JPH1190449A - Electrochemical treatment apparatus - Google Patents
Electrochemical treatment apparatusInfo
- Publication number
- JPH1190449A JPH1190449A JP9260403A JP26040397A JPH1190449A JP H1190449 A JPH1190449 A JP H1190449A JP 9260403 A JP9260403 A JP 9260403A JP 26040397 A JP26040397 A JP 26040397A JP H1190449 A JPH1190449 A JP H1190449A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- reaction chamber
- treatment
- hydrogen storage
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、廃水を水素添加又
は還元処理と酸化処理とを組合せて高度処理するために
用いる電気化学処理装置に関し、特に、水素添加又は還
元処理後に酸化処理を行うことにより、又は酸化処理後
に水素添加又は還元処理を行うことにより、廃水処理、
たとえば染料排液などの着色廃液の処理を効率的に行う
ことが可能な電気化学処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical treatment apparatus used for advanced treatment of wastewater by a combination of hydrogenation or reduction treatment and oxidation treatment, and more particularly, to an oxidation treatment after hydrogenation or reduction treatment. Or by performing a hydrogenation or reduction treatment after the oxidation treatment, wastewater treatment,
For example, the present invention relates to an electrochemical treatment apparatus capable of efficiently treating a colored waste liquid such as a dye waste liquid.
【0002】[0002]
【従来の技術】着色廃液の処理は、従来から効果的な処
理が困難なものであって、この処理を効果的に行えるよ
うにすることは多年の懸案事項であった。つまり、着色
廃液は、着色の原因によってはその処理が極めて困難な
ものがある。廃液の着色の原因には大きく分けて二種類
ある。そのひとつが金属イオンの含有であり、代表的に
はいわゆる遷移金属イオンの存在により着色するもので
あり、例えば銅イオンの存在により青色に着色したり、
コバルトイオンによりピンク色に着色するものである。
これらの金属イオン由来の場合は、金属を取り除くこと
によって比較的容易に処理できることは良く知られてい
ることである。2. Description of the Related Art It has been difficult to effectively treat colored waste liquids in the past, and it has been a matter of many years to make this treatment effective. That is, the coloring waste liquid is extremely difficult to treat depending on the cause of coloring. There are roughly two types of causes of the coloring of the waste liquid. One of them is the inclusion of metal ions, which are typically colored by the presence of so-called transition metal ions, such as coloring blue due to the presence of copper ions,
It is colored pink by cobalt ions.
It is well known that those metal ions can be treated relatively easily by removing the metal.
【0003】もう一つの原因として有機物に由来するも
のがある。すなわち、二重結合や三重結合などの不飽和
結合を有する有機物が含まれる場合には、それが原因と
なって着色すると言われている。この処理法として、従
来から、活性炭で吸着する方法、強い酸化剤で有機物を
分解する方法、更に、これらを組み合わせる方法などが
知られている。ここで着色廃水処理、特に有機物由来の
着色廃液の処理について考えてみると、理想的には完全
に有機物を分解処理してしまうことであるが、その一方
で従来費用がかかるとされてきた脱色処理を含む前処理
等と最終処理とを分離して考えることもできる。すなわ
ち前処理としてある程度分解しておきそれを活性炭処理
する、又は生物処理して着色をなくすと共に無害化する
方法である。[0003] Another cause is derived from organic matter. That is, it is said that when an organic substance having an unsaturated bond such as a double bond or a triple bond is contained, coloring is caused by the organic substance. As this treatment method, a method of adsorbing with activated carbon, a method of decomposing organic substances with a strong oxidizing agent, and a method of combining these are conventionally known. Considering the treatment of colored wastewater, especially the treatment of colored wastewater derived from organic matter, it is ideally that organic matter is completely decomposed, but on the other hand, decolorization which has conventionally been considered to be expensive It is also possible to separately consider the preprocessing including the processing and the final processing. That is, it is a method of decomposing to some extent as a pretreatment and treating it with activated carbon, or a biological treatment to eliminate coloring and make it harmless.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
活性炭で直接吸着する方法では、通常このような着色廃
液に含まれる有機物量がかなり多いためにその負荷が大
きく、そのままては多量の活性炭を使用したり又は活性
炭のメンテナンスを非常にしばしば行う必要があるなど
の問題点があった。同様の意味で、含有有機物を強い酸
化剤で完全に水と炭酸ガスにまで分解してしまうこと
は、その使用する酸化剤の量が極めて多くなる問題点が
容易に考えられる。たとえばオゾン処理による着色廃水
処理に於いては、最近の新聞記事によると(平成9年3
月21日日刊工業新聞)3トン/時間の廃水を処理する
のにオゾン生成量15kg/時間と言う大型のオゾン発
生装置を使用する必要があるとしており、経済性の点か
ら大きな問題であった。However, in the conventional method of directly adsorbing with activated carbon, since the amount of organic substances contained in such a colored waste liquid is usually quite large, the load is large, and a large amount of activated carbon is used as it is. There is a problem that it is necessary to perform the maintenance of the activated carbon very frequently. In the same sense, completely decomposing the contained organic matter into water and carbon dioxide with a strong oxidizing agent can easily be considered as a problem that the amount of the oxidizing agent used becomes extremely large. For example, in the treatment of colored wastewater by ozone treatment, according to a recent newspaper article (March 1997
The Nikkan Kogyo Shimbun, March 21) It is said that it is necessary to use a large ozone generator with an ozone generation amount of 15 kg / hour to treat 3 tons / hour of wastewater, which is a major problem in terms of economy. .
【0005】また生物化学処理としてバクテリアなどに
よって有機物を分解することが考えられているが、大き
な場所を必要とすること、長時間を要することと共に、
必ずしも選択的な反応が期待できないこと、廃液によっ
ては分解しにくいために長時間処理しても十分な効果が
得られないなどの問題点があった。さらにまた、前処理
と活性炭処理又は生物処理の組合せにおいても、選択的
に着色原因を除き、更に分解を能率的に行う方法は従来
見られず、着色廃水の処理は困難を極めていると言って
良く、通常は過剰とも思える設備を使って処理するため
に経済的に大きな負担をかけるという問題があり、実用
的な方法がなかったという問題点があった。本発明は、
叙上の問題点を解決するためになされたものであり、有
機着色廃水の脱色を選択的に行うと共に効率的に無害化
処理する装置を提供することを目的とする。[0005] As a biochemical treatment, it is considered that organic matter is decomposed by bacteria or the like. However, a large space is required and a long time is required.
There are problems that a selective reaction cannot always be expected, and that a waste liquid is hardly decomposed, so that a sufficient effect cannot be obtained even if the treatment is performed for a long time. Furthermore, even in the combination of pretreatment and activated carbon treatment or biological treatment, there has been no conventional method for selectively removing the cause of coloring and performing decomposition more efficiently, and it is said that the treatment of colored wastewater is extremely difficult. There is a problem that a large burden is imposed economically on treatment using equipment that is usually considered excessive, and there is a problem that there is no practical method. The present invention
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide an apparatus for selectively decolorizing an organic colored wastewater and for efficiently detoxifying the wastewater.
【0006】[0006]
【課題を解決するための手段】本発明者等は、前記課題
を解決すべく鋭意検討した結果、水素添加又は還元と酸
化処理を組合せて上記着色廃水を処理することによって
上記目的を達成できることを見出して本発明を完成する
に至った。従って、本発明は、着色の主原因である有機
物質の多重結合部分を水添又は還元反応で選択処理し、
更に電解酸化により有機物を分解すること、或いはその
処理順序を逆に行うことにより有機物を分解することに
よって無害化する、多年の懸案事項であった染色排水の
処理に抜群の効果を発揮する電解反応装置を提供するも
のである。The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that the above-mentioned object can be achieved by treating the above-mentioned colored wastewater by a combination of hydrogenation or reduction and oxidation treatment. The inventors have found and completed the present invention. Therefore, the present invention is to selectively treat the multiple bond portion of the organic substance that is the main cause of coloring by hydrogenation or reduction reaction,
In addition, the electrolytic reaction which decomposes organic substances by electrolytic oxidation or detoxifies organic substances by reversing the processing order to detoxify the organic waste, which is an outstanding effect in the treatment of dyeing wastewater which has been a concern for many years. An apparatus is provided.
【0007】すなわち、本発明は、次の構成からなるも
のである。 (1)水素吸蔵金属からなる陰極を兼ねた隔壁により仕
切られた反応室と電解室の2室からなり、電解室には酸
化用陽極を該隔壁の陰極と対向して配置した電気化学処
理装置であって、被処理物が反応室に入って該水素吸蔵
金属隔壁と接触して水素添加、又は還元された後、電解
室に送られて陽極酸化処理されるか、もしくは、被処理
物が電解室に入って陽極酸化処理された後、反応室に送
られて該水素吸蔵金属隔壁と接触して水素添加、又は還
元されることを特徴とする電気化学処理装置。 (2)前記の水素吸蔵金属からなる陰極を兼ねた隔壁の
反応室側表面に反応触媒層を設けたことを特徴とする前
記(1)記載の電気化学処理装置。 (3)前記電解室の酸化用陽極の電極物質が酸化鉛であ
ることを特徴とする前記(1)記載の電気化学処理装
置。 (4)前記の水素吸蔵金属からなる陰極を兼ねた隔壁の
反応室側表面をブラスト等により粗面化し、さらに多孔
質触媒層を設けて、比表面積を拡大し、接触面積を増加
したものであることを特徴とする前記(1)記載の電気
化学処理装置。That is, the present invention has the following configuration. (1) An electrochemical treatment apparatus comprising a reaction chamber and an electrolysis chamber separated by a partition wall also serving as a cathode made of a hydrogen storage metal, in which an oxidation anode is arranged to face the cathode of the partition wall. After the object to be treated enters the reaction chamber and comes into contact with the hydrogen-absorbing metal partition wall and is hydrogenated or reduced, and then sent to the electrolytic chamber to be subjected to anodizing treatment, or the object to be treated is An electrochemical treatment apparatus characterized in that after entering an electrolysis chamber and being subjected to anodizing treatment, it is sent to a reaction chamber and is brought into contact with the hydrogen-absorbing metal partition wall to be hydrogenated or reduced. (2) The electrochemical treatment apparatus according to the above (1), wherein a reaction catalyst layer is provided on a surface of the partition wall also serving as a cathode made of the hydrogen storage metal, on the side of the reaction chamber. (3) The electrochemical treatment apparatus according to (1), wherein the electrode material of the oxidizing anode in the electrolytic chamber is lead oxide. (4) The surface of the partition wall which also serves as a cathode made of the above-mentioned hydrogen storage metal is roughened by blasting or the like, and a porous catalyst layer is further provided to increase the specific surface area and increase the contact area. The electrochemical treatment apparatus according to the above (1), wherein
【0008】[0008]
【発明の実施の形態】典型的な電気化学処理装置を概念
的に示した模式図を図1に示す。図1において、電気化
学処理装置1の形状は、水素吸蔵金属からなる陰極兼隔
壁2により仕切られた反応室3と電解室4とをそれぞれ
有する反応槽型の容器をなしており、前記陰極兼隔壁2
はその陰極側が電解室4に面し、その反対側が反応室3
に面するように設置されており、それぞれの槽の頂部は
蓋体5、5で覆われており、また底部には撹拌子6、6
が設けられており、これらは磁気的に回転されるように
なっている。また、電解室4には陽極7が挿入されてい
る。更に、反応室3にはポンプP1により水素添加又は
還元された処理液を電解室4へ移送する配管8が、また
電解室4には陽極酸化された処理液をポンプP2により
反応室3へ移送する配管9がそれぞれ接続されている。FIG. 1 is a schematic diagram conceptually showing a typical electrochemical processing apparatus. In FIG. 1, the shape of an electrochemical treatment apparatus 1 is a reaction vessel type vessel having a reaction chamber 3 and an electrolysis chamber 4 separated by a cathode / partition 2 made of a hydrogen storage metal. Partition wall 2
Has the cathode side facing the electrolysis chamber 4 and the opposite side
The top of each tank is covered with lids 5 and 5, and the stirrers 6 and 6 are provided at the bottom.
Are provided, which are magnetically rotated. An anode 7 is inserted in the electrolytic chamber 4. Further, a pipe 8 for transferring the processing liquid hydrogenated or reduced by the pump P1 to the electrolytic chamber 4 is supplied to the reaction chamber 3, and an anodized processing liquid is transferred to the reaction chamber 3 for the electrolytic chamber 4 by the pump P2. Are connected to each other.
【0009】次に図1に基づいて、電気化学処理装置1
による着色廃液の処理を以下に説明する。そこにおける
反応の概要は、次に示すとおりである。先ず電解質の電
解により水素吸蔵金属からなる陰極2では水素が発生
し、その水素の大部分は水素吸蔵金属に吸蔵され、吸蔵
水素量の増加と共に陰極兼隔壁2の中を反対側に移動す
る。移動した水素は反応室3内の被反応物、ここでは被
処理水内に活性水素、水素ラジカルなどとして移動し、
被反応物と反応し、いわゆる水添反応を行う。この反応
は有機化合物の二重結合のような多重結合部分を選択的
にアタックする。これによって多重結合が飽和するので
着色が消える。多重結合の水添による脱色は、一般に脱
水素による再多重結合化が困難であるだけに処理の途中
で再び着色する可能性が少ないという特徴を有してい
る。Next, referring to FIG. 1, an electrochemical treatment apparatus 1 will be described.
The treatment of the colored waste liquid by the method described below is described below. The outline of the reaction there is as follows. First, hydrogen is generated in the cathode 2 made of a hydrogen storage metal by electrolysis of the electrolyte, and most of the hydrogen is stored in the hydrogen storage metal, and moves to the opposite side in the cathode / partition wall 2 with an increase in the amount of stored hydrogen. The transferred hydrogen moves as active hydrogen, hydrogen radicals, and the like into the reactant in the reaction chamber 3, here, the water to be treated,
It reacts with the reactant to perform a so-called hydrogenation reaction. This reaction selectively attacks multiple bond moieties such as double bonds of organic compounds. This saturates the multiple bonds and eliminates the coloring. Decolorization by hydrogenation of multiple bonds is characterized by the fact that it is generally difficult to re-multiply bond by dehydrogenation and that there is little possibility of recoloring during processing.
【0010】この脱色した被反応物を更に電解室4に送
る。その電解室4での陽極酸化により有機物の種類によ
っては完全に分解され、また有機物の種類によっては部
分的に分解されて処理されやすい形となる。このときの
陽極酸化は、そこで使用する電極の種類によって変わっ
てくるので、水中の被処理物の種類を考えて使用する電
極の種類を選択する。たとえば酸化鉛電極を使用する
と、極めて酸化力が強いので、多くの有機物は分解され
て二酸化炭素と水にまでなるケ−スが多い。また、そこ
までの分解が起こらなくても比較的簡単な形の有機物に
まで分解されるので、後は、そのまま排水したり、必要
に応じて生物処理などの追加処理を行えばよい。The decolorized reactant is sent to the electrolytic chamber 4. Anodization in the electrolytic chamber 4 completely decomposes some types of organic substances, and partially decomposes some organic substances into a form easily processed. Since the anodic oxidation at this time depends on the type of electrode used therein, the type of electrode to be used is selected in consideration of the type of the object to be treated in water. For example, when a lead oxide electrode is used, the oxidizing power is extremely strong, so that many organic substances are decomposed to carbon dioxide and water in many cases. Further, even if the decomposition does not occur, the organic matter is decomposed into a relatively simple form of organic matter, and thereafter, it may be drained as it is, or additional treatment such as biological treatment may be performed as necessary.
【0011】また、酸化錫電極では有機物のうちでもベ
ンゼン環の開環に有効であるとされている。白金めっき
チタン電極では酸化鉛ほどの酸化力はないが、大きな酸
素過電圧を有するので高電位による酸化分解が行える。
導電性ダイヤモンド電極は過電圧は大きいが、酸化力は
優れている。これらの電極は、被分解物によって選択す
るが、いずれの場合もそのままで排水できる状態となっ
たり、少なくとも二次処理が極めて容易になると言う特
徴がある。しかも、他の処理と異なり水添により水素の
飽和化が進んでいるので、再着色の心配なしに二次処理
まで可能である。Further, it is said that the tin oxide electrode is effective in opening a benzene ring among organic substances. Platinum-plated titanium electrodes do not have the oxidizing power of lead oxide, but have a large oxygen overpotential so that they can be oxidized and decomposed by high potential.
The conductive diamond electrode has a large overvoltage, but has excellent oxidizing power. These electrodes are selected depending on the substance to be decomposed, but in any case, they are in a state where they can be drained as they are, or at least the secondary treatment is extremely easy. Moreover, unlike other treatments, hydrogen saturation is progressing by hydrogenation, so that secondary treatment can be performed without worrying about recoloring.
【0012】アゾ染料として代表的なアマランスを含む
廃水の場合、図1に示す装置で水素吸蔵金属としてパラ
ジウム箔を用い、反応側の表面にパラジウム黒を触媒と
反応面積拡大を兼ねて生成させ、電解室4の陽極7とし
て酸化鉛電極を用いた。室温で電流密度2〜3A/dm
2 で電解を行いながら、前記廃液を反応室3を通し、さ
らに電解室4に流した場合、反応室3を出た段階で液は
見掛け上無色となった。しかしCODは殆ど変化しなか
った。この液のCODは100〜120ppmであっ
た。これを更に電解室4側に通したところ、電解室4側
出口ではCODは5ppm程度まで下がり、確実にCO
Dの低下効果のあることがわかった。また、アントラキ
ノン系の染料や、キノリン系の染料でも程度の差はある
が同様の効果が認められた。In the case of wastewater containing amaranth, which is a typical azo dye, a palladium foil is used as a hydrogen storage metal in the apparatus shown in FIG. A lead oxide electrode was used as the anode 7 of the electrolytic chamber 4. Current density 2-3 A / dm at room temperature
When the waste liquid was passed through the reaction chamber 3 and further passed through the reaction chamber 4 while performing the electrolysis in 2 , the liquid became apparently colorless when it left the reaction chamber 3. However, the COD hardly changed. The COD of this liquid was 100 to 120 ppm. When this was further passed through the electrolysis chamber 4 side, the COD dropped to about 5 ppm at the electrolysis chamber 4 side outlet, and
It was found that there was an effect of reducing D. Similar effects were observed with anthraquinone-based dyes and quinoline-based dyes, albeit with varying degrees.
【0013】[0013]
【実施例】以下に、本発明を実施例によって具体的に説
明するが、本発明はこれに限定されないことは言うまで
もない。EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but it goes without saying that the present invention is not limited to these.
【0014】実施例1 図1の処理装置を用いてアマランス含有の模擬廃水(C
OD=103ppm)の処理を行った。まずブラスト処
理して有効面積が1cm2 である厚さ0.05mmのパ
ラジウム板の反応室側表面にパラジウム黒の電気めっき
を行い、さらにその表面にPtの電気めっきを行った。
電解室の陽極は、熱シュウ酸で酸洗したTi板にPbO
2 めっきをして作成した。反応室側に100mg/dm
3 のアマランス含有模擬廃水を10dm3 入れて撹拌子
6の回転で撹拌するとともにポンプで循環し、室温、電
流密度5A/dm2 の条件で5時間電解を行った。処理
後の前記模擬廃水の脱色度は吸光光度計を用いて測定し
た。その方法は、510nmにおける吸光度を電解前後
で比較し、その比を脱色率とするものである。この試験
結果は97%の脱色率であった。この時のCOD値は変
わっていなかった。そこで、この装置の反応室から出た
液を電解室に流すように配管を変更して同様の電解を行
ったところ、脱色率は95%になり、CODは5ppm
まで低下していた。この処理済み液を室温で2日間放置
した後、脱色率とCOD値の測定を行ったところ、電解
処理直後と同等の値であった。Example 1 Simulated wastewater containing amaranth (C) was treated using the treatment apparatus shown in FIG.
(OD = 103 ppm). First, palladium black electroplating was performed on the reaction chamber side surface of a 0.05 mm thick palladium plate having an effective area of 1 cm 2 by blasting, and then Pt was electroplated on the surface.
The anode of the electrolytic chamber is made of PbO on a Ti plate pickled with hot oxalic acid.
It was made by two plating. 100 mg / dm on the reaction chamber side
The simulated wastewater containing amaranth No. 3 was put in 10 dm 3 , stirred by the rotation of the stirrer 6, circulated by a pump, and electrolyzed at room temperature and a current density of 5 A / dm 2 for 5 hours. The degree of decolorization of the simulated wastewater after the treatment was measured using an absorptiometer. In this method, the absorbance at 510 nm is compared before and after electrolysis, and the ratio is defined as the decolorization ratio. The test result was 97% bleaching rate. The COD value at this time was not changed. Therefore, when the same electrolysis was performed by changing the piping so that the liquid discharged from the reaction chamber of this apparatus flowed into the electrolysis chamber, the decolorization rate was 95%, and the COD was 5 ppm.
Had fallen. After the treated liquid was allowed to stand at room temperature for 2 days, the decolorization rate and COD value were measured. The measured values were equivalent to those immediately after the electrolytic treatment.
【0015】比較例1 図1の処理装置を用いて電解室のみに前記廃液を入れて
5時間電解したところ、脱色率は20%、COD値は2
5ppmであった。 実施例2 実施例1と同様の条件で、被処理液を100mg/dm
3 のクリスタルバイオレット含有液に変えて、反応室か
ら電解室に被処理液を流して処理したところ、89%の
脱色率が得られた。その後に酸化鉛電極を有する電解槽
で酸化分解処理を行ったところCOD値は10ppmま
で下がった。このときの着色の変化は全く認められなか
った。COMPARATIVE EXAMPLE 1 Using the processing apparatus of FIG. 1, the waste liquid was placed only in the electrolysis chamber and electrolyzed for 5 hours. The decolorization rate was 20% and the COD value was 2
It was 5 ppm. Example 2 Under the same conditions as in Example 1, the liquid to be treated was 100 mg / dm.
When the liquid to be treated was passed from the reaction chamber to the electrolysis chamber for processing instead of the crystal violet-containing liquid of No. 3 , a decolorization rate of 89% was obtained. Thereafter, when an oxidative decomposition treatment was performed in an electrolytic cell having a lead oxide electrode, the COD value was reduced to 10 ppm. No change in coloring at this time was observed.
【0016】実施例3 実施例1と同様の条件で、アゾ染料廃液(COD=33
00ppm)を被処理液として、反応室から電解室に処
理液を流して処理したところ、9時間の反応時間で97
%の脱色率が得られた。この時のCODは30ppmま
で低下していた。Example 3 Under the same conditions as in Example 1, the azo dye waste liquid (COD = 33)
(00 ppm) as a liquid to be treated, the treatment liquid was flowed from the reaction chamber to the electrolysis chamber for treatment.
% Bleaching rate was obtained. The COD at this time had dropped to 30 ppm.
【0017】[0017]
【発明の効果】本発明の電気化学処理装置においては、
次のような優れた効果が奏される。 (1)反応室内の被処理液を水素を十分に吸蔵させた水
素吸蔵金属に接触させることによって染料などを含む着
色液の脱色が出来る。 (2)この脱色反応は有機物への水素添加によると考え
られるので、後の電解酸化などで再度の着色が起こらな
い。 (3)水素添加や還元による脱色液を電解室に送り電解
を行うことによってCODの低減、染料の分解が促進さ
れる。 (4)脱色とCOD低減(分解)を別に行う結果となり
確実な脱色が行える。 (5)COD低減には食塩などの添加物を入れずに電解
を行うので二次汚染の問題が全く起こらない。According to the electrochemical treatment apparatus of the present invention,
The following excellent effects are achieved. (1) By bringing the liquid to be treated in the reaction chamber into contact with a hydrogen storage metal that has sufficiently absorbed hydrogen, it is possible to decolor the coloring liquid containing a dye or the like. (2) Since this decolorization reaction is considered to be caused by the addition of hydrogen to the organic substance, recoloring does not occur in the subsequent electrolytic oxidation or the like. (3) COD reduction and dye decomposition are promoted by sending a decolorizing solution by hydrogenation or reduction to an electrolysis chamber and performing electrolysis. (4) As a result of performing decolorization and COD reduction (decomposition) separately, reliable decolorization can be performed. (5) In order to reduce COD, electrolysis is performed without adding an additive such as salt, so that the problem of secondary contamination does not occur at all.
【図1】本発明の電気化学処理装置の1態様を説明する
模式図である。FIG. 1 is a schematic diagram illustrating one embodiment of an electrochemical treatment apparatus of the present invention.
1 電気化学処理装置 2 陰極兼隔壁 3 反応室 4 電解室 5 蓋体 6 撹拌子 7 陽極 8 配管 9 配管 P1 ポンプ P2 ポンプ DESCRIPTION OF SYMBOLS 1 Electrochemical processing apparatus 2 Cathode and partition 3 Reaction chamber 4 Electrolysis chamber 5 Lid 6 Stirrer 7 Anode 8 Piping 9 Piping P1 pump P2 pump
フロントページの続き (72)発明者 井上 博史 大阪府堺市大野芝町23 府大宅舎4−112 (72)発明者 岩倉 千秋 大阪府堺市新檜尾台3−3−4−105Continued on the front page (72) Inventor Hiroshi Inoue 23, Ono-shiba-cho, Sakai City, Osaka Prefecture 4-112 Prefectural University Housing Building (72) Inventor Chiaki Iwakura 3-3-4-105 Shinhiniodai, Sakai City, Osaka Prefecture
Claims (4)
により仕切られた反応室と電解室の2室からなり、電解
室には酸化用陽極を該隔壁の陰極と対向して配置した電
気化学処理装置であって、被処理物が反応室に入って該
水素吸蔵金属隔壁と接触して水素添加、又は還元された
後、電解室に送られて陽極酸化処理されるか、もしく
は、被処理物が電解室に入って陽極酸化処理された後、
反応室に送られて該水素吸蔵金属隔壁と接触して水素添
加、又は還元されることを特徴とする電気化学処理装
置。1. An electrochemical cell comprising a reaction chamber and an electrolysis chamber separated by a partition wall also serving as a cathode made of a hydrogen storage metal, and an oxidizing anode disposed in the electrolysis chamber so as to face the cathode of the partition wall. A treatment apparatus, wherein an object to be treated enters a reaction chamber and is contacted with the hydrogen-absorbing metal partition wall to be hydrogenated or reduced, and then sent to an electrolysis chamber to be subjected to anodizing treatment or to be treated. After the material enters the electrolysis chamber and is anodized,
An electrochemical treatment apparatus, wherein the apparatus is sent to a reaction chamber and is brought into contact with the hydrogen-absorbing metal partition to be hydrogenated or reduced.
た隔壁の反応室側表面に反応触媒層を設けたことを特徴
とする請求項1記載の電気化学処理装置。2. The electrochemical treatment apparatus according to claim 1, wherein a reaction catalyst layer is provided on a surface of the partition wall, which also serves as a cathode made of a hydrogen storage metal, on the reaction chamber side.
化鉛であることを特徴とする請求項1記載の電気化学処
理装置。3. The electrochemical processing apparatus according to claim 1, wherein the electrode material of the oxidizing anode in the electrolytic chamber is lead oxide.
た隔壁の反応室側表面をブラスト等により粗面化し、さ
らに多孔質触媒層を設けて、比表面積を拡大し、接触面
積を増加したものであることを特徴とする請求項1記載
の電気化学処理装置。4. The reaction chamber side surface of the partition wall also serving as a cathode made of the hydrogen storage metal is roughened by blasting or the like, and a porous catalyst layer is further provided to increase the specific surface area and increase the contact area. The electrochemical treatment device according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26040397A JP3792857B2 (en) | 1997-09-25 | 1997-09-25 | Electrochemical processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26040397A JP3792857B2 (en) | 1997-09-25 | 1997-09-25 | Electrochemical processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1190449A true JPH1190449A (en) | 1999-04-06 |
JP3792857B2 JP3792857B2 (en) | 2006-07-05 |
Family
ID=17347438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26040397A Expired - Fee Related JP3792857B2 (en) | 1997-09-25 | 1997-09-25 | Electrochemical processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3792857B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003221691A (en) * | 2002-01-31 | 2003-08-08 | Permelec Electrode Ltd | Electrolytic cathode and electrolytic cell using this |
WO2005092448A1 (en) * | 2004-03-29 | 2005-10-06 | Ait Co., Ltd. | Method and apparatus for dehalogenating organic halide through electrolysis |
-
1997
- 1997-09-25 JP JP26040397A patent/JP3792857B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003221691A (en) * | 2002-01-31 | 2003-08-08 | Permelec Electrode Ltd | Electrolytic cathode and electrolytic cell using this |
WO2005092448A1 (en) * | 2004-03-29 | 2005-10-06 | Ait Co., Ltd. | Method and apparatus for dehalogenating organic halide through electrolysis |
JPWO2005092448A1 (en) * | 2004-03-29 | 2008-07-31 | 鈴木 健二 | Method and apparatus for dehalogenating halogenated organic matter by electrolysis |
Also Published As
Publication number | Publication date |
---|---|
JP3792857B2 (en) | 2006-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Drogui et al. | Oxidising and disinfecting by hydrogen peroxide produced in a two-electrode cell | |
CN106186456B (en) | Electrochemical comprehensive treatment technology for high-concentration organic wastewater hard to degrade | |
US3926771A (en) | Apparatus for electrosanitizing waste water | |
CN106927544A (en) | The method of electrocatalytic oxidation water treatment facilities and its treatment organic wastewater with difficult degradation thereby | |
CN101913693A (en) | Device and method for activating molecular oxygen by electrocatalysis to treat persistent organic wastewater | |
US20020008013A1 (en) | Method for treating colored liquid and apparatus for treating colored liquid | |
JP2003126861A (en) | Method and apparatus for water treatment | |
JPS6097089A (en) | Method of electrochemically removing contamination of water | |
US3856642A (en) | Method for electrosanitizing waste water | |
JP3792857B2 (en) | Electrochemical processing equipment | |
JP2003145161A (en) | Water treatment apparatus and water treatment method | |
JP3982500B2 (en) | Method and apparatus for treating wastewater containing organic compounds | |
US4248684A (en) | Electrolytic-cell and a method for electrolysis, using same | |
CA2249470A1 (en) | Electrocatalytic method for the deoxygenating of sea water and device for its implementation | |
JP3601673B2 (en) | Electrolytic treatment method for water containing oxidizable pollutants and electrode for electrolytic treatment | |
JPH09150159A (en) | Cod-related component removing method for the component containing water | |
JPH07256297A (en) | Purification treatment of livestock excretion | |
JPH1110160A (en) | Method for treating water by electrolytic oxidation | |
US3458434A (en) | Process for treating sewage | |
JPS6036835B2 (en) | How to purify human waste water | |
JP2000263049A (en) | Method and apparatus for cleaning barn effluent | |
JP3190384B2 (en) | Treatment method for colored organic waste liquid | |
JPH1190448A (en) | Electrolytic treatment of polluted water | |
JP3243491B2 (en) | Wastewater treatment equipment | |
JPH11179365A (en) | Method and apparatus for treating colored solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050921 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060406 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060425 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090414 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |