上部、すなわち下降管73及び最上部の邪魔板75Cの上端には被処理液と揮発物とを分離するための空間76を持つ。また、下降貫73の内部には被処理液を薄膜流下させる下降管73の内側に複数個のテーパ状の液受け88を取り付けており、下降管73内を流下する被処理液をそれぞれの液受け88に保持して順次下方に移動させることができるので、被処理液のショートパスを少なくし、効率良く揮発物を蒸発分離して反応を進めることができる。   As an optimum reactor for such operation, an apparatus as shown in FIG. 3 is desirable. In the figure, reference numeral 71 denotes a long cylindrical container body, the outer periphery of which is covered with a heat medium jacket 72, and a downcomer pipe 73 whose upper part is open in the longitudinal direction of the center of the main body 71 is attached. A plurality of heat transfer tubes 74 are attached to the lower portion of the main body 71 in parallel with the downcomer tube 73, and a plurality of spiral baffle plates 75 are attached to the outside of the downcomer tube 73 above the heat transfer tube 74. Each baffle plate 75 has a gap 83 for allowing volatiles to escape between the inner wall of the main body 71 and partitions the main body 71 in the vertical direction to form a plurality of retention chambers 84. A space 76 for separating the liquid to be processed and volatile substances is provided in the upper part of the main body 71, that is, at the upper ends of the downcomer 73 and the uppermost baffle plate 75C. In addition, a plurality of tapered liquid receivers 88 are attached to the inside of the down penetrating 73 inside the down pipe 73 for flowing the liquid to be processed into a thin film, and the liquid to be processed flowing down the down pipe 73 is supplied to each liquid. Since it can hold | maintain at the receptacle 88 and can be moved below sequentially, the short path | pass of a to-be-processed liquid can be decreased, and a reaction can be advanced by evaporating and separating volatiles efficiently.

このような装置において、入口ノズル77より連続して供給された被処理液は、まず伝熱管74に入って加熱されながら上昇し、最下部の滞留室84Aに達する。この滞留室
84Aを徐々に上昇する間に重縮合反応が進み、生成したエチレングリコール等の揮発物は邪魔板75外側の隙間83から上部へ移動する。一方、被処理液は、邪魔板75の螺旋部に沿って旋回流を起こしながら上昇し、次の滞留室84Bへ流入する。このとき旋回しながらスムースにつぎの滞留室84Bへ移動するので、逆流を起こすことも少なく、被処理液は順次滞留部を上昇し、効率良く重縮合反応が進む。
In such an apparatus, the liquid to be treated continuously supplied from the inlet nozzle 77 first enters the heat transfer tube 74 and rises while being heated, and reaches the lowermost residence chamber 84A. The polycondensation reaction proceeds while the residence chamber 84A is gradually raised, and the generated volatile matter such as ethylene glycol moves upward from the gap 83 outside the baffle plate 75. On the other hand, the liquid to be treated rises while causing a swirling flow along the spiral portion of the baffle plate 75 and flows into the next staying chamber 84B. At this time, since it smoothly moves to the next staying chamber 84B while turning, there is little backflow, and the liquid to be treated sequentially rises in the staying portion, and the polycondensation reaction proceeds efficiently.

このようにして最上部の滞留室84Cに到達した被処理液は下降管73の頂部82を乗り越えて下降管73の内側を流下する。被処理液は下降管73の内側を薄膜となって流下し、反応により生じた揮発物を蒸発分離して、さらに重縮合反応を進めることができる。このようにして揮発物を蒸発分離し、反応の進んだ被処理液は出口ノズル78より系外に排出される。一方生成した揮発物は本体内の上部空間6で被処理液(重合物)の飛沫と分離し、揮発物の出口ノズル79より系外に排出される。   In this way, the liquid to be processed that has reached the uppermost residence chamber 84C passes over the top portion 82 of the downcomer 73 and flows down inside the downcomer 73. The liquid to be treated flows down as a thin film inside the downcomer 73, and the volatiles generated by the reaction can be evaporated and separated to further proceed the polycondensation reaction. In this way, the volatiles are separated by evaporation, and the liquid to be treated which has undergone the reaction is discharged out of the system from the outlet nozzle 78. On the other hand, the generated volatile matter is separated from the splash of the liquid to be treated (polymerized product) in the upper space 6 in the main body, and discharged from the volatile matter outlet nozzle 79 to the outside of the system.

このとき揮発物に被処理液(重合物)が同伴する問題すなわち飛沫同伴が起こりやすいが、本発明では螺旋状の邪魔板75により上部へ突沸する被処理液及び揮発物を円周方向に向けることができ、飛沫同伴を押さえることができる。このような装置により発生する揮発物、即ちEGは減圧雰囲気に保たれた気相部9で気化し、その上流側に設けられたコンデンサーで凝縮した後に系外へ排出される。本発明の利点として初期重合工程を一つの反応器で処理することによりコンデンサーの数を一つにすることが可能となり、コンデンサーの製作経費だけでなく配管やバルブの数制御装置の数などを削減でき大幅な装置コストの低減となる。初期重合槽(第2反応器)37で所定の反応時間を経過した処理液は連絡管40により最終重合機(第3反応器)41に供給される。最終重合機では中心部に撹拌軸の無い撹拌翼42により良好な表面更新作用を受けながらさらに重縮合反応を進め重合度を上昇させ目的の重合度のポリマーを製造する。   At this time, a problem that the liquid to be treated (polymer) is accompanied by the volatile matter, that is, droplet entrainment is likely to occur, but in the present invention, the liquid to be treated and the volatile matter that bounce upward are directed in the circumferential direction by the spiral baffle plate 75 Can be suppressed. Volatile matter generated by such an apparatus, that is, EG, is vaporized in the gas phase portion 9 maintained in a reduced pressure atmosphere, condensed by a condenser provided on the upstream side thereof, and then discharged outside the system. As an advantage of the present invention, the number of condensers can be reduced to one by treating the initial polymerization process in a single reactor, reducing the number of pipes and valves as well as the number of condensers and the number of control devices. This greatly reduces the equipment cost. The processing liquid that has passed a predetermined reaction time in the initial polymerization tank (second reactor) 37 is supplied to the final polymerization machine (third reactor) 41 through the communication tube 40. In the final polymerization machine, a polymer having the desired degree of polymerization is produced by further proceeding with the polycondensation reaction while receiving a good surface renewal action by the stirring blade 42 having no stirring shaft at the center, thereby increasing the degree of polymerization.

最終重合機(第3反応器)として最適な装置としては図4,図15に記載の装置が表面更新性能、消費動力特性が最も優れている。また、処理液の粘度範囲が広いので従来、2槽に分割したりして処理していたものを一台の装置で可能となり大幅な装置コストの低減となる。図4により最終重合機について説明する。図4は本発明の装置の縦断面を示す正面図である。図において、1は横長円筒状の容器本体で外周を熱媒ジャケット(図示せず)で覆われており、長手方向の両端に回転支持用の軸3a、3bが取り付けられている。これらの回転支持用の軸3a,3b間に撹拌ロータ4が取付けられ、一方の回転軸3aは駆動装置(図示せず)に連結されている。この撹拌ロータ4は両端に5a,5b,5c,
5d(本実施例では4本の場合を示すがロータの大きさによって使用する本数は決定される)と連結されるロータ支持部材2a,2bを持ち、この支持部材2a,2b間に複数個の撹拌ブロックから成る撹拌ロータ4を形成している。支持部材2aは低粘度側部材で、2bは高粘度側支持部材である。この支持部材2bは撹拌ロータ4の外径よりは小さく構成され、該支持部材の本体側面側にはカキトリ部材13a,13bが設けられ、ロータの回転によって本体側壁面の処理液を外周部へ押し出すように取り付けられている。詳細な構成を図4のEE断面である図14に示す。
As the optimum apparatus for the final polymerization machine (third reactor), the apparatus shown in FIGS. 4 and 15 has the most excellent surface renewal performance and power consumption characteristics. In addition, since the viscosity range of the treatment liquid is wide, it is possible to use a single apparatus to perform treatment by dividing into two tanks, and the apparatus cost is greatly reduced. The final polymerization machine will be described with reference to FIG. FIG. 4 is a front view showing a longitudinal section of the apparatus of the present invention. In the figure, 1 is a horizontally long cylindrical container body whose outer periphery is covered with a heat medium jacket (not shown), and rotation support shafts 3a and 3b are attached to both ends in the longitudinal direction. A stirring rotor 4 is attached between the rotation supporting shafts 3a and 3b, and one rotating shaft 3a is connected to a drive device (not shown). This stirring rotor 4 has 5a, 5b, 5c,
5d (in the present embodiment, four cases are shown, but the number to be used is determined depending on the size of the rotor) and the rotor support members 2a and 2b are connected. A stirring rotor 4 composed of a stirring block is formed. The support member 2a is a low viscosity side member, and 2b is a high viscosity side support member. The support member 2b is configured to be smaller than the outer diameter of the agitation rotor 4, and oyster members 13a and 13b are provided on the side surface of the main body of the support member, and the processing liquid on the side wall surface of the main body is pushed out to the outer peripheral portion by the rotation of the rotor. It is attached as follows. A detailed configuration is shown in FIG. 14, which is an EE cross section of FIG.

撹拌ロータ4は入り口ノズル11側の低粘度域はカキトリ板6aと6bにより構成されるバケット部とバケット部から処理液を注ぎかける薄板円板7aおよび中空円板8より構成される低粘度撹拌ブロック(詳細構造は図5,図9,図10により説明する)が設けられている。次に中粘度域は両側に中空円板8を配置し、その中に同一外径の中空薄板7bを複数枚設置し、さらに外周部にはこれらの部材を貫通したカキトリ板6cを放射状に複数個設置して構成される中粘度撹拌ブロック(詳細構造は図3,図4,図8,図9により説明する)が設けられている。さらに出口側には車輪型形状の円板9を複数個適当な間隔で設置し車輪型形状の円板9の外周部にカキトリ板10を設置して高粘度撹拌ブロック
(詳細構造は図8,図13により説明する)が設けられている。また本体1の他端下部には、被処理液の出口ノズル11が取り付けられている。さらに、本体1の上部に揮発物の出口ノズル14が設けられ、配管で凝縮器及び真空引き装置(図示せず)に接続される。
The agitation rotor 4 has a low-viscosity agitation block composed of a bucket part composed of oyster plates 6a and 6b and a thin disk 7a into which the processing liquid is poured from the bucket part and a hollow disk 8 in the low-viscosity area on the inlet nozzle 11 side. (The detailed structure will be described with reference to FIGS. 5, 9, and 10). Next, in the medium viscosity region, hollow disks 8 are arranged on both sides, a plurality of hollow thin plates 7b having the same outer diameter are installed therein, and a plurality of oyster plates 6c penetrating these members are radially provided on the outer periphery. A medium-viscosity agitation block (configured in detail with reference to FIGS. 3, 4, 8, and 9) is provided. Further, a plurality of wheel-shaped discs 9 are installed at appropriate intervals on the outlet side, and a oyster plate 10 is installed on the outer periphery of the wheel-shaped disc 9 to show a high viscosity stirring block (detailed structure is shown in FIG. This will be described with reference to FIG. Further, an outlet nozzle 11 for the liquid to be processed is attached to the lower portion of the other end of the main body 1. Further, an outlet nozzle 14 for volatile substances is provided in the upper part of the main body 1, and is connected to a condenser and a vacuuming device (not shown) by piping.

このような装置において、入口ノズル11より連続して供給された重合度の低い低粘度の被処理液(プレポリマー)は、図5に示す低粘度撹拌ブロックでまず撹拌される。このときの処理液の粘度は数Pasから数十Pasである。低粘度撹拌ブロックは中空円板8の外周部にカキトリ板6aと6bでバケットを形成する。図に示したように回転するとバケット内に処理液をすくい上げるように動作する。このときの処理液の流動状況を模式的示したものが図9,図10である。カキトリ板6a,6bのバケット底部には小さな隙間δが形成されている。このために低粘度の処理液91は撹拌ロータの回転と共にバケットですくい上げられ(図9の100)、バケットが回転により内側へ傾き処理液が中側へ流れ出す(図9の101)と共に外側へも少しずつ漏れだし(図9の102)て、バケットの内側と外側の両方に液膜101,102を形成する。さらに内側に流れ出した処理液
101は内側のバケット先端部に設置された薄板円板7aに注がれ(図10の103)、薄板円板7a表面及び薄板円板7aと薄板円板7aとの間の両方に薄い液膜を形成し、広い蒸発表面積を確保することが出来る。
In such an apparatus, the low-viscosity liquid (prepolymer) having a low degree of polymerization supplied continuously from the inlet nozzle 11 is first stirred by the low-viscosity stirring block shown in FIG. The viscosity of the treatment liquid at this time is several Pas to several tens Pas. The low-viscosity stirring block forms buckets on the outer peripheral portion of the hollow disk 8 with oyster plates 6a and 6b. When rotated as shown in the figure, it operates to scoop up the processing liquid into the bucket. 9 and 10 schematically show the flow state of the treatment liquid at this time. A small gap δ is formed at the bottom of the bucket of the oyster board 6a, 6b. For this reason, the low-viscosity processing liquid 91 is scooped up in the bucket along with the rotation of the stirring rotor (100 in FIG. 9), and the processing liquid flows inward by the bucket rotating (101 in FIG. 9) and also outwards. It leaks little by little (102 in FIG. 9), and forms liquid films 101 and 102 on both the inside and outside of the bucket. Further, the processing liquid 101 that has flowed inward is poured into the thin plate disk 7a installed at the tip of the inner bucket (103 in FIG. 10), and the surface of the thin plate disk 7a and the thin plate disk 7a and the thin plate disk 7a. A thin liquid film is formed on both sides, and a wide evaporation surface area can be secured.

これらの作用はバケットが回転する毎に繰り返され、十分な蒸発表面と良好な表面更新作用を得ることが出来る。このときの回転数は0.5から数rpmの低速回転(10rpm以下)でも十分に良好な性能が得られ、撹拌消費動力の低減に大きな効果が得られる。また処理液より蒸発した副生物は中空円板8の中空部20a薄板円板7aの中空部20aを通過し揮発物の出口ノズル14から排出される。低粘度撹拌ブロックで所定の滞留時間を経過した処理液は粘度を数十Pas程度に上昇させて次の中粘度撹拌ブロックへ到達する。   These actions are repeated each time the bucket rotates, and a sufficient evaporation surface and a good surface renewal action can be obtained. At this time, a sufficiently good performance can be obtained even at a low speed (less than 10 rpm) of 0.5 to several rpm, and a great effect can be obtained in reducing the power consumed by stirring. Further, the by-product evaporated from the treatment liquid passes through the hollow portion 20a of the hollow disc 20a and the hollow portion 20a of the thin disc 7a and is discharged from the outlet nozzle 14 for volatile substances. The processing liquid that has passed a predetermined residence time in the low viscosity stirring block increases the viscosity to about several tens of Pas and reaches the next medium viscosity stirring block.

中粘度撹拌翼ブロックの詳細構造を図6,図7に示す。中粘度撹拌翼ブロックは中空円板8と薄板中空円板7b及びカキトリ板6cで構成されており中空円板の孔径D1、薄板円板7bの孔径D3は処理液の反応副生物のガス量に応じて最適の径になるように決定される。また薄板円板7bの孔径D2についても処理液の粘度と反応ガス量に応じて最適径が決定される。数十Pasになった処理液92は図11,図12に示すように回転によってカキトリ板6cによって持ち上げられ、さらにカキトリ板が回転によって傾斜するために液が垂れ下がり液膜104を形成する。液膜104は回転と共に撹拌ロータの連結強度部材5aに垂れ掛かり液膜は長く保持される。また中空円板8の中空部20aの内部にも回転によって引きずりあげられた処理液が垂れ下がり液膜105を形成する。また薄板円板7bも同様に液膜107が形成されるが、さらに薄板円板7bに設けられた小孔20bにも処理液が垂れ下がり液膜106を形成する。処理液はこのような液膜を形成しながら大きな蒸発表面積と良好な表面更新作用によりさらに重合度が上がり、処理液の粘度が高くなる。処理液粘度が数百Pasになると次の高粘度用の撹拌ブロックで処理される。   The detailed structure of the medium viscosity stirring blade block is shown in FIGS. The medium-viscosity stirring blade block is composed of a hollow disk 8, a thin hollow disk 7b, and a oyster board 6c. The hole diameter D1 of the hollow disk and the hole diameter D3 of the thin disk 7b depend on the amount of reaction by-product gas in the processing liquid. Accordingly, it is determined so as to obtain an optimum diameter. The optimum diameter of the hole diameter D2 of the thin disk 7b is determined according to the viscosity of the processing liquid and the amount of reaction gas. As shown in FIGS. 11 and 12, the processing liquid 92 having reached several tens of Pas is lifted by the oyster plate 6 c by rotation, and further, the liquid drips and forms a liquid film 104 because the oyster plate is inclined by rotation. The liquid film 104 hangs on the connecting strength member 5a of the stirring rotor with rotation, and the liquid film is held for a long time. In addition, the processing liquid drawn up by the rotation drips down inside the hollow portion 20 a of the hollow disk 8 to form a liquid film 105. In addition, the liquid film 107 is similarly formed on the thin plate disk 7b. However, the processing liquid drips also on the small holes 20b provided in the thin plate disk 7b to form the liquid film 106. The treatment liquid further increases the degree of polymerization and increases the viscosity of the treatment liquid due to the large evaporation surface area and good surface renewal action while forming such a liquid film. When the treatment liquid viscosity reaches several hundred Pas, it is treated in the next high viscosity stirring block.

高粘度用の撹拌ブロックは図8に示したような車輪型の円板9の外周部にカキトリ板
10aが取り付けられている。このような車輪型円板9が水平方向に撹拌強度部材5a,5b,5c,5dによって所定の間隔で連結されている。このとき車輪型円板9の前後のカキトリ板は10aと10bのように互い違いに設置され、カキトリ板の水平方向の長さは円板が回転したときにお互いの先端部の軌跡が重なり合って槽内壁面全体を掻き取るようになっている。図13に示すように数百Pasに達した処理液93は撹拌翼の回転によりカキトリ板10aによって液を持ち上げる。持ち上げられた処理液は回転によって液が垂れ下がり液膜108を形成する。また、このとき車輪型円板9の中空部にも液膜109が形成され複雑な液面形状を創出する。処理液の粘度がさらに上昇し数千Pasに達すると持ち上げられる液の量も増大してくる。このような状態で回転数を早くすると処理液が垂れ落ちる前に液を再び掻き上げてしまう供回り現象を起こしてしまうので回転数は10rpm 以下で運転する必要がある。最適な運転範囲は処理液の粘度が高いほど低くする必要があり、当方の実験では0.5から6rpmの範囲が最適であった。以上のように撹拌及び表面更新作用が繰り返されて重縮合反応が促進される。そして反応により生成した揮発物は中空円板の中空部を通って順次本体1内を長手方向に移動し、揮発物ノズル14より系外に排出される。このようにして重合度が高くなり高粘度となった被処理液は出口ノズル
12より系外に排出される。
In the stirring block for high viscosity, a oyster plate 10a is attached to the outer periphery of a wheel-type disc 9 as shown in FIG. Such a wheel-type disk 9 is connected at a predetermined interval by stirring strength members 5a, 5b, 5c, and 5d in the horizontal direction. At this time, the oyster plates before and after the wheel-type disc 9 are alternately installed as 10a and 10b, and the horizontal length of the oyster plate is such that the trajectories of the tip portions overlap each other when the disc rotates. The entire inner wall is scraped off. As shown in FIG. 13, the processing liquid 93 that reaches several hundred Pas is lifted by the oyster plate 10a by the rotation of the stirring blade. The lifted processing liquid drips by rotation to form a liquid film 108. At this time, a liquid film 109 is also formed in the hollow portion of the wheel-type disk 9 to create a complicated liquid surface shape. When the viscosity of the treatment liquid further increases and reaches several thousand Pas, the amount of liquid that is lifted increases. If the rotational speed is increased in such a state, a circulating phenomenon occurs in which the liquid is again picked up before the processing liquid drips down. Therefore, it is necessary to operate at a rotational speed of 10 rpm or less. The optimum operating range needs to be lowered as the viscosity of the treatment liquid is higher. In this experiment, the range of 0.5 to 6 rpm was optimum. As described above, the polycondensation reaction is promoted by repeating the stirring and the surface renewal action. The volatile matter generated by the reaction sequentially moves in the longitudinal direction in the main body 1 through the hollow portion of the hollow disc, and is discharged out of the system from the volatile nozzle 14. The liquid to be treated having a high degree of polymerization and a high viscosity in this manner is discharged out of the system from the outlet nozzle 12.

このとき高粘度となった処理液は出口ノズル12の上部に溜まるが、撹拌ロータの支持部材2b外径は撹拌ロータ4の外径より小さく構成されるので支持部材2bには付着しない。また支持部材2bの本体1の側面側にはカキトリ部材13a,13bが取り付けられ処理液を本体外周部へ押しつけるので本体側壁面は常にセルフクリーニングされ、付着滞留を防止している。   At this time, the treatment liquid having a high viscosity accumulates in the upper portion of the outlet nozzle 12, but does not adhere to the support member 2 b because the outer diameter of the support member 2 b of the stirring rotor is smaller than the outer diameter of the stirring rotor 4. Further, oyster members 13a and 13b are attached to the side surface of the main body 1 of the support member 2b, and the processing liquid is pressed against the outer peripheral portion of the main body, so that the main body side wall surface is always self-cleaned to prevent adhesion and retention.

このような装置でポリエチレンテレフタレートを重合する場合には被処理液の中間重合物を入口ノズル11より連続供給し、撹拌ロータ4で撹拌し表面を更新して、重合反応で生じるエチレングリコール等の揮発物を蒸発除去し、重縮合反応が進み高粘度の重合物となる。この間に分離したエチレングリコール等の揮発物は出口ノズル14より排出される。この時の操作条件は例えば液温度260〜300℃,圧力0.01 〜10kPa,回転数1〜10rpm の範囲で行われる。そして重合物は出口ノズル12より系外に排出される。この時重合物は本体1内でほぼ完全なセルフクリーニング状態で撹拌され、良好な表面更新を受けるので、滞留による劣化もなく品質の良い製品重合物を効率良く得ることができる。同様にして本装置は、ポリエチレンナフタレート,ポリアミド,ポリカーボネート等の重縮合系樹脂の連続塊状重合に適用できる。また、図15の最終重合機は図4に示した装置と基本構成は同一であるが、入口の処理液粘度が比較的高い場合には低粘度翼の部分を省略した装置の実施例について示したものである。また、高粘度用の撹拌ブロックは車輪型形状の円板9を複数個適当な間隔で設置し車輪型形状の円板9の外周部にカキトリ板200を連結し、次の車輪型形状の円板9の間のカキトリ板200とは取付位置をずらして高粘度撹拌ブロックを形成したものである。   When polymerizing polyethylene terephthalate with such an apparatus, the intermediate polymer of the liquid to be treated is continuously supplied from the inlet nozzle 11, stirred by the stirring rotor 4, and the surface is renewed to volatilize ethylene glycol or the like generated by the polymerization reaction. The product is removed by evaporation, and the polycondensation reaction proceeds to give a highly viscous polymer. Volatile substances such as ethylene glycol separated during this time are discharged from the outlet nozzle 14. The operating conditions at this time are, for example, a liquid temperature of 260 to 300 ° C., a pressure of 0.01 to 10 kPa, and a rotation speed of 1 to 10 rpm. Then, the polymer is discharged out of the system from the outlet nozzle 12. At this time, the polymer is stirred in the main body 1 in an almost complete self-cleaning state and is subjected to good surface renewal, so that a high-quality product polymer can be efficiently obtained without deterioration due to retention. Similarly, this apparatus can be applied to continuous bulk polymerization of polycondensation resins such as polyethylene naphthalate, polyamide, and polycarbonate. The final polymerization machine in FIG. 15 has the same basic configuration as the apparatus shown in FIG. 4, but shows an embodiment of the apparatus in which the low-viscosity blade portion is omitted when the treatment liquid viscosity at the inlet is relatively high. It is a thing. The stirring block for high viscosity has a plurality of wheel-shaped discs 9 installed at appropriate intervals, and a oyster plate 200 is connected to the outer periphery of the wheel-shaped disc 9 to form a next wheel-shaped disc. The oyster plate 200 between the plates 9 is formed by shifting the mounting position to form a high viscosity stirring block.

以上の装置構成においてポリエチレンテレフタレートを製造すると従来の装置構成と比較して、反応器の数が減少しているために装置の経費が節約出来るのと装置数の減少に伴い装置に付随する蒸留塔やコンデンサーを減少させ、それらを連結する配管や計装部品やバルブ類を大幅に節約できると共に真空源や熱媒装置等のユーティリティ関係費が大幅に低下するのでランニングコストが安くなる利点がある。   When polyethylene terephthalate is produced in the above apparatus configuration, the number of reactors is reduced as compared with the conventional apparatus configuration, so that the cost of the apparatus can be saved and the distillation column attached to the apparatus as the number of apparatuses decreases. This reduces the number of condensers and condensers, greatly reduces the piping, instrumentation parts, and valves that connect them, and significantly reduces utility costs such as vacuum sources and heat transfer devices, thereby lowering running costs.

ポリエチレンテレフタレート,ポリブチレンテレフタレート等のポリエステル系高分子の連続製造に適用できる。   It can be applied to continuous production of polyester polymers such as polyethylene terephthalate and polybutylene terephthalate.

本発明によるポリエチレンテレフタレートの連続製造プロセスの一実施例を示す構成図である。It is a block diagram which shows one Example of the continuous manufacturing process of the polyethylene terephthalate by this invention. 本発明による蒸発缶の一実施例を示す便宜的な断面図である。1 is a convenient cross-sectional view showing an embodiment of an evaporator according to the present invention. 本発明の一実施例を示す縦断面正面図である。It is a longitudinal cross-sectional front view which shows one Example of this invention. 本発明の一実施例を示す縦断面正面図である。It is a longitudinal cross-sectional front view which shows one Example of this invention. 図4のA−A線断面図である。It is the sectional view on the AA line of FIG. 図1のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 図4のC−C線断面図である。It is CC sectional view taken on the line of FIG. 図4のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 低粘度撹拌ブロックのバケット部の処理液の流れの模式図である。It is a schematic diagram of the flow of the process liquid of the bucket part of a low-viscosity stirring block. 低粘度撹拌ブロックの薄板円板付近の処理液の流れの模式図である。It is a schematic diagram of the flow of the processing liquid near the thin disk disk of a low-viscosity stirring block. 中粘度撹拌ブロックの中空円板付近の処理液の流れの模式図である。It is a schematic diagram of the flow of the process liquid near the hollow disc of a medium viscosity stirring block. 中粘度撹拌ブロックの薄板円板状の処理液の流れの模式図である。It is a schematic diagram of the flow of the thin disk-shaped process liquid of a medium viscosity stirring block. 高粘度撹拌ブロックの処理液の流れの模式図である。It is a schematic diagram of the flow of the process liquid of a high-viscosity stirring block. 図4のE−E線断面図である。It is the EE sectional view taken on the line of FIG. 本発明の一実施例を示す縦断面正面図である。It is a longitudinal cross-sectional front view which shows one Example of this invention.

符号の説明Explanation of symbols

1…容器本体、3a,3b…回転支持用の軸、4…撹拌ロータ、5a,5b,5c,
5d…撹拌ロータ構成用の強度部材、2a,2b…ロータ支持部材、6a,6b,6c,10,10a,10b,200…カキトリ板、7a,7b…薄板円板、8…中空円板、9…車輪形円板、11…入口ノズル、12…出口ノズル、13a,13b…カキトリ部材、14…揮発物の出口ノズル、20a,20b,20c…中空部、31…原料調整槽、32…原料供給ライン、33…エステル化反応槽、34,38…熱交換器、35,39…気相部、36,40…連絡管、37…初期重合槽、41…最終重合機、42…撹拌翼、43…ポリマー、44…撹拌動力源、51…蒸発缶、52…被処理液、54…多管式熱交換器、56…助走空間、62…円錐状部材、71…容器本体、72…熱媒ジャケット、73…下降管、74…伝熱管、75…螺旋状の邪魔板、76…揮発物分離空間、77…被処理液の入口ノズル、78…被処理液の出口ノズル、79…揮発物の出口ノズル、91,92,
93…処理液液面、100,101,102,103,104,105,106,107,109,110…液膜。
DESCRIPTION OF SYMBOLS 1 ... Container main body, 3a, 3b ... Shaft for rotation support, 4 ... Stirring rotor, 5a, 5b, 5c,
5d: Strength member for constituting the stirring rotor, 2a, 2b ... Rotor support member, 6a, 6b, 6c, 10, 10a, 10b, 200 ... Kakitori plate, 7a, 7b ... Thin plate disk, 8 ... Hollow disc, 9 DESCRIPTION OF SYMBOLS Wheel shape disk, 11 ... Inlet nozzle, 12 ... Outlet nozzle, 13a, 13b ... A oyster member, 14 ... Outlet nozzle of volatile matter, 20a, 20b, 20c ... Hollow part, 31 ... Raw material adjustment tank, 32 ... Raw material supply 33, esterification reaction tank, 34, 38 ... heat exchanger, 35, 39 ... gas phase section, 36, 40 ... communication pipe, 37 ... initial polymerization tank, 41 ... final polymerization machine, 42 ... stirring blade, 43 ... Polymer, 44 ... Stirring power source, 51 ... Evaporator, 52 ... Liquid to be treated, 54 ... Multi-tube heat exchanger, 56 ... Run-up space, 62 ... Conical member, 71 ... Container body, 72 ... Heat medium jacket 73 ... Downcomer pipes, 74 ... Heat transfer tubes, 75 ... Baffles spiral, 76 ... volatiles separation space, 77 ... inlet nozzle of the liquid to be treated, 78 ... outlet nozzle of the liquid to be treated, 79 ... volatiles outlet nozzle, 91 and 92,
93... Treatment liquid level, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110.

Claims (2)

実質的に横型の円筒状容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口ノズル及び出口ノズルを有し、本体の上部に揮発物の出口ノズルを持ち、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータを設けた連続重縮合装置において、
前記撹拌ロータは該撹拌ロータの中心部に回転シャフトを持たず複数本の強度部材と連結されるロータ支持部材を両端に持ち、該支持部材間に形成された処理液の粘度に応じた低粘度域,中粘度域,高粘度域の撹拌翼ブロックで構成され、該各々の攪拌翼ブロックが
前記被処理液の入口ノズル側の低粘度域に設けられ、複数のカキトリ板により構成されるバケット部と該バケット部から処理液が注ぎかけられる薄板円板および中空円板とから成る低粘度撹拌ブロックと、
中粘度域に設けられ、両側に中空円板を配置し、その中に同一外径の中空薄板を複数枚設置し、さらに外周部にこれらの部材を貫通したカキトリ板を放射状に複数個設置して構成した中粘度撹拌ブロックと、
前記被処理液の出口ノズル側の高粘度域に設けられ、車輪型に中空部を有する円板を複数個適当な間隔で設置し該円板の外周部に前後互い違いにカキトリ板を設置した高粘度撹拌ブロックでなり、
前記揮発物の出口ノズル側のロータ支持部材の本体側面側に前記攪拌ロータの回転によって本体側壁面の処理液を外周部へ押し出すカキトリ部材を有した
ことを特徴とする連続重縮合装置。
A substantially horizontal cylindrical container main body has an inlet nozzle and an outlet nozzle for the liquid to be processed at the lower end and the lower end of the other end, respectively, and a volatiles outlet nozzle at the upper portion of the main body. In the continuous polycondensation apparatus provided with a stirring rotor that rotates close to the inside of the main body,
The stirring rotor has a rotor support member connected to a plurality of strength members without having a rotating shaft at the center of the stirring rotor at both ends, and has a low viscosity corresponding to the viscosity of the treatment liquid formed between the support members. A bucket portion comprising a plurality of oyster plates, each of which is provided in a low viscosity region on the inlet nozzle side of the liquid to be treated. And a low-viscosity stirring block consisting of a thin disk and a hollow disk into which the processing liquid is poured from the bucket part,
Provided in the medium viscosity range, with hollow discs on both sides, multiple hollow thin plates with the same outer diameter installed in it, and multiple oyster plates that penetrate these members on the outer periphery. Medium viscosity stirring block configured
A high viscosity region is provided in the high viscosity region on the outlet nozzle side of the liquid to be treated, and a plurality of discs having a hollow portion in the wheel mold are installed at appropriate intervals, and oyster plates are alternately arranged on the outer periphery of the disc. It consists of a viscosity stirring block,
A continuous polycondensation apparatus, comprising: a oyster member that pushes the processing liquid on the side wall surface of the main body toward the outer peripheral portion by rotation of the stirring rotor on the side surface of the main body of the rotor support member on the volatile matter outlet nozzle side.
実質的に横型の円筒状容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口ノズル及び出口ノズルを有し、本体の上部に揮発物の出口ノズルを持ち、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータを設け、
前記撹拌ロータは該撹拌ロータの中心部に回転シャフトを持たず複数本の強度部材と連結されるロータ支持部材を両端に持ち、該支持部材間に形成された処理液の粘度に応じた低粘度域,中粘度域,高粘度域の撹拌翼ブロックで構成され、該各々の攪拌翼ブロックが
前記被処理液の入口ノズル側の低粘度域に設けられ、複数のカキトリ板により構成されるバケット部と該バケット部から処理液が注ぎかけられる薄板円板および中空円板とから成る低粘度撹拌ブロックと、
中粘度域に設けられ、両側に中空円板を配置し、その中に同一外径の中空薄板を複数枚設置し、さらに外周部にこれらの部材を貫通したカキトリ板を放射状に複数個設置して構成した中粘度撹拌ブロックと、
前記被処理液の出口ノズル側の高粘度域に設けられ、車輪型に中空部を有する円板を複数個適当な間隔で設置し該円板の外周部に前後互い違いにカキトリ板を設置した高粘度撹拌ブロックでなり、
前記揮発物の出口ノズル側のロータ支持部材の本体側面側に前記攪拌ロータの回転によって本体側壁面の処理液を外周部へ押し出すカキトリ部材を有した連続重縮合装置とし、
該連続重縮合装置を用い、重合度の低いプレポリマーを前記被処理液の入口ノズルより連続供給し、それぞれの撹拌ブロックによって液膜を形成しながら攪拌ロータを回転させて処理液を撹拌することにより、処理液の表面更新を行って揮発物を蒸発させ、前記被処理液の出口ノズル方向へ移動させて重合度を高めてポリエステル系高分子を重縮合させることを特徴とする連続重縮合方法。
A substantially horizontal cylindrical container main body has an inlet nozzle and an outlet nozzle for the liquid to be processed at the lower end and the lower end of the other end, respectively, and a volatiles outlet nozzle at the upper portion of the main body. A stirring rotor that rotates close to the inside of the main body,
The stirring rotor has a rotor support member connected to a plurality of strength members without having a rotating shaft at the center of the stirring rotor at both ends, and has a low viscosity corresponding to the viscosity of the treatment liquid formed between the support members. A bucket portion comprising a plurality of oyster plates, each of which is provided in a low viscosity region on the inlet nozzle side of the liquid to be treated. And a low-viscosity stirring block consisting of a thin disk and a hollow disk into which the processing liquid is poured from the bucket part,
Provided in the medium viscosity range, with hollow discs on both sides, multiple hollow thin plates with the same outer diameter installed in it, and multiple oyster plates that penetrate these members on the outer periphery. Medium viscosity stirring block configured
A high viscosity region is provided in the high viscosity region on the outlet nozzle side of the liquid to be treated, and a plurality of discs having a hollow portion in the wheel mold are installed at appropriate intervals, and oyster plates are alternately arranged on the outer periphery of the disc. It consists of a viscosity stirring block,
A continuous polycondensation apparatus having a oyster member that pushes the processing liquid on the side wall surface of the main body to the outer peripheral portion by rotation of the stirring rotor on the main body side surface of the rotor support member on the outlet nozzle side of the volatile matter,
Using the continuous polycondensation apparatus, a prepolymer having a low degree of polymerization is continuously supplied from the inlet nozzle of the liquid to be processed, and the processing liquid is stirred by rotating the stirring rotor while forming a liquid film by each stirring block. The polycondensation of the polyester polymer is performed by renewing the surface of the treatment liquid to evaporate volatiles and moving it toward the outlet nozzle of the liquid to be treated to increase the degree of polymerization. .
JP2003322375A 2003-09-16 2003-09-16   Continuous polycondensation apparatus and continuous polycondensation method Expired - Lifetime JP3722138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322375A JP3722138B2 (en) 2003-09-16 2003-09-16   Continuous polycondensation apparatus and continuous polycondensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322375A JP3722138B2 (en) 2003-09-16 2003-09-16   Continuous polycondensation apparatus and continuous polycondensation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25470997A Division JP3489408B2 (en) 1997-09-19 1997-09-19 Continuous polyester production equipment

Publications (3)

Publication Number Publication Date
JP2004002901A JP2004002901A (en) 2004-01-08
JP2004002901A5 JP2004002901A5 (en) 2005-05-26
JP3722138B2 true JP3722138B2 (en) 2005-11-30

Family

ID=30439050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322375A Expired - Lifetime JP3722138B2 (en) 2003-09-16 2003-09-16   Continuous polycondensation apparatus and continuous polycondensation method

Country Status (1)

Country Link
JP (1) JP3722138B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372857B1 (en) 2011-12-30 2014-03-12 웅진케미칼 주식회사 Blend composition biodegradable polyester, manufacturing method thereof and fabric made of them
CN106824030B (en) * 2017-02-08 2019-11-15 郑州高富肥料有限公司 A kind of continuous reaction device

Also Published As

Publication number Publication date
JP2004002901A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
WO1998010007A1 (en) Method and apparatus for continuous polycondensation
JP3909357B2 (en) Continuous production apparatus and reaction apparatus for polybutylene terephthalate
RU2411990C2 (en) Method of continuous production of polyethers with high molecular weight by etherification of dicarboxylic acids and/or trans-etherification of dicarboxylic acid ethers by divalent alcohols and/or their mixes, and installation to this end
JP3489408B2 (en) Continuous polyester production equipment
JP3722138B2 (en)   Continuous polycondensation apparatus and continuous polycondensation method
US4432940A (en) Reactor
JP2006507377A5 (en)
JP2006507377A (en) Method and apparatus for continuous production of polyester
JP3713894B2 (en) Method and apparatus for producing polyethylene terephthalate
WO2007128159A1 (en) A disc cage final polycondensation reactor
CN101077907B (en) Method and apparatus for continuous polycondensation
WO2007098637A1 (en) A prepolycondensation reactor
JPH0987392A (en) Continuous production apparatus for polycondensation polymer and production process therefor
MXPA99002101A (en) Method and apparatus for continuous polycondensation
JP2011116915A (en) Polymerizer of polyester
JP4599976B2 (en) Polybutylene terephthalate production apparatus and method
JP3736008B2 (en) Forced circulation evaporator
JP5115512B2 (en) Polyester production equipment
JPH11335453A (en) Production of poly(ethylene terethalate) and manufacturing equipment
JPH093200A (en) Apparatus for continuous production of polycondensation polymer and method therefor
JPH08311107A (en) Continuous production apparatus and production process for polytcondensation type polymer
JP2010248531A (en) Apparatus for producing polybutylene terephthalate, and method therefor
JPH11302366A (en) Production of polyethylene terephthalate and apparatus for the production
JP2000169574A (en) Process and apparatus for manufacturing poycarbonate
WO2015123144A1 (en) High intrinsic viscosity column reactor for polyethylene terephthalate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term