JP2004002901A - Method and apparatus for producing polyester - Google Patents

Method and apparatus for producing polyester Download PDF

Info

Publication number
JP2004002901A
JP2004002901A JP2003322375A JP2003322375A JP2004002901A JP 2004002901 A JP2004002901 A JP 2004002901A JP 2003322375 A JP2003322375 A JP 2003322375A JP 2003322375 A JP2003322375 A JP 2003322375A JP 2004002901 A JP2004002901 A JP 2004002901A
Authority
JP
Japan
Prior art keywords
reactor
main body
stirring
polyester
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003322375A
Other languages
Japanese (ja)
Other versions
JP3722138B2 (en
JP2004002901A5 (en
Inventor
Hidekazu Nakamoto
中元 英和
Susumu Harada
原田  進
Yasunari Sase
佐世 康成
Michio Suzuki
鈴木 宙夫
Chikao Oda
小田 親生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003322375A priority Critical patent/JP3722138B2/en
Publication of JP2004002901A publication Critical patent/JP2004002901A/en
Publication of JP2004002901A5 publication Critical patent/JP2004002901A5/en
Application granted granted Critical
Publication of JP3722138B2 publication Critical patent/JP3722138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a continuous production method for polyethylene terephthalate wherein the number of reactors necessary for reaction is made minimal and the power consumption for agitation necessary for reaction are minimized by providing a production method and apparatus whereby a high-quality polyester is efficiently produced by using three reactors. <P>SOLUTION: The polyester production apparatus has three reactors: an esterification reactor, an initial polymerization reactor, and a final polymerization reactor. Both the esterification reactor and the initial polymerization reactor are not equipped with an external power source for agitation. The final polymerization reactor is of a horizontal single-shaft low-speed-rotating type. Such a necessary and minimum reactor constitution enables a high-quality polyester to be efficiently produced at a minimum energy cost. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、ポリエチレンテレフタレート,ポリブチレンテレフタレート等のポリエステル系高分子の連続製造方法および装置に関するものである。 The present invention relates to a method and an apparatus for continuously producing polyester-based polymers such as polyethylene terephthalate and polybutylene terephthalate.

 従来、ポリエチレンテレフタレート等の重縮合系高分子の製造方法としては原料としてテレフタル酸とエチレングリコールをエステル化のために適当な割合で混合槽に入れ、ポンプによりエステル化反応槽へ送る。このエステル化工程は撹拌翼付きの撹拌槽を2から3個直列に配置し、副反応物としてでる水を蒸留塔で分離する。次に前重合工程として立形撹拌槽や横形の撹拌槽が複数台設置されさらに最終重合工程として横形の撹拌槽が設置されている。これらの重合工程の槽には副反応物として出るエチレングリコールを除去するためにコンデンサーが設置され、減圧雰囲気で運転される。従来のポリエステル製造工程では反応槽の数が4から6缶あり、それぞれの反応槽には撹拌翼とその動力源が装備され、また副反応物を分離除去するための蒸留塔やコンデンサーが設置されている。さらに重合工程は減圧雰囲気で運転されるために真空手段はべつの装置によって操作しなければならず、製造装置の運転には高額の維持費と装置経費を必要としている。 Conventionally, as a method for producing a polycondensation polymer such as polyethylene terephthalate, terephthalic acid and ethylene glycol as raw materials are put into a mixing tank at an appropriate ratio for esterification, and sent to an esterification reaction tank by a pump. In this esterification step, two to three stirring tanks with stirring blades are arranged in series, and water produced as a by-product is separated by a distillation column. Next, a plurality of vertical stirring tanks and horizontal stirring tanks are installed as a pre-polymerization step, and a horizontal stirring tank is installed as a final polymerization step. A condenser is installed in the tank for these polymerization steps to remove ethylene glycol as a by-product, and the vessel is operated in a reduced pressure atmosphere. In the conventional polyester production process, the number of reaction tanks is 4 to 6 cans, each reaction tank is equipped with a stirring blade and its power source, and a distillation column and condenser for separating and removing by-products are installed. ing. Further, since the polymerization process is operated in a reduced pressure atmosphere, the vacuum means must be operated by another apparatus, and the operation of the production apparatus requires high maintenance costs and equipment costs.

特開平7−207009号公報JP-A-7-20709

 本発明の問題は高分子量ポリエステルの生産のための公知の方法を改善したものであり、装置全体の効率を向上し、工場設備のエネルギー節約により経済的に操作するものである。 The problem of the present invention is an improvement over known processes for the production of high molecular weight polyesters, which increases the efficiency of the whole apparatus and operates more economically by saving energy of factory equipment.

 本発明の目的は、上記従来技術を改善し、必要最小限の反応器構成により、最少のエネルギーで品質の良い重合物を効率良く反応させる連続重縮合装置及び連続重縮合方法を提供することにある。 An object of the present invention is to provide a continuous polycondensation apparatus and a continuous polycondensation method that improve the above-mentioned conventional technology and efficiently react a high-quality polymer with minimum energy by using a minimum necessary reactor configuration. is there.

 上記目的は、エステル化工程,前重合工程,最終重合工程をそれぞれ一槽とし、撹拌動力を必要とする槽は最終重合工程のみとすることによって達成される。 (4) The above object can be achieved by making the esterification step, the pre-polymerization step, and the final polymerization step one tank each, and using only the final polymerization step as a tank requiring stirring power.

 本発明によれば、ポリエステルの連続製造設備をエステル化工程,前重合工程,最終重合工程の3つの反応器とすることにより、装置全体の効率を向上し、工場設備のエネルギー節約により経済的に操作するものである。 ADVANTAGE OF THE INVENTION According to this invention, the efficiency of the whole apparatus is improved by making the continuous production equipment of polyester into three reactors of an esterification process, a pre-polymerization process, and a final polymerization process, and it is economical by the energy saving of a factory equipment. To operate.

 必要最小限の反応器構成により、最少のエネルギーで品質の良い重合物を効率良く反応させるという目的を、ポリエステルの連続製造設備をエステル化工程,前重合工程,最終重合工程の3つの反応器とすることにより実現した。 With the aim of reacting high quality polymer efficiently with minimum energy by the minimum necessary reactor configuration, the continuous production equipment for polyester was converted into three reactors of esterification process, prepolymerization process and final polymerization process. It was realized by doing.

 図1に本発明の一実施例を示す。図1は本発明をポリエチレンテレフタレートの連続製造プロセスの装置構成図である。工業的なポリエステルの製造方法として、直接エステル化法が、経済的に非常に有利であるので、最近では直接エステル化方法が多く採用されている。図において31はポリエチレンテレフタレートの原料であるTPA(テレフタル酸)とEG(エチレングリコール)を所定の割合で混合,撹拌する原料調整槽である。製造プロセスの中にはこの段階で重合反応触媒や安定剤,色調調整剤などの添加物を加える場合がある。重合反応触媒としてはアンチモン,チタン,ゲルマニウム,錫,亜鉛、等の金属化合物があげられ、使用する触媒の種類や組み合わせにより、反応速度が異なるだけでなく、生成するポリエステルの色相及び熱安定性が異なることが良く知られている。さらにこれらの反応は触媒の存在化で高温で長時間行われるために種々の副反応が伴い、重合物が黄色に着色したり、ジエチレングリコール(DEG)の含有量や末端カルボキシル基濃度が適正値以上に増加して、ポリエステルの融点及び強度の低下などの物理的性質が低下したりする。このような問題点を改良するために新しい触媒の開発が試みられているが、現在最も多く工業的に使用されているアンチモン化合物、特に三酸価アンチモンが価格や性能面で優れている。しかし、この触媒を用いても生成したポリエステル重合物の着色は避けられない。このために安定剤として燐系安定剤(例えばトリメチルホスフェート,トリフェニルホスフェート)を併用して改善している。また、別の製造プロセスにおいては重合触媒や安定剤の投入位置を工夫して品質を安定させている。通常のプロセスでは触媒の量は200から400ppmを安定剤の量は50から200ppmを用いるのが好ましい。 FIG. 1 shows an embodiment of the present invention. FIG. 1 is an apparatus configuration diagram of a continuous production process of polyethylene terephthalate according to the present invention. As the industrial polyester production method, the direct esterification method is very economically advantageous, and thus the direct esterification method has recently been widely used. In the figure, reference numeral 31 denotes a raw material adjusting tank for mixing and stirring TPA (terephthalic acid) and EG (ethylene glycol) as raw materials of polyethylene terephthalate at a predetermined ratio. During the manufacturing process, additives such as a polymerization reaction catalyst, a stabilizer, and a color adjusting agent may be added at this stage. Examples of the polymerization catalyst include metal compounds such as antimony, titanium, germanium, tin, and zinc. Not only the reaction rate varies depending on the type and combination of the catalysts used, but also the hue and thermal stability of the produced polyester. It is well known that they are different. Furthermore, these reactions are carried out at a high temperature for a long time in the presence of a catalyst, and are accompanied by various side reactions, and the polymer is colored yellow, and the content of diethylene glycol (DEG) and the terminal carboxyl group concentration are more than appropriate values. And physical properties such as a decrease in the melting point and strength of the polyester are reduced. Attempts have been made to develop new catalysts in order to improve such problems, but antimony compounds, which are most industrially used at present, particularly antimony triacid, are excellent in price and performance. However, even if this catalyst is used, coloring of the produced polyester polymer cannot be avoided. For this reason, the use of a phosphorus-based stabilizer (eg, trimethyl phosphate, triphenyl phosphate) as a stabilizer has been improved. Further, in another manufacturing process, the quality is stabilized by devising a position where a polymerization catalyst and a stabilizer are charged. In a normal process, it is preferable to use 200 to 400 ppm of the catalyst and 50 to 200 ppm of the stabilizer.

 以上のように調整された原料はエステル化反応槽33へ原料を供給する供給ライン32を経由して行く。エステル化反応槽(第1反応器)33の外周部には処理液を反応温度に保つためにジャケット構造(図示せず)になっており液の内部には液の加熱手段として多缶式熱交換機34が設置され外部からの熱源により処理液を加熱し、自然循環により内部の液を循環しながら反応を進行させる。ここで最も望ましい反応器の型はエステル化反応を自己の反応により生成する副反応物の蒸発作用を利用して反応器内の処理液を自然循環させるカランドリア型が望ましい。この形の反応器は外部の撹拌動力源を必要としないため装置構成が単純でしかも撹拌軸の軸封装置も不要となり反応器の制作コストが安価となる利点がある。このような反応器の一例として図2に示す様な装置が望ましい。 The raw material adjusted as described above goes through a supply line 32 that supplies the raw material to the esterification reaction tank 33. The outer periphery of the esterification reaction tank (first reactor) 33 has a jacket structure (not shown) for keeping the processing liquid at the reaction temperature. An exchanger 34 is provided to heat the processing liquid by an external heat source, and to proceed the reaction while circulating the internal liquid by natural circulation. Here, the most desirable type of reactor is a calandria type in which the processing solution in the reactor is naturally circulated by utilizing the evaporating action of a by-product produced by the esterification reaction by its own reaction. Since this type of reactor does not require an external stirring power source, there is an advantage that the apparatus configuration is simple, a shaft sealing device for the stirring shaft is not required, and the production cost of the reactor is reduced. As an example of such a reactor, an apparatus as shown in FIG. 2 is desirable.

 図2に本装置の一実施例を示す。被処理液52は立形の蒸発缶1内の下部に設けた入口53より流入し、多管式熱交換器4の複数の伝熱管内(図示していない)側を流れ加熱され、自然対流により上昇する。ここで被処理液52の低沸点成分の一部は蒸発しベーパー管55より装置外に放出される。残りの被処理液52は蒸発缶51の内壁と多管式熱交換器54のシェルの外壁との間を自然対流により流下し、多管式熱交換器4のシェル下部に設けられた円筒状の助走空間56に流入する。ここで処理液の流れは乱れの少ない整流されたものになり、さらに多管式熱交換器54の管内の平均流速は自然対流で流下する平均流速よりも増速されているのでより均一な速度分布で複数の伝熱管に流入し、各被処理液は再び均一に加熱され自然対流による循環を繰り返す。この過程で徐々に低沸点成分は蒸発し、適当な対流時間を経た後に濃縮された被処理液59は出口60を通って系外へ導き出される。ここで、円滑な増速流を発生させるためには、伝熱管の総流路面積よりも円筒状の助走空間の流路面積を大きく設計し、さらに蒸発缶51の内壁と多管式熱交換器54のシェルの外壁との間に形成されるに二重管部分の流路面積を助走空間の流路面積よりも大きくすることにより達成される。なお、57は熱媒の入口、58は熱媒の出口を示し、蒸発缶51の回りは断熱材あるいはジャケットにより囲まれている(図示せず)。 FIG. 2 shows an embodiment of the present apparatus. The liquid to be treated 52 flows through an inlet 53 provided at a lower portion in the vertical evaporator 1, flows through a plurality of heat transfer tubes (not shown) of the multi-tube heat exchanger 4, is heated, and is subjected to natural convection. To rise. Here, a part of the low boiling point component of the liquid to be treated 52 evaporates and is discharged from the vapor pipe 55 to the outside of the apparatus. The remaining liquid to be treated 52 flows down by natural convection between the inner wall of the evaporator 51 and the outer wall of the shell of the multitubular heat exchanger 54, and the cylindrical liquid provided at the lower part of the shell of the multitubular heat exchanger 4. Flows into the approach space 56. Here, the flow of the processing liquid is rectified with less turbulence, and the average flow velocity in the tubes of the multi-tube heat exchanger 54 is increased more than the average flow velocity flowing down by natural convection, so that a more uniform velocity is obtained. The liquid flows into a plurality of heat transfer tubes in a distribution, and each liquid to be treated is heated again uniformly, and repeats circulation by natural convection. In this process, the low-boiling components evaporate gradually, and after a suitable convection time, the liquid to be treated 59 concentrated is led out of the system through the outlet 60. Here, in order to generate a smooth accelerated flow, the flow passage area of the cylindrical approach space is designed to be larger than the total flow passage area of the heat transfer tubes, and further, the multi-tube heat exchange with the inner wall of the evaporator 51 is performed. This is achieved by making the flow area of the double pipe section formed between the outer wall of the shell of the vessel 54 and the flow path area of the entrance space larger. Reference numeral 57 denotes an inlet for the heat medium, and 58 denotes an outlet for the heat medium. The evaporator 51 is surrounded by a heat insulating material or a jacket (not shown).

 従って、本実施例の蒸発缶では熱交換器の軸方向に沿って速度分布が均一なため被処理液はより均一な蒸発あるいは反応をすることができ、より良好な製品品質を短い滞留時間で得ることができる効果がある。被処理液52が固体粒子と液体の混合物(以下スラリーと記述する)の場合も、自然循環する被処理液52は多管式熱交換器54のシェル下部に設けられた円筒状の助走空間56に流入するが、円錐状の部材62に沿ってより円滑に上昇するために、固体粒子が底部に沈殿することがない。被処理液がスラリーの場合は蒸発缶の底部に内部循環する被処理液を上昇させるための円錐状の部材を設けることにより、スラリーに含まれる固体粒子の沈殿を防ぐことができる。ここで、円錐状の部材はある曲率を持っていても良い。従って、本実施例の蒸発缶ではスラリーの自然循環により好適な蒸発缶を提供できる効果があり、信頼性のある良好な品質の製品を得ることができる。しかし、本発明においてこの装置を限定するものではなくプロセス上の理由から撹拌翼を持った反応器を使用しても差し支えない。 Therefore, in the evaporator of this embodiment, the velocity distribution is uniform along the axial direction of the heat exchanger, so that the liquid to be treated can more uniformly evaporate or react, and a better product quality can be obtained with a short residence time. There is an effect that can be obtained. Even when the liquid to be treated 52 is a mixture of solid particles and a liquid (hereinafter referred to as slurry), the liquid to be treated 52 that naturally circulates is formed into a cylindrical entrance space 56 provided below the shell of the multi-tube heat exchanger 54. , But rises more smoothly along the conical member 62 so that solid particles do not settle to the bottom. When the liquid to be treated is a slurry, a conical member for raising the liquid to be treated internally circulating is provided at the bottom of the evaporator, so that precipitation of solid particles contained in the slurry can be prevented. Here, the conical member may have a certain curvature. Therefore, the evaporator of the present embodiment has an effect of providing a suitable evaporator by natural circulation of the slurry, and a reliable and good quality product can be obtained. However, the present invention is not limited to this apparatus, and a reactor having a stirring blade may be used for process reasons.

 第1反応器において、反応により生成する水は水蒸気となり、気化したEG蒸気と気相部5を形成する。このときの推奨すべき反応条件としては温度は240度から280度で加圧条件が望ましい。気相部5のガスはその上流側に設けられた精留塔(図示せず)により水とEGとに分離され、水は系外に除去され、EGは再び系内に戻される。本発明の利点としてエステル化工程を一つの反応器で処理することにより精留塔の数を一つにすることが可能となり、精留塔の制作経費だけでなく配管やバルブの数制御装置の数などを削減でき大幅な装置コストの低減となる。エステル化反応槽33で所定の反応時間経過した処理液は所定のエステル化率に到達し、連絡管36により初期重合槽(第2反応器)37に供給される。このとき処理液は熱交換器38により所定の反応温度に加熱され重縮合反応を行い重合度を上昇させる。このときの反応条件としては270度から290度で圧力は266Paから133Paで重合度20から40程度まで反応させる。 水 In the first reactor, the water generated by the reaction becomes steam, and forms the vapor phase portion 5 with the vaporized EG vapor. At this time, as the recommended reaction conditions, the temperature is preferably 240 to 280 degrees, and the pressurization condition is desirable. The gas in the gas phase 5 is separated into water and EG by a rectification tower (not shown) provided on the upstream side, the water is removed outside the system, and the EG is returned to the system again. As an advantage of the present invention, the number of rectification towers can be reduced to one by treating the esterification process in one reactor, and not only the production cost of the rectification tower but also the number of pipes and valves for controlling the number of pipes and valves can be reduced. The number and the like can be reduced, resulting in a significant reduction in equipment cost. The processing solution having passed a predetermined reaction time in the esterification reaction tank 33 reaches a predetermined esterification rate, and is supplied to the initial polymerization tank (second reactor) 37 through the communication pipe 36. At this time, the treatment liquid is heated to a predetermined reaction temperature by the heat exchanger 38 to perform a polycondensation reaction to increase the degree of polymerization. At this time, the reaction conditions are from 270 to 290 degrees, the pressure is from 266 to 133 Pa, and the degree of polymerization is from about 20 to 40.

 本実施例で示した初期重合槽は撹拌翼を持たない反応器を用いて説明しているがこの反応器を限定するものではない。しかし、初期重合段階においては反応は重合反応速度が反応の速度の律束となっている段階であり反応に必要な熱量を十分に供給すれば反応は順調に進行していく。この観点から処理液は撹拌翼で不必要な撹拌作用を受ける必要はなく重縮合反応によって生成するEGが系外に離脱するだけでよい。 初期 Although the initial polymerization tank described in this example is described using a reactor having no stirring blade, the reactor is not limited to this. However, in the initial polymerization stage, the reaction is a stage in which the polymerization reaction rate is governed by the rate of the reaction, and the reaction proceeds smoothly if a sufficient amount of heat necessary for the reaction is supplied. From this point of view, the treatment liquid does not need to be subjected to unnecessary stirring action by the stirring blade, and only EG generated by the polycondensation reaction needs to be separated out of the system.

 このような操作に最適な反応器としては図3に示す様な装置が望ましい。図において、71は竪長円筒状の容器本体で外周を熱媒ジャケット72で覆われており、本体71中央長手方向に上部が開放した下降管73が取り付けられている。本体71内下部には下降管73に平行に複数個の伝熱管74が取り付けられ、この伝熱管74の上部の下降管73の外側には螺旋状の邪魔板75が複数個取付けられる。それぞれの邪魔板75は本体71内壁との間に揮発物を逃がす隙間83を有して本体71内を上下方向に仕切り、複数個の滞留室84を形成している。本体71内上部、すなわち下降管73及び最上部の邪魔板75Cの上端には被処理液と揮発物とを分離するための空間76を持つ。また、下降貫73の内部には被処理液を薄膜流下させる下降管73の内側に複数個のテーパ状の液受け88を取り付けており、下降管73内を流下する被処理液をそれぞれの液受け88に保持して順次下方に移動させることができるので、被処理液のショートパスを少なくし、効率良く揮発物を蒸発分離して反応を進めることができる。 装置 As a reactor most suitable for such an operation, an apparatus as shown in FIG. 3 is desirable. In the figure, reference numeral 71 denotes a vertically cylindrical container main body, the outer periphery of which is covered with a heat medium jacket 72, and a downcomer 73 whose upper part is opened in the central longitudinal direction of the main body 71 is attached. A plurality of heat transfer tubes 74 are attached to the lower portion inside the main body 71 in parallel with the downcomer tube 73, and a plurality of spiral baffle plates 75 are attached to the outer side of the downcomer tube 73 above the heat transfer tube 74. Each of the baffles 75 has a gap 83 for allowing volatiles to escape from the inner wall of the main body 71 and vertically partitions the inside of the main body 71 to form a plurality of retention chambers 84. A space 76 for separating the liquid to be treated and the volatiles is provided at the upper part in the main body 71, that is, at the upper end of the downcomer 73 and the uppermost baffle 75C. Further, a plurality of tapered liquid receivers 88 are attached inside the descending pipe 73 for allowing the liquid to be treated to flow down the thin film inside the descending penetrator 73, and the liquid to be treated flowing down the descending pipe 73 is supplied to each liquid. Since the liquid can be sequentially moved downward while being held in the receiver 88, the short path of the liquid to be treated can be reduced, and the reaction can be efficiently performed by evaporating and separating volatiles.

 このような装置において、入口ノズル77より連続して供給された被処理液は、まず伝熱管74に入って加熱されながら上昇し、最下部の滞留室84Aに達する。この滞留室
84Aを徐々に上昇する間に重縮合反応が進み、生成したエチレングリコール等の揮発物は邪魔板75外側の隙間83から上部へ移動する。一方、被処理液は、邪魔板75の螺旋部に沿って旋回流を起こしながら上昇し、次の滞留室84Bへ流入する。このとき旋回しながらスムースにつぎの滞留室84Bへ移動するので、逆流を起こすことも少なく、被処理液は順次滞留部を上昇し、効率良く重縮合反応が進む。
In such an apparatus, the liquid to be treated continuously supplied from the inlet nozzle 77 first enters the heat transfer tube 74 and rises while being heated, and reaches the lowermost retention chamber 84A. The polycondensation reaction proceeds while gradually ascending the retention chamber 84A, and the generated volatile matter such as ethylene glycol moves upward from the gap 83 outside the baffle plate 75. On the other hand, the liquid to be processed rises while causing a swirling flow along the spiral portion of the baffle plate 75, and flows into the next retaining chamber 84B. At this time, since the liquid moves smoothly to the next retaining chamber 84B while turning, the liquid to be treated gradually rises in the retaining portion, and the polycondensation reaction proceeds efficiently with little backflow.

 このようにして最上部の滞留室84Cに到達した被処理液は下降管73の頂部82を乗り越えて下降管73の内側を流下する。被処理液は下降管73の内側を薄膜となって流下し、反応により生じた揮発物を蒸発分離して、さらに重縮合反応を進めることができる。このようにして揮発物を蒸発分離し、反応の進んだ被処理液は出口ノズル78より系外に排出される。一方生成した揮発物は本体内の上部空間6で被処理液(重合物)の飛沫と分離し、揮発物の出口ノズル79より系外に排出される。 (5) The liquid to be processed that has reached the uppermost retaining chamber 84C in this way passes over the top 82 of the downcomer 73 and flows down inside the downcomer 73. The liquid to be treated flows down as a thin film inside the downcomer 73, and volatiles generated by the reaction are evaporated and separated, so that the polycondensation reaction can be further advanced. In this way, the volatile substances are evaporated and separated, and the liquid to be treated after the reaction is discharged out of the system from the outlet nozzle 78. On the other hand, the generated volatiles are separated from droplets of the liquid to be treated (polymer) in the upper space 6 in the main body, and are discharged out of the system from the outlet nozzle 79 for the volatiles.

 このとき揮発物に被処理液(重合物)が同伴する問題すなわち飛沫同伴が起こりやすいが、本発明では螺旋状の邪魔板75により上部へ突沸する被処理液及び揮発物を円周方向に向けることができ、飛沫同伴を押さえることができる。このような装置により発生する揮発物、即ちEGは減圧雰囲気に保たれた気相部9で気化し、その上流側に設けられたコンデンサーで凝縮した後に系外へ排出される。本発明の利点として初期重合工程を一つの反応器で処理することによりコンデンサーの数を一つにすることが可能となり、コンデンサーの製作経費だけでなく配管やバルブの数制御装置の数などを削減でき大幅な装置コストの低減となる。初期重合槽(第2反応器)37で所定の反応時間を経過した処理液は連絡管40により最終重合機(第3反応器)41に供給される。最終重合機では中心部に撹拌軸の無い撹拌翼42により良好な表面更新作用を受けながらさらに重縮合反応を進め重合度を上昇させ目的の重合度のポリマーを製造する。 At this time, the problem that the liquid to be treated (polymer) accompanies the volatile substance, that is, the entrainment is apt to occur, but in the present invention, the liquid to be treated and the volatile substance bumping upward by the spiral baffle plate 75 are directed in the circumferential direction. Can be suppressed, and the droplets can be suppressed. Volatile matter, EG, generated by such a device is vaporized in the gas phase section 9 kept in a reduced pressure atmosphere, condensed by a condenser provided on the upstream side thereof, and then discharged out of the system. As an advantage of the present invention, it is possible to reduce the number of condensers by processing the initial polymerization step in one reactor, thereby reducing not only the production cost of the condenser but also the number of piping and valves and the number of control devices. As a result, the cost of the apparatus is greatly reduced. The treatment liquid having passed a predetermined reaction time in the initial polymerization tank (second reactor) 37 is supplied to the final polymerization machine (third reactor) 41 through the communication pipe 40. In the final polymerization machine, a polycondensation reaction is further promoted while undergoing a good surface renewing action by a stirring blade 42 having no stirring shaft at the center to increase the degree of polymerization to produce a polymer having a desired degree of polymerization.

 最終重合機(第3反応器)として最適な装置としては図4,図15に記載の装置が表面更新性能、消費動力特性が最も優れている。また、処理液の粘度範囲が広いので従来、2槽に分割したりして処理していたものを一台の装置で可能となり大幅な装置コストの低減となる。図4により最終重合機について説明する。図4は本発明の装置の縦断面を示す正面図である。図において、1は横長円筒状の容器本体で外周を熱媒ジャケット(図示せず)で覆われており、長手方向の両端に回転支持用の軸3a、3bが取り付けられている。これらの回転支持用の軸3a,3b間に撹拌ロータ4が取付けられ、一方の回転軸3aは駆動装置(図示せず)に連結されている。この撹拌ロータ4は両端に5a,5b,5c,
5d(本実施例では4本の場合を示すがロータの大きさによって使用する本数は決定される)と連結されるロータ支持部材2a,2bを持ち、この支持部材2a,2b間に複数個の撹拌ブロックから成る撹拌ロータ4を形成している。支持部材2aは低粘度側部材で、2bは高粘度側支持部材である。この支持部材2bは撹拌ロータ4の外径よりは小さく構成され、該支持部材の本体側面側にはカキトリ部材13a,13bが設けられ、ロータの回転によって本体側壁面の処理液を外周部へ押し出すように取り付けられている。詳細な構成を図4のEE断面である図14に示す。
As the most suitable device as the final polymerization machine (third reactor), the devices shown in FIGS. 4 and 15 have the best surface renewal performance and power consumption characteristics. Further, since the viscosity range of the processing liquid is wide, the processing which has been conventionally performed by dividing the processing liquid into two tanks can be performed by one apparatus, and the cost of the apparatus can be greatly reduced. The final polymerization machine will be described with reference to FIG. FIG. 4 is a front view showing a longitudinal section of the device of the present invention. In the drawing, reference numeral 1 denotes a horizontally long cylindrical container body whose outer periphery is covered with a heat medium jacket (not shown), and shafts 3a and 3b for rotation support are attached to both ends in the longitudinal direction. A stirring rotor 4 is mounted between the rotation supporting shafts 3a and 3b, and one of the rotation shafts 3a is connected to a driving device (not shown). This stirring rotor 4 has 5a, 5b, 5c,
5d (in this embodiment, four rotors are shown, but the number of rotors used is determined by the size of the rotor), and a plurality of rotor support members 2a and 2b are connected. The stirring rotor 4 composed of a stirring block is formed. The support member 2a is a low-viscosity side member, and 2b is a high-viscosity side support member. The supporting member 2b is configured to be smaller than the outer diameter of the stirring rotor 4, and oyster members 13a and 13b are provided on the side of the main body of the supporting member, and the processing liquid on the side wall of the main body is pushed to the outer peripheral portion by the rotation of the rotor. So that it is attached. The detailed configuration is shown in FIG. 14, which is an EE section in FIG.

 撹拌ロータ4は入り口ノズル11側の低粘度域はカキトリ板6aと6bにより構成されるバケット部とバケット部から処理液を注ぎかける薄板円板7aおよび中空円板8より構成される低粘度撹拌ブロック(詳細構造は図5,図9,図10により説明する)が設けられている。次に中粘度域は両側に中空円板8を配置し、その中に同一外径の中空薄板7bを複数枚設置し、さらに外周部にはこれらの部材を貫通したカキトリ板6cを放射状に複数個設置して構成される中粘度撹拌ブロック(詳細構造は図3,図4,図8,図9により説明する)が設けられている。さらに出口側には車輪型形状の円板9を複数個適当な間隔で設置し車輪型形状の円板9の外周部にカキトリ板10を設置して高粘度撹拌ブロック
(詳細構造は図8,図13により説明する)が設けられている。また本体1の他端下部には、被処理液の出口ノズル11が取り付けられている。さらに、本体1の上部に揮発物の出口ノズル14が設けられ、配管で凝縮器及び真空引き装置(図示せず)に接続される。
The stirring rotor 4 has a low-viscosity block on the side of the inlet nozzle 11 in which a low-viscosity stirring block is constituted by a bucket portion composed of oyster plates 6a and 6b, a thin disk 7a into which the processing liquid is poured from the bucket portion, and a hollow disk 8. (The detailed structure will be described with reference to FIGS. 5, 9, and 10). Next, a hollow disk 8 is disposed on both sides of the medium viscosity region, a plurality of hollow thin plates 7b having the same outer diameter are installed therein, and a plurality of oyster plates 6c penetrating these members are further radially provided on the outer peripheral portion. A medium-viscosity stirrer block (detailed structure will be described with reference to FIGS. 3, 4, 8, and 9) is provided. Further, on the outlet side, a plurality of wheel-shaped disks 9 are installed at appropriate intervals, and an oyster plate 10 is installed on the outer periphery of the wheel-shaped disks 9 to provide a high-viscosity stirring block (see FIG. FIG. 13) is provided. At the lower end of the other end of the main body 1, an outlet nozzle 11 for the liquid to be treated is attached. Further, a volatile matter outlet nozzle 14 is provided at an upper portion of the main body 1 and connected to a condenser and a vacuuming device (not shown) by piping.

 このような装置において、入口ノズル11より連続して供給された重合度の低い低粘度の被処理液(プレポリマー)は、図5に示す低粘度撹拌ブロックでまず撹拌される。このときの処理液の粘度は数Pasから数十Pasである。低粘度撹拌ブロックは中空円板8の外周部にカキトリ板6aと6bでバケットを形成する。図に示したように回転するとバケット内に処理液をすくい上げるように動作する。このときの処理液の流動状況を模式的示したものが図9,図10である。カキトリ板6a,6bのバケット底部には小さな隙間δが形成されている。このために低粘度の処理液91は撹拌ロータの回転と共にバケットですくい上げられ(図9の100)、バケットが回転により内側へ傾き処理液が中側へ流れ出す(図9の101)と共に外側へも少しずつ漏れだし(図9の102)て、バケットの内側と外側の両方に液膜101,102を形成する。さらに内側に流れ出した処理液
101は内側のバケット先端部に設置された薄板円板7aに注がれ(図10の103)、薄板円板7a表面及び薄板円板7aと薄板円板7aとの間の両方に薄い液膜を形成し、広い蒸発表面積を確保することが出来る。
In such an apparatus, a low-viscosity liquid to be treated (prepolymer) having a low degree of polymerization and continuously supplied from the inlet nozzle 11 is first stirred in a low-viscosity stirring block shown in FIG. The viscosity of the processing liquid at this time is several Pas to several tens Pas. The low-viscosity stirring block forms a bucket on the outer periphery of the hollow disk 8 with the oyster plates 6a and 6b. When it rotates as shown in the figure, it operates to scoop up the processing liquid in the bucket. FIGS. 9 and 10 schematically show the flow state of the processing liquid at this time. A small gap δ is formed at the bottom of the bucket of the oyster plates 6a and 6b. Therefore, the low-viscosity processing liquid 91 is picked up by the bucket with the rotation of the stirring rotor (100 in FIG. 9), and the bucket tilts inward due to the rotation, and the processing liquid flows out to the inside (101 in FIG. 9) and also to the outside. The liquid films 101 and 102 are formed on both the inside and outside of the bucket by leaking little by little (102 in FIG. 9). Further, the processing liquid 101 which has flowed inward is poured into the thin disk 7a installed at the tip of the inner bucket (103 in FIG. 10), and the surface of the thin disk 7a and the thin disk 7a and the thin disk 7a A thin liquid film is formed on both sides, and a wide evaporation surface area can be secured.

 これらの作用はバケットが回転する毎に繰り返され、十分な蒸発表面と良好な表面更新作用を得ることが出来る。このときの回転数は0.5から数rpmの低速回転(10rpm以下)でも十分に良好な性能が得られ、撹拌消費動力の低減に大きな効果が得られる。また処理液より蒸発した副生物は中空円板8の中空部20a薄板円板7aの中空部20aを通過し揮発物の出口ノズル14から排出される。低粘度撹拌ブロックで所定の滞留時間を経過した処理液は粘度を数十Pas程度に上昇させて次の中粘度撹拌ブロックへ到達する。 These actions are repeated every time the bucket rotates, and a sufficient evaporation surface and good surface renewal action can be obtained. At this time, sufficiently good performance can be obtained even at a low speed of 0.5 to several rpm (10 rpm or less), and a great effect can be obtained in reducing the power consumed by stirring. The by-product evaporated from the processing liquid passes through the hollow portion 20a of the hollow disk 8 and the hollow portion 20a of the thin disk 7a and is discharged from the volatile matter outlet nozzle 14. The treatment liquid having passed a predetermined residence time in the low-viscosity stirring block raises the viscosity to about several tens Pas and reaches the next medium-viscosity stirring block.

 中粘度撹拌翼ブロックの詳細構造を図6,図7に示す。中粘度撹拌翼ブロックは中空円板8と薄板中空円板7b及びカキトリ板6cで構成されており中空円板の孔径D1、薄板円板7bの孔径D3は処理液の反応副生物のガス量に応じて最適の径になるように決定される。また薄板円板7bの孔径D2についても処理液の粘度と反応ガス量に応じて最適径が決定される。数十Pasになった処理液92は図11,図12に示すように回転によってカキトリ板6cによって持ち上げられ、さらにカキトリ板が回転によって傾斜するために液が垂れ下がり液膜104を形成する。液膜104は回転と共に撹拌ロータの連結強度部材5aに垂れ掛かり液膜は長く保持される。また中空円板8の中空部20aの内部にも回転によって引きずりあげられた処理液が垂れ下がり液膜105を形成する。また薄板円板7bも同様に液膜107が形成されるが、さらに薄板円板7bに設けられた小孔20bにも処理液が垂れ下がり液膜106を形成する。処理液はこのような液膜を形成しながら大きな蒸発表面積と良好な表面更新作用によりさらに重合度が上がり、処理液の粘度が高くなる。処理液粘度が数百Pasになると次の高粘度用の撹拌ブロックで処理される。 (6) The detailed structure of the medium viscosity stirring blade block is shown in FIGS. The medium-viscosity stirrer block is composed of a hollow disk 8, a thin hollow disk 7b and an oyster plate 6c. The hole diameter D1 of the hollow disk and the hole diameter D3 of the thin disk 7b are determined by the amount of reaction by-product gas in the processing liquid. The diameter is determined so as to be the optimum diameter. The optimum diameter of the hole diameter D2 of the thin disk 7b is also determined according to the viscosity of the processing liquid and the amount of the reaction gas. The processing liquid 92 having several tens Pas is lifted up by the oscillating plate 6c by rotation as shown in FIGS. 11 and 12, and furthermore, the oscillating plate is inclined by the rotation, so that the liquid hangs down to form a liquid film 104. The liquid film 104 hangs on the connection strength member 5a of the stirring rotor with rotation, and the liquid film is held for a long time. In addition, the processing liquid dragged by the rotation is dripped in the hollow portion 20 a of the hollow disk 8 to form a liquid film 105. The liquid film 107 is also formed on the thin disk 7b, but the processing liquid also drips down into the small holes 20b provided on the thin disk 7b to form the liquid film 106. While forming such a liquid film, the treatment liquid further increases the degree of polymerization due to a large evaporation surface area and a good surface renewal action, and the viscosity of the treatment liquid increases. When the viscosity of the treatment liquid reaches several hundred Pas, it is treated by the next high viscosity stirring block.

 高粘度用の撹拌ブロックは図8に示したような車輪型の円板9の外周部にカキトリ板
10aが取り付けられている。このような車輪型円板9が水平方向に撹拌強度部材5a,5b,5c,5dによって所定の間隔で連結されている。このとき車輪型円板9の前後のカキトリ板は10aと10bのように互い違いに設置され、カキトリ板の水平方向の長さは円板が回転したときにお互いの先端部の軌跡が重なり合って槽内壁面全体を掻き取るようになっている。図13に示すように数百Pasに達した処理液93は撹拌翼の回転によりカキトリ板10aによって液を持ち上げる。持ち上げられた処理液は回転によって液が垂れ下がり液膜108を形成する。また、このとき車輪型円板9の中空部にも液膜109が形成され複雑な液面形状を創出する。処理液の粘度がさらに上昇し数千Pasに達すると持ち上げられる液の量も増大してくる。このような状態で回転数を早くすると処理液が垂れ落ちる前に液を再び掻き上げてしまう供回り現象を起こしてしまうので回転数は10rpm 以下で運転する必要がある。最適な運転範囲は処理液の粘度が高いほど低くする必要があり、当方の実験では0.5から6rpmの範囲が最適であった。以上のように撹拌及び表面更新作用が繰り返されて重縮合反応が促進される。そして反応により生成した揮発物は中空円板の中空部を通って順次本体1内を長手方向に移動し、揮発物ノズル14より系外に排出される。このようにして重合度が高くなり高粘度となった被処理液は出口ノズル
12より系外に排出される。
In the stirring block for high viscosity, an oyster plate 10a is attached to an outer peripheral portion of a wheel-shaped disk 9 as shown in FIG. Such wheel-shaped discs 9 are horizontally connected at predetermined intervals by stirring strength members 5a, 5b, 5c, 5d. At this time, the oyster plates before and after the wheel-shaped disk 9 are alternately set as 10a and 10b, and the horizontal length of the oyster plate is such that the trajectories of the tips overlap each other when the disk rotates, and The entire inner wall is scraped. As shown in FIG. 13, the treatment liquid 93 which has reached several hundred Pas is lifted by the oyster plate 10a by the rotation of the stirring blade. The lifted processing liquid is dripped by rotation to form a liquid film 108. At this time, a liquid film 109 is also formed in the hollow portion of the wheel-shaped disc 9 to create a complicated liquid surface shape. When the viscosity of the processing liquid further increases and reaches several thousand Pas, the amount of the liquid lifted also increases. If the number of revolutions is increased in such a state, a rotating phenomenon occurs in which the processing liquid is stirred up again before the treatment liquid drips. Therefore, it is necessary to operate at a number of revolutions of 10 rpm or less. The optimum operating range needs to be lowered as the viscosity of the processing liquid increases, and in our experiments, the optimum range was 0.5 to 6 rpm. As described above, the agitation and the surface renewal action are repeated to promote the polycondensation reaction. The volatiles generated by the reaction move sequentially in the longitudinal direction in the main body 1 through the hollow portion of the hollow disk, and are discharged from the volatile nozzle 14 to the outside of the system. The liquid to be treated having a high degree of polymerization and a high viscosity is discharged from the outlet nozzle 12 to the outside of the system.

 このとき高粘度となった処理液は出口ノズル12の上部に溜まるが、撹拌ロータの支持部材2b外径は撹拌ロータ4の外径より小さく構成されるので支持部材2bには付着しない。また支持部材2bの本体1の側面側にはカキトリ部材13a,13bが取り付けられ処理液を本体外周部へ押しつけるので本体側壁面は常にセルフクリーニングされ、付着滞留を防止している。 {Circle around (4)} At this time, the processing liquid having a high viscosity accumulates above the outlet nozzle 12, but does not adhere to the support member 2b because the outer diameter of the support member 2b of the stirring rotor is smaller than the outer diameter of the stirring rotor 4. Further, the oyster members 13a and 13b are attached to the side surface of the main body 1 of the support member 2b, and the processing liquid is pressed against the outer peripheral portion of the main body, so that the side wall surface of the main body is always self-cleaned to prevent adhesion and stagnation.

 このような装置でポリエチレンテレフタレートを重合する場合には被処理液の中間重合物を入口ノズル11より連続供給し、撹拌ロータ4で撹拌し表面を更新して、重合反応で生じるエチレングリコール等の揮発物を蒸発除去し、重縮合反応が進み高粘度の重合物となる。この間に分離したエチレングリコール等の揮発物は出口ノズル14より排出される。この時の操作条件は例えば液温度260〜300℃,圧力0.01 〜10kPa,回転数1〜10rpm の範囲で行われる。そして重合物は出口ノズル12より系外に排出される。この時重合物は本体1内でほぼ完全なセルフクリーニング状態で撹拌され、良好な表面更新を受けるので、滞留による劣化もなく品質の良い製品重合物を効率良く得ることができる。同様にして本装置は、ポリエチレンナフタレート,ポリアミド,ポリカーボネート等の重縮合系樹脂の連続塊状重合に適用できる。また、図15の最終重合機は図4に示した装置と基本構成は同一であるが、入口の処理液粘度が比較的高い場合には低粘度翼の部分を省略した装置の実施例について示したものである。また、高粘度用の撹拌ブロックは車輪型形状の円板9を複数個適当な間隔で設置し車輪型形状の円板9の外周部にカキトリ板200を連結し、次の車輪型形状の円板9の間のカキトリ板200とは取付位置をずらして高粘度撹拌ブロックを形成したものである。 When polyethylene terephthalate is polymerized by such an apparatus, the intermediate polymer of the liquid to be treated is continuously supplied from the inlet nozzle 11 and the surface is renewed by stirring with the stirring rotor 4 to volatilize ethylene glycol and the like generated by the polymerization reaction. The product is removed by evaporation, and the polycondensation reaction proceeds to form a high-viscosity polymer. Volatile substances such as ethylene glycol separated during this time are discharged from the outlet nozzle 14. The operating conditions at this time are, for example, a liquid temperature of 260 to 300 ° C., a pressure of 0.01 to 10 kPa, and a rotation speed of 1 to 10 rpm. Then, the polymer is discharged from the outlet nozzle 12 to the outside of the system. At this time, the polymer is stirred in the body 1 in a substantially completely self-cleaning state and undergoes good surface renewal, so that a high quality product polymer can be efficiently obtained without deterioration due to stagnation. Similarly, the present apparatus can be applied to continuous bulk polymerization of polycondensation resins such as polyethylene naphthalate, polyamide, and polycarbonate. Although the final polymerization machine in FIG. 15 has the same basic configuration as the apparatus shown in FIG. 4, when the viscosity of the processing liquid at the inlet is relatively high, the embodiment of the apparatus in which the low viscosity blade portion is omitted is shown. It is a thing. In addition, a stirring block for high viscosity is provided with a plurality of wheel-shaped disks 9 at appropriate intervals, and an oyster plate 200 is connected to the outer periphery of the wheel-shaped disks 9 to form the next wheel-shaped disk. The oscillating plate 200 between the plates 9 is such that a mounting position is shifted to form a high-viscosity stirring block.

 以上の装置構成においてポリエチレンテレフタレートを製造すると従来の装置構成と比較して、反応器の数が減少しているために装置の経費が節約出来るのと装置数の減少に伴い装置に付随する蒸留塔やコンデンサーを減少させ、それらを連結する配管や計装部品やバルブ類を大幅に節約できると共に真空源や熱媒装置等のユーティリティ関係費が大幅に低下するのでランニングコストが安くなる利点がある。 When polyethylene terephthalate is manufactured in the above-described apparatus configuration, the number of reactors is reduced as compared with the conventional apparatus configuration, so that the cost of the apparatus can be reduced. In addition, there is an advantage that the number of pipes, instrumentation parts and valves connecting them can be greatly reduced, and the running costs can be reduced because utility-related costs such as a vacuum source and a heating medium device are greatly reduced.

 ポリエチレンテレフタレート,ポリブチレンテレフタレート等のポリエステル系高分子の連続製造に適用できる。 で き る Applicable to continuous production of polyester polymers such as polyethylene terephthalate and polybutylene terephthalate.

本発明によるポリエチレンテレフタレートの連続製造プロセスの一実施例を示す構成図である。FIG. 1 is a configuration diagram showing one embodiment of a continuous production process of polyethylene terephthalate according to the present invention. 本発明による蒸発缶の一実施例を示す便宜的な断面図である。FIG. 2 is a cross-sectional view for convenience showing an embodiment of the evaporator according to the present invention. 本発明の一実施例を示す縦断面正面図である。It is a longitudinal section front view showing one example of the present invention. 本発明の一実施例を示す縦断面正面図である。It is a longitudinal section front view showing one example of the present invention. 図4のA−A線断面図である。FIG. 5 is a sectional view taken along line AA of FIG. 4. 図1のB−B線断面図である。FIG. 2 is a sectional view taken along line BB of FIG. 1. 図4のC−C線断面図である。FIG. 5 is a sectional view taken along line CC of FIG. 4. 図4のD−D線断面図である。FIG. 5 is a sectional view taken along line DD of FIG. 4. 低粘度撹拌ブロックのバケット部の処理液の流れの模式図である。It is a schematic diagram of the flow of the processing liquid of the bucket part of a low viscosity stirring block. 低粘度撹拌ブロックの薄板円板付近の処理液の流れの模式図である。It is a schematic diagram of the flow of the processing liquid near the thin disk of the low viscosity stirring block. 中粘度撹拌ブロックの中空円板付近の処理液の流れの模式図である。It is a schematic diagram of the flow of the processing liquid near the hollow disk of the medium viscosity stirring block. 中粘度撹拌ブロックの薄板円板状の処理液の流れの模式図である。It is a schematic diagram of the flow of the processing liquid of a thin disk shape of a medium viscosity stirring block. 高粘度撹拌ブロックの処理液の流れの模式図である。It is a schematic diagram of the flow of the processing liquid of a high viscosity stirring block. 図4のE−E線断面図である。FIG. 5 is a sectional view taken along line EE of FIG. 4. 本発明の一実施例を示す縦断面正面図である。It is a longitudinal section front view showing one example of the present invention.

符号の説明Explanation of reference numerals

 1…容器本体、3a,3b…回転支持用の軸、4…撹拌ロータ、5a,5b,5c,
5d…撹拌ロータ構成用の強度部材、2a,2b…ロータ支持部材、6a,6b,6c,10,10a,10b,200…カキトリ板、7a,7b…薄板円板、8…中空円板、9…車輪形円板、11…入口ノズル、12…出口ノズル、13a,13b…カキトリ部材、14…揮発物の出口ノズル、20a,20b,20c…中空部、31…原料調整槽、32…原料供給ライン、33…エステル化反応槽、34,38…熱交換器、35,39…気相部、36,40…連絡管、37…初期重合槽、41…最終重合機、42…撹拌翼、43…ポリマー、44…撹拌動力源、51…蒸発缶、52…被処理液、54…多管式熱交換器、56…助走空間、62…円錐状部材、71…容器本体、72…熱媒ジャケット、73…下降管、74…伝熱管、75…螺旋状の邪魔板、76…揮発物分離空間、77…被処理液の入口ノズル、78…被処理液の出口ノズル、79…揮発物の出口ノズル、91,92,
93…処理液液面、100,101,102,103,104,105,106,107,109,110…液膜。
DESCRIPTION OF SYMBOLS 1 ... Container main body, 3a, 3b ... Shaft for rotation support, 4 ... Stirring rotor, 5a, 5b, 5c,
5d: strength member for agitating rotor configuration, 2a, 2b: rotor support member, 6a, 6b, 6c, 10, 10a, 10b, 200: oyster plate, 7a, 7b: thin disk, 8: hollow disk, 9 ... wheel-shaped disc, 11 ... inlet nozzle, 12 ... outlet nozzle, 13a, 13b ... oyster member, 14 ... volatile matter outlet nozzle, 20a, 20b, 20c ... hollow part, 31 ... raw material adjusting tank, 32 ... raw material supply Line, 33: Esterification reaction tank, 34, 38: Heat exchanger, 35, 39: Gas phase, 36, 40: Connecting tube, 37: Initial polymerization tank, 41: Final polymerization machine, 42: Stirring blade, 43 ... Polymer, 44 ... Agitation power source, 51 ... Evaporator, 52 ... Liquid to be treated, 54 ... Multitubular heat exchanger, 56 ... Running space, 62 ... Conical member, 71 ... Container body, 72 ... Heat medium jacket , 73 ... downcomer, 74 ... heat transfer tube, 75 ... Baffles spiral, 76 ... volatiles separation space, 77 ... inlet nozzle of the liquid to be treated, 78 ... outlet nozzle of the liquid to be treated, 79 ... volatiles outlet nozzle, 91 and 92,
93: Processing liquid level, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110: Liquid film.

Claims (18)

 芳香族ジカルボン酸またはその誘導体とグリコール類とを反応させて、平均重合度3から7以下のオリゴエステルまたはポリエステルを製造する第1反応器、該成生物を重縮合させて、平均重合度20から40の低重合物を製造する第2反応器、該低重合物をさらに重縮合させ、平均重合度90から180まで重縮合させ高分子量ポリエステルを製造する第3反応器とを用いてポリエステルを製造する方法において、第1反応器と第2反応器のうち少なくとも一つ以上の反応器は外部動力源による撹拌機能を持たない反応器であることを特徴とするポリエステルの連続製造方法。 A first reactor in which an aromatic dicarboxylic acid or a derivative thereof is reacted with a glycol to produce an oligoester or polyester having an average degree of polymerization of 3 to 7 or less; Polyester is produced by using a second reactor for producing a low-polymerized product of No. 40 and a third reactor for polycondensing the low-polymerized product further and polycondensing from an average degree of polymerization of 90 to 180 to produce a high-molecular-weight polyester. Wherein the at least one reactor of the first reactor and the second reactor is a reactor having no stirring function by an external power source.  芳香族ジカルボン酸またはその誘導体とグリコール類とを反応させて、平均重合度3から7以下のオリゴエステルまたはポリエステルを製造する第1反応器、該成生物を重縮合させて、平均重合度20から40の低重合物を製造する第2反応器、該低重合物をさらに重縮合させ、平均重合度90から180まで重縮合させ高分子量ポリエステルを製造する第3反応器とを用いてポリエステルを製造する方法において、第3反応器は横形の円筒状容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータを設けた装置とし、本体内部の撹拌ロータが処理液の粘度に応じて複数個の撹拌翼ブロックで構成され、撹拌ロータの中心部に回転シャフトを持たない撹袢翼をもった反応器であることを特徴とするポリエステルの連続製造方法。 A first reactor in which an aromatic dicarboxylic acid or a derivative thereof is reacted with a glycol to produce an oligoester or polyester having an average degree of polymerization of 3 to 7 or less; Polyester is produced by using a second reactor for producing a low-polymerized product of No. 40 and a third reactor for polycondensing the low-polymerized product further and polycondensing from an average degree of polymerization of 90 to 180 to produce a high-molecular-weight polyester. In the method, the third reactor has an inlet and an outlet for the liquid to be treated at one lower end and the lower end at the other end in the longitudinal direction of the horizontal cylindrical container main body, has a volatile substance outlet at the upper part of the main body, A stirring rotor that rotates close to the inside of the main body in the longitudinal direction of the main body, and the stirring rotor inside the main body is composed of a plurality of stirring blade blocks according to the viscosity of the processing liquid, Continuous process for producing a polyester which is a reactor having a 撹袢 blade having no rotating shaft in the center of the over data.  請求項1または2記載のポリエステルの連続製造方法において、原料である芳香族ジカルボン酸またはその誘導体とグリコール類とのモル比が1:1.05〜1:2.0の範囲で供給し、第1反応器の温度は240度〜285度、圧力は大気圧から3×105 Pa、第2反応器の温度は250度〜290度、圧力は大気圧から133Pa、第3反応器の温度は270度〜290度、圧力は200から13.3Paの範囲で運転することを特徴とするポリエステルの連続製造方法。 The method for continuously producing a polyester according to claim 1 or 2, wherein the molar ratio of the aromatic dicarboxylic acid or a derivative thereof as a raw material to the glycol is in the range of 1: 1.05 to 1: 2.0, The temperature of one reactor is 240 to 285 degrees, the pressure is 3 × 10 5 Pa from atmospheric pressure, the temperature of the second reactor is 250 to 290 degrees, the pressure is 133 Pa from atmospheric pressure, and the temperature of the third reactor is A continuous method for producing polyester, wherein the method is operated at a temperature of 270 to 290 degrees and a pressure of 200 to 13.3 Pa.  請求項3記載のポリエステルの連続製造方法において、第3反応器の撹袢翼の回転数範囲を0.5rpmから10rpmであることを特徴とするポリエステルの連続製造方法。 The continuous production method of polyester according to claim 3, wherein the rotation speed of the stirring blade of the third reactor is from 0.5 rpm to 10 rpm.  請求項1または2記載のポリエステルの連続製造方法において、第1反応器,第2反応器第3反応器の合計反応時間が4から8時間の間で運転することを特徴とするポリエステルの連続製造方法。 3. The continuous production method of a polyester according to claim 1, wherein the total reaction time of the first reactor, the second reactor and the third reactor is operated between 4 and 8 hours. Method.  芳香族ジカルボン酸またはその誘導体とグリコール類とを反応させて、平均重合度3から7以下のオリゴエステルまたはポリエステルを製造する第1反応器と、該成生物を重縮合させて、平均重合度20から40の低重合物を製造する第2反応器と、該低重合物をさらに重縮合させ、平均重合度90から180まで重縮合させ高分子量ポリエステルを製造する第3反応器とからなり、第1反応器と第2反応器のうち少なくとも一つ以上の反応器は外部動力源による撹拌機能を持たない反応器であることを特徴とするポリエステルの連続製造装置。 A first reactor for producing an oligoester or polyester having an average degree of polymerization of 3 to 7 or less by reacting an aromatic dicarboxylic acid or a derivative thereof with glycols; And a third reactor for producing a high-molecular-weight polyester by polycondensing the low-polymer and further polycondensing the low-polymer to an average degree of polymerization of 90 to 180. At least one reactor of the first reactor and the second reactor is a reactor having no stirring function by an external power source, and is a continuous production apparatus for polyester.  芳香族ジカルボン酸またはその誘導体とグリコール類とを反応させて、平均重合度3から7以下のオリゴエステルまたはポリエステルを製造する第1反応器と、該成生物を重縮合させて、平均重合度20から40の低重合物を製造する第2反応器と、該低重合物をさらに重縮合させ、平均重合度90から180まで重縮合させ高分子量ポリエステルを製造する第3反応器とからなり、この第3反応器は横形の円筒状容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータを設けた装置とし、本体内部の撹拌ロータが処理液の粘度に応じて複数個の撹拌翼ブロックで構成され、撹拌ロータの中心部に回転シャフトを持たない撹袢翼をもった反応器であることを特徴とするポリエステルの連続製造装置。 A first reactor for producing an oligoester or polyester having an average degree of polymerization of 3 to 7 or less by reacting an aromatic dicarboxylic acid or a derivative thereof with glycols; And a third reactor for producing a high-molecular-weight polyester by polycondensing the low-polymer and further polycondensing the low-polymer to an average degree of polymerization of 90 to 180. The third reactor has an inlet and an outlet for the liquid to be treated at one lower end and the lower end at the other end in the longitudinal direction of the horizontal cylindrical container main body, has an outlet for volatiles at the upper part of the main body, and has a longitudinal direction inside the main body. A device provided with a stirring rotor that rotates close to the inside of the main body. The stirring rotor inside the main body is composed of a plurality of stirring blade blocks according to the viscosity of the processing liquid. Continuous production apparatus of a polyester which is a reactor having a 撹袢 wing with no.  原料である芳香族ジカルボン酸またはその誘導体とグリコール類とのモル比が1:1.05〜1:2.0 の範囲の混合物が供給され、温度は240度〜285度、圧力は大気圧から3×105 Paの条件下で反応が行われる第1反応器と、該第1反応器からの反応物が供給され、温度は250度〜290度、圧力は大気圧から133Paの条件下で反応が行われる第2反応器と、該第2反応器からの反応物が供給され、温度は270度〜290度、圧力は200から13.3Pa の条件下で反応が行われる3反応器とからなることを特徴とするポリエステルの連続製造装置。 A mixture in which the molar ratio of the aromatic dicarboxylic acid or its derivative as a raw material to the glycols is in the range of 1: 1.05 to 1: 2.0 is supplied, the temperature is 240 to 285 degrees, and the pressure is 3 × from atmospheric pressure. A first reactor in which a reaction is performed under a condition of 10 5 Pa, and a reactant from the first reactor are supplied. The reaction is performed at a temperature of 250 ° C. to 290 ° C. and a pressure of atmospheric pressure to 133 Pa. It comprises a second reactor to be carried out and three reactors to which the reactants are supplied and the reaction is carried out at a temperature of 270 to 290 degrees and a pressure of 200 to 13.3 Pa. An apparatus for continuously producing polyester.  芳香族ジカルボン酸またはその誘導体とグリコール類とから高分子量ポリエステルを製造するプロセスの最終反応段に用いられ、
 横形の円筒状容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータを設けた装置とし、本体内部の撹拌ロータが処理液の粘度に応じて複数個の撹拌翼ブロックで構成され、撹拌ロータの中心部に回転シャフトを持たない撹袢翼を有することを特徴とするポリエステル連続製造用反応器。
Used in the final reaction stage of the process for producing a high molecular weight polyester from an aromatic dicarboxylic acid or a derivative thereof and a glycol,
The horizontal cylindrical container body has an inlet and an outlet for the liquid to be treated at one end lower part and the other end lower part in the longitudinal direction respectively, has an outlet for volatile substances at the upper part of the body, and is close to the inside of the body in the longitudinal direction inside the body. The stirring rotor inside the main body is composed of a plurality of stirring blade blocks according to the viscosity of the processing liquid, and a stirring blade having no rotating shaft is provided at the center of the stirring rotor. A reactor for continuous production of polyester, comprising:
 芳香族ジカルボン酸またはその誘導体とグリコール類とから高分子量ポリエステルを製造するプロセスの最終反応段に用いられ、
 実質的に横型の円筒状容器本体長手方向の一端下部及び他端下部にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータを設けた装置の本体内部の撹拌ロータは処理液の粘度に応じて複数個の撹拌翼ブロックで構成され、撹拌ロータの中心部に回転シャフトを持たない撹拌ロータにおいて両端側の動力伝達軸と撹拌ロータ部を連結する端板の外径を撹拌ロータの外径より小さくしたことを特徴とするポリエステル連続製造用反応器。
Used in the final reaction stage of the process for producing a high molecular weight polyester from an aromatic dicarboxylic acid or a derivative thereof and a glycol,
The substantially horizontal cylindrical container body has an inlet and an outlet for the liquid to be treated at one end lower part and the other end lower part in the longitudinal direction, respectively, has an outlet for volatile matter at the upper part of the main body, and has the main body in the longitudinal direction inside the main body. The stirring rotor inside the main body of the apparatus provided with the stirring rotor rotating close to the inside is constituted by a plurality of stirring blade blocks according to the viscosity of the processing liquid, and the stirring rotor having no rotating shaft at the center of the stirring rotor. Wherein the outer diameter of an end plate connecting the power transmission shafts at both ends and the stirring rotor is smaller than the outer diameter of the stirring rotor.
 請求項10記載の反応器において、上記入口側に低粘度撹拌用として複数個連結された撹拌ブロックが設けられ、各撹拌ブロックは、両端に設けられた中空の円板と、円板の外周部に設けられ、はカキトリ板により処理液をすくい上げるバケット部と、カキトリ板の内周側端面に近接してされた中空の薄板円板とからなり、翼の回転によってバケット部に溜まった処理液が中空の薄板円板に注がれて、液膜が薄板の円板間に形成される構造を有することを特徴とするポリエステル連続製造用反応器。 The reactor according to claim 10, wherein a plurality of stirring blocks are provided on the inlet side for low-viscosity stirring, and each of the stirring blocks has a hollow disk provided at both ends and an outer peripheral portion of the disk. The bucket is provided with a bucket portion for scooping up the processing liquid by the oyster plate, and a hollow thin disk placed close to the inner peripheral end surface of the oyster plate. A reactor for continuous production of polyester, characterized by having a structure in which a liquid film is poured between hollow thin disks and a liquid film is formed between the thin disks.  請求項11記載の反応器において、上記バケット部は底部側のカキトリ板の水平方向の結合部に処理液が流出する孔或いはわずかの隙間が設けられることを特徴とするポリエステル連続製造用反応器。 12. The reactor according to claim 11, wherein the bucket portion has a hole or a small gap through which the processing liquid flows out at a horizontal joint portion of the bottom-side oyster plate.  請求項10記載の反応器において、中粘度撹拌用として複数個連結された撹拌ブロックが設けられ、各撹拌ブロックは、両端に設けられた中空の円板と、円板の外周部に複数個放射状に設けられたカキトリ板と、さらに中空円板の間に複数個設けられた円板の外周と同一の大きさの中空薄板とからなり、該薄板には小円孔が複数個形成されることを特徴とするポリエステル連続製造用反応器。 11. The reactor according to claim 10, wherein a plurality of connected stirring blocks are provided for medium viscosity stirring, and each of the stirring blocks is provided with a hollow disk provided at both ends and a plurality of radial blocks on an outer peripheral portion of the disk. And a hollow thin plate having the same size as the outer circumference of a plurality of discs provided between the hollow discs, and a plurality of small circular holes are formed in the thin plate. For continuous production of polyester.  請求項10記載の反応器において、高粘度撹拌用として撹拌ブロックが設けられ、この撹拌ブロックは、複数個水平方向に配置されたカキトリ板付きの車輪形状の円板とからなり、前後のカキトリ板の取り付け位置を互い違いに設置されることを特徴とするポリエステル連続製造用反応器。 11. The reactor according to claim 10, wherein a stirring block is provided for high-viscosity stirring, and the stirring block comprises a plurality of wheel-shaped disks with an oyster plate arranged in a horizontal direction. A reactor for continuous production of polyester, wherein the mounting positions of the polyesters are alternately set.  請求項10記載の反応器において、撹拌ロータ部を連結する高粘度側の支持部材の外径は撹拌ロータの外径より小さくされ、該支持部材の側面と槽内端面の間に槽内壁面を近接して回転し、回転することにより壁面付近に付着した処理液を槽外周部へ送り出すように配置されたカキトリ翼が設けられることを特徴とするポリエステル連続製造用反応器。 In the reactor according to claim 10, the outer diameter of the high-viscosity side supporting member connecting the stirring rotor portion is smaller than the outer diameter of the stirring rotor, and the inner wall surface of the tank is provided between the side surface of the supporting member and the inner end surface of the tank. A reactor for continuous production of polyester, which is provided with an oscillating blade which is arranged so as to rotate in close proximity and send out a processing liquid attached near a wall surface to the outer periphery of the tank by rotating.  請求項10記載の反応器において、実質的に横型の円筒状容器本体長手方向の一端及び他端にそれぞれ被処理液の入口及び出口が設けられ、本体の上部に揮発物の出口が設けられ、本体内部の長手方向に本体の内側に近接して回転する撹拌ロータが設けられ、この撹拌ロータは処理液の粘度に応じて複数個の撹拌翼ブロックで構成され、高粘度側の撹拌翼ブロックを構成する各々の仕切り円板間の外周カキトリ板を連結し、撹拌ロータの中心部に回転シャフトを持たない撹拌ロータにおいて端部側の動力伝達軸と撹拌ロータ部を連結する端板の外径を撹拌ロータの外径より小さくすることを特徴とするポリエステル連続製造用反応器。 In the reactor according to claim 10, an inlet and an outlet for the liquid to be treated are provided at one end and the other end of the substantially horizontal cylindrical container main body in the longitudinal direction, respectively, and an outlet for volatiles is provided at an upper part of the main body, A stirring rotor that rotates close to the inside of the main body in the longitudinal direction inside the main body is provided, and the stirring rotor is configured with a plurality of stirring blade blocks according to the viscosity of the processing liquid, and a stirring blade block on the high viscosity side is provided. The outer diameter plate of the end plate connecting the outer peripheral plate between each of the partitioning disks constituting the end plate connecting the power transmission shaft on the end side and the stirring rotor unit in the stirring rotor having no rotating shaft at the center of the stirring rotor is adjusted. A reactor for continuous production of polyester characterized in that the diameter is smaller than the outer diameter of the stirring rotor.  芳香族ジカルボン酸またはその誘導体とグリコール類とから高分子量ポリエステルを製造するプロセスの中間反応段に用いられ、
 実質的に竪型の円筒状容器本体長手方向の一端下部側面及び下部中央にそれぞれ被処理液の入口及び出口を有し、本体の上部に揮発物の出口を持ち本体外側を熱媒ジャケットで覆った装置において、本体内下部に熱交換部を設け、本体内中部に被処理液を保持し順次下から上に移動させる螺旋状の邪魔板を持つ滞留部を設け、本体内上部に気液分離のための空間を設け、本体内中央部上下方向に被処理液を薄膜流下させる下降管を設けたことを特徴とするポリエステル連続製造用反応器。
Used in an intermediate reaction stage of a process for producing a high-molecular-weight polyester from an aromatic dicarboxylic acid or a derivative thereof and a glycol,
A substantially vertical cylindrical container main body has an inlet and an outlet for the liquid to be treated at one lower side and lower center in the longitudinal direction of the main body, a volatile substance outlet at the upper part of the main body, and the outer side of the main body is covered with a heat medium jacket. In the apparatus, a heat exchange part is provided in the lower part of the main body, a retention part having a spiral baffle plate for holding the liquid to be treated and moving upward from the bottom in the middle part of the main body is provided, and gas-liquid separation is provided in the upper part of the main body. For continuous production of polyester, characterized in that a space for the liquid is provided, and a downcomer pipe is provided in a vertical direction in the center of the main body so that the liquid to be treated flows down in a thin film.
 芳香族ジカルボン酸またはその誘導体とグリコール類とから高分子量ポリエステルを製造するプロセスの初段反応段に用いられ、
 立形の円筒容器本体に被処理液の入口及び出口を設け、上部には蒸気を排出するベーパー管を設け、前記円筒容器本体を熱媒ジャケットで覆い、前記円筒容器本体の内部に管外側を熱媒により加熱され、管内側に被処理液が上昇する多管式熱交換器を内蔵した自然循環式蒸発缶において、前記円筒容器本体の内壁と前記多管式熱交換器のシェルの外壁の間を自然対流により流下する被処理液の平均速度が前記多管式熱交換器の管内側を上昇する被処理液の平均流速よりも小さくし且つ前記多管式熱交換器の外側のシェル下部に内部循環する被処理液を一様に流入させるための助走空間をけたことを特徴とする自然循環式蒸発缶。
Used in the first reaction stage of the process for producing a high molecular weight polyester from an aromatic dicarboxylic acid or a derivative thereof and a glycol,
An inlet and an outlet for the liquid to be treated are provided in a vertical cylindrical container main body, a vapor pipe for discharging vapor is provided at an upper portion, the cylindrical container main body is covered with a heat medium jacket, and the outside of the pipe is provided inside the cylindrical container main body. In a natural circulation type evaporator having a built-in multi-tube heat exchanger in which a liquid to be treated rises inside the tube, the inner wall of the cylindrical container body and the outer wall of the shell of the multi-tube heat exchanger are heated by a heat medium. The average velocity of the liquid to be treated flowing down by natural convection between the pipes is smaller than the average flow velocity of the liquid to be treated rising inside the tubes of the multitubular heat exchanger, and the lower shell portion outside the multitubular heat exchanger. A natural circulation evaporator characterized by having a run-in space for allowing the liquid to be circulated internally to flow uniformly into the evaporator.
JP2003322375A 2003-09-16 2003-09-16   Continuous polycondensation apparatus and continuous polycondensation method Expired - Lifetime JP3722138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322375A JP3722138B2 (en) 2003-09-16 2003-09-16   Continuous polycondensation apparatus and continuous polycondensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322375A JP3722138B2 (en) 2003-09-16 2003-09-16   Continuous polycondensation apparatus and continuous polycondensation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25470997A Division JP3489408B2 (en) 1997-09-19 1997-09-19 Continuous polyester production equipment

Publications (3)

Publication Number Publication Date
JP2004002901A true JP2004002901A (en) 2004-01-08
JP2004002901A5 JP2004002901A5 (en) 2005-05-26
JP3722138B2 JP3722138B2 (en) 2005-11-30

Family

ID=30439050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322375A Expired - Lifetime JP3722138B2 (en) 2003-09-16 2003-09-16   Continuous polycondensation apparatus and continuous polycondensation method

Country Status (1)

Country Link
JP (1) JP3722138B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372857B1 (en) 2011-12-30 2014-03-12 웅진케미칼 주식회사 Blend composition biodegradable polyester, manufacturing method thereof and fabric made of them
CN106824030A (en) * 2017-02-08 2017-06-13 郑州高富肥料有限公司 A kind of continuous reaction device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372857B1 (en) 2011-12-30 2014-03-12 웅진케미칼 주식회사 Blend composition biodegradable polyester, manufacturing method thereof and fabric made of them
CN106824030A (en) * 2017-02-08 2017-06-13 郑州高富肥料有限公司 A kind of continuous reaction device
CN106824030B (en) * 2017-02-08 2019-11-15 郑州高富肥料有限公司 A kind of continuous reaction device

Also Published As

Publication number Publication date
JP3722138B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
US7431893B1 (en) Process and apparatus for continuous polycondensation
US8252888B2 (en) Process for continuous preparation of high molecular weight polyesters by esterification of dicarboxylic acids and/or transesterification of dicarboxylic acids with diols and/or mixtures thereof and an apparatus therefor
JP3909357B2 (en) Continuous production apparatus and reaction apparatus for polybutylene terephthalate
KR20020093793A (en) Process of discontinuous polycondensation and stirring reactor therefor
JP3489408B2 (en) Continuous polyester production equipment
JP2006507377A5 (en)
JP2006507377A (en) Method and apparatus for continuous production of polyester
US4432940A (en) Reactor
JP3722138B2 (en)   Continuous polycondensation apparatus and continuous polycondensation method
JP3713894B2 (en) Method and apparatus for producing polyethylene terephthalate
CN101077907B (en) Method and apparatus for continuous polycondensation
MXPA99002101A (en) Method and apparatus for continuous polycondensation
WO2007098637A1 (en) A prepolycondensation reactor
JP2011116915A (en) Polymerizer of polyester
JP5115512B2 (en) Polyester production equipment
JP4599976B2 (en) Polybutylene terephthalate production apparatus and method
JPH0987392A (en) Continuous production apparatus for polycondensation polymer and production process therefor
JPH11335453A (en) Production of poly(ethylene terethalate) and manufacturing equipment
JPH093200A (en) Apparatus for continuous production of polycondensation polymer and method therefor
JP2010248531A (en) Apparatus for producing polybutylene terephthalate, and method therefor
JPH08311107A (en) Continuous production apparatus and production process for polytcondensation type polymer
JP2000169574A (en) Process and apparatus for manufacturing poycarbonate
JPH08311207A (en) Apparatus and method for continuously producing polycondensation polymer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term