JPH1189806A - Bloodless sphygmomanometer - Google Patents

Bloodless sphygmomanometer

Info

Publication number
JPH1189806A
JPH1189806A JP9253149A JP25314997A JPH1189806A JP H1189806 A JPH1189806 A JP H1189806A JP 9253149 A JP9253149 A JP 9253149A JP 25314997 A JP25314997 A JP 25314997A JP H1189806 A JPH1189806 A JP H1189806A
Authority
JP
Japan
Prior art keywords
output
pulse wave
blood pressure
pressure value
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9253149A
Other languages
Japanese (ja)
Inventor
Yoshiaki Watanabe
義明 渡邉
Hiroyuki Ogino
弘之 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9253149A priority Critical patent/JPH1189806A/en
Publication of JPH1189806A publication Critical patent/JPH1189806A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate giving pressure and unpleasantness caused by fastening to an examinee by in directly estimating the blood pressure of a body through the use of acceleration pulse waves reflecting the state of the blood circulation system of the body so as to unnecessitate giving pressure of >= a highest blood pressure value to a measuring part through the use of a cuff. SOLUTION: At the time of measuring blood pressure, a pulse wave detecting means 11 is fixed to the finger 15 of the examinee by a fixing tool to irradiate light from a light emitting element 11a. As hemoglobin in blood absorbs light with strong selectivity and the amount of light transmitted through a finger reflects the increase/reduction of a blood amount, a light receiving element receives the transmitted light and a conversion circuit 11c converts it to an electrical signal corresponding to a received light quantity. Then, a signal showing the increase/reduction of the blood amount is sent to a waveform dividing means 16 to be divided into the waveform of time corresponding to one period of heartbeats to be differentiated twice by an accelerating pulse wave output means 12 next to detect the acceleration of pulse waves. This acceleration pulse waves are analyzed to estimate highest/lowest/average blood pressures.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は人体の血圧を非観血
的に計測する非観血式血圧計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-invasive blood pressure monitor for non-invasively measuring the blood pressure of a human body.

【0002】[0002]

【従来の技術】従来のこの種の非観血式血圧計は、たと
えば特開平5−49604号公報に記載されているよう
な構成となっていた。図4に従来例の非観血式血圧計の
構成図を示す。
2. Description of the Related Art A conventional non-invasive sphygmomanometer of this type has a configuration as described in, for example, Japanese Patent Application Laid-Open No. 5-49604. FIG. 4 shows a configuration diagram of a conventional non-invasive blood pressure monitor.

【0003】図4において、1は非観血式血圧計の本体
を示し、この本体1には、測定結果等を表示する液晶等
の表示器2、装置の電源オン、測定の開始、電源オフ等
を指示するためのスイッチ3が設けられている。4は本
体の挿入口と係合して腕帯チューブ5を本体に取り付け
るためのコネクタである。6はカフで、測定時、被検者
の腕に捲回されて腕帯チューブ5を通して送られてくる
空気により加圧され、本体内の排気弁が開放されること
により、その空気を腕帯チューブ5を介して外部に排出
して収縮する。7は被検者のコロトコフ音を検出するた
めのマイクロフォンであり、腕帯チューブ5とコネクタ
4を通じて本体内の処理回路に接続されている。
In FIG. 4, reference numeral 1 denotes a main body of a non-invasive sphygmomanometer. The main body 1 includes a display 2 such as a liquid crystal display for displaying a measurement result and the like, power on of the apparatus, start of measurement, power off. A switch 3 for instructing the operation is provided. Reference numeral 4 denotes a connector which engages with the insertion opening of the main body to attach the armband tube 5 to the main body. Reference numeral 6 denotes a cuff, which is pressurized by air that is wound around the arm of the subject and sent through the arm band tube 5 at the time of measurement, and the air is released by opening an exhaust valve in the main body to make the arm band open. It is discharged to the outside via the tube 5 and contracts. Reference numeral 7 denotes a microphone for detecting the Korotkoff sound of the subject, which is connected to a processing circuit in the main body through the arm band tube 5 and the connector 4.

【0004】被験者が血圧を測定する場合、カフ6を腕
の所定位置に巻き付けスイッチ3を押して測定を開始す
ると、本体1内に設けられた加圧ポンプ(図示せず)に
より加圧された空気が腕帯チューブ5を通じてカフ6に
送られて加圧が開始され、カフ6の内圧が予め設定され
た圧力値となるまで加圧される。加圧が終了すると本体
内の排気弁が開いて減圧が開始され、カフ6の内圧が被
験者の最高血圧を下回るとコロトコフ音が発生しはじ
め、さらに排気を続け被験者の最低血圧を下回るとコロ
トコフ音が消失する。このコロトコフ音の発生と消失を
マイクロホン7により検出し、その時点のカフ6の圧力
を検出することによって、最高血圧と最低血圧が決定さ
れる。このように決定された血圧値は本体1の表示器2
に表示され、測定結果が被験者や第三者に報知される。
When the subject measures the blood pressure, the cuff 6 is wound around a predetermined position on the arm and the switch 3 is pressed to start the measurement. When the measurement is started, air pressurized by a pressurizing pump (not shown) provided in the main body 1 is provided. Is sent to the cuff 6 through the cuff tube 5 and pressurization is started, and pressurization is performed until the internal pressure of the cuff 6 reaches a preset pressure value. When the pressurization is completed, the exhaust valve in the main body is opened and pressure reduction is started. When the internal pressure of the cuff 6 falls below the subject's maximum blood pressure, a Korotkoff sound starts to be generated. Disappears. The occurrence and disappearance of this Korotkoff sound are detected by the microphone 7 and the pressure of the cuff 6 at that time is detected, whereby the systolic blood pressure and the diastolic blood pressure are determined. The blood pressure value thus determined is displayed on the display 2 of the main unit 1.
And the measurement result is notified to the subject or a third party.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の非観血
式血圧計では、カフを用いて測定部に最高血圧値以上の
圧力を加える必要があるため、測定の度に被験者に対し
締め付けによる圧迫感や不快感を与えてしまうという欠
点があった。
However, in the conventional non-invasive sphygmomanometer, it is necessary to apply a pressure equal to or higher than the systolic blood pressure value to the measuring section using a cuff. There is a drawback that it gives a feeling of oppression or discomfort.

【0006】[0006]

【課題を解決するための手段】上記課題を達成するため
に本発明の非観血式血圧計は、人体の血液の循環により
生じる脈波を検出して脈波の大きさに応じた信号を出力
する脈波検出手段と、前記脈波検出手段の出力信号を心
臓の拍動の1周期に相当する時間の波形に分割する波形
分割手段と、波形分割手段の出力波形を2回微分して得
られる加速度脈波を算出して出力する加速度脈波出力手
段と、前記波形分割手段の出力と前記加速度脈波出力手
段が出力した加速度脈波から得られる情報に基づき前記
人体の最高血圧値、平均血圧値、最低血圧値のうち少な
くとも1つを算出して出力する血圧値演算手段と、前記
血圧値演算手段の出力を被験者または第三者に知らせる
報知手段を備え、前記血圧値演算手段が、前記波形分割
手段の出力により決定した特徴量を用いて前記加速度脈
波出力手段の出力を補正する出力補正手段を持ち、前記
血圧値演算手段は前記加速度脈波出力手段が出力した加
速度脈波から得られる情報の一部として前記出力補正手
段の出力を血圧値の算出に用いる構成とするものであ
る。
In order to achieve the above object, a non-invasive sphygmomanometer according to the present invention detects a pulse wave generated by circulation of blood of a human body and outputs a signal corresponding to the magnitude of the pulse wave. Pulse wave detecting means for outputting, a waveform dividing means for dividing an output signal of the pulse wave detecting means into a waveform having a time corresponding to one cycle of a heart beat, and an output waveform of the waveform dividing means is differentiated twice. Acceleration pulse wave output means for calculating and outputting the obtained acceleration pulse wave, and the systolic blood pressure value of the human body based on information obtained from the output of the waveform dividing means and the acceleration pulse wave output by the acceleration pulse wave output means, An average blood pressure value, a blood pressure value calculating means for calculating and outputting at least one of the diastolic blood pressure values, and a notifying means for notifying a subject or a third party of an output of the blood pressure value calculating means, wherein the blood pressure value calculating means The output of the waveform dividing means The apparatus has output correction means for correcting the output of the acceleration pulse wave output means using the set characteristic amount, and the blood pressure value calculation means is provided as a part of information obtained from the acceleration pulse wave output by the acceleration pulse wave output means. The output of the output correction means is used for calculating a blood pressure value.

【0007】上記発明によれば、人体の血液循環系の状
態を反映する加速度脈波を用いて間接的に人体の血圧を
推定するので、カフを用いて測定部に最高血圧値以上の
圧力を加える必要がなく、被験者に締め付けによる圧迫
感や不快感を与えることのない非観血式血圧計を提供で
きる。
According to the above invention, the blood pressure of the human body is indirectly estimated by using the acceleration pulse wave reflecting the state of the blood circulation system of the human body. A non-invasive sphygmomanometer that does not need to be added and does not give a subject a feeling of pressure or discomfort due to tightening can be provided.

【0008】さらに、上記発明によれば、出力補正手段
が波形分割手段の出力により決定した特徴量を用いて加
速度脈波出力手段の出力を補正し、血圧値演算手段では
加速度脈波出力手段の出力波形のほかに出力補正手段が
補正した出力も用いて血圧値を算出するので、正確な血
圧値の算出が可能となる。
Further, according to the above invention, the output correction means corrects the output of the acceleration pulse wave output means using the characteristic amount determined by the output of the waveform dividing means, and the blood pressure value calculation means comprises the output of the acceleration pulse wave output means. Since the blood pressure value is calculated using the output corrected by the output correction means in addition to the output waveform, it is possible to calculate the blood pressure value accurately.

【0009】[0009]

【発明の実施の形態】本発明の請求項1にかかる非観血
式血圧計は、人体の血液の循環により生じる脈波を検出
して脈波の大きさに応じた信号を出力する脈波検出手段
と、前記脈波検出手段の出力信号を心臓の拍動の1周期
に相当する時間の波形に分割する波形分割手段と、波形
分割手段の出力波形を2回微分して得られる加速度脈波
を算出して出力する加速度脈波出力手段と、前記波形分
割手段の出力と前記加速度脈波出力手段が出力した加速
度脈波から得られる情報に基づき前記人体の最高血圧
値、平均血圧値、最低血圧値のうち少なくとも1つを算
出して出力する血圧値演算手段と、前記血圧値演算手段
の出力を被験者または第三者に知らせる報知手段を備
え、前記血圧値演算手段が、前記波形分割手段の出力に
より決定した特徴量を用いて前記加速度脈波出力手段の
出力を補正する出力補正手段を持ち、前記血圧値演算手
段は前記加速度脈波出力手段が出力した加速度脈波から
得られる情報の一部として前記出力補正手段の出力を血
圧値の算出に用いる構成としている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-invasive sphygmomanometer according to claim 1 of the present invention detects a pulse wave generated by circulating blood of a human body and outputs a signal corresponding to the magnitude of the pulse wave. Detecting means, a waveform dividing means for dividing the output signal of the pulse wave detecting means into a waveform having a time corresponding to one cycle of a heartbeat, and an acceleration pulse obtained by differentiating the output waveform of the waveform dividing means twice. Acceleration pulse wave output means for calculating and outputting a wave, the systolic blood pressure value of the human body based on the information obtained from the output of the waveform dividing means and the acceleration pulse wave output by the acceleration pulse wave output means, the average blood pressure value, Blood pressure value calculating means for calculating and outputting at least one of the diastolic blood pressure values; and notifying means for notifying a subject or a third party of an output of the blood pressure value calculating means, wherein the blood pressure value calculating means comprises The feature quantity determined by the output of the means And output correction means for correcting the output of the acceleration pulse wave output means, wherein the blood pressure value calculating means outputs the output of the output correction means as a part of information obtained from the acceleration pulse wave output by the acceleration pulse wave output means. Is used for calculating the blood pressure value.

【0010】そして、人体の血液循環系の状態を反映す
る加速度脈波を用いて間接的に人体の血圧を推定するの
で、カフを用いて測定部に最高血圧値以上の圧力を加え
る必要がなく、被験者に締め付けによる圧迫感や不快感
を与えることがない。さらに、出力補正手段が波形分割
手段の出力により決定した特徴量を用いて加速度脈波出
力手段の出力を補正し、血圧値演算手段では加速度脈波
出力手段の出力波形のほかに出力補正手段が補正した出
力も用いて血圧値を算出するので、正確な血圧値の算出
が可能となる。
Since the blood pressure of the human body is indirectly estimated using the acceleration pulse wave reflecting the state of the blood circulation system of the human body, it is not necessary to apply a pressure higher than the maximum blood pressure value to the measuring unit using the cuff. In addition, the subject does not feel pressure or discomfort due to tightening. Further, the output correction means corrects the output of the acceleration pulse wave output means using the characteristic amount determined by the output of the waveform dividing means, and in the blood pressure value calculation means, in addition to the output waveform of the acceleration pulse wave output means, the output correction means Since the blood pressure value is calculated using the corrected output, it is possible to calculate the blood pressure value accurately.

【0011】また、本発明の請求項2にかかる非観血式
血圧計は、出力補正手段が、波形分割手段の出力の振幅
を特徴量として抽出し、加速度脈波出力手段の出力値を
前記振幅で補正する構成としている。
In the non-invasive sphygmomanometer according to claim 2 of the present invention, the output correction means extracts the amplitude of the output of the waveform dividing means as a characteristic quantity and outputs the output value of the acceleration pulse wave output means. The amplitude is corrected.

【0012】そして、出力補正手段が波形分割手段の振
幅を用いて加速度脈波の出力手段の出力を補正するの
で、振幅に対する加速度の大きさを算出することによっ
て、加速度が示す心臓の拍出力の大きさを皮膚の色や測
定条件などによりで変化する脈波の大きさの影響を排除
して求めることができ、血圧値の正確な推定が可能とな
る。
Since the output correction means corrects the output of the acceleration pulse wave output means using the amplitude of the waveform dividing means, by calculating the magnitude of the acceleration with respect to the amplitude, the output of the heart beat indicated by the acceleration is calculated. The size can be obtained by excluding the influence of the size of the pulse wave that changes depending on the skin color, measurement conditions, and the like, and accurate estimation of the blood pressure value is possible.

【0013】また、本発明の請求項3にかかる非観血式
血圧計は、出力補正手段が、波形分割手段の出力の極大
値から極小値を取る間の減衰期間中のある一定時間中の
減衰量を特徴量として抽出し、加速度脈波出力手段の出
力値を前記減衰量で補正する構成としている。
According to a third aspect of the present invention, there is provided the non-invasive blood pressure monitor according to the third aspect of the present invention, wherein the output correction means performs a certain period of time during an attenuation period during which the output of the waveform dividing means takes a minimum value from a maximum value. The amount of attenuation is extracted as a feature amount, and the output value of the acceleration pulse wave output means is corrected with the amount of attenuation.

【0014】そして、出力補正手段が波形分割手段の減
衰量を用いて加速度脈波の出力手段の出力を補正するの
で、末梢血管における血液の流れやすさを示す減衰時の
一定時間中の減衰量を用いて心臓の拍出力の大きさを示
す加速度脈波を補正することにより、加速度が示す心臓
の拍出力の大きさを皮膚の色や測定条件で変化する脈波
の大きさの影響を排除して求めることが可能、かつ、血
圧を構成する要素である心臓の血液の拍出力と末梢血管
の血液の流れやすさとを一つの指標で表現することが可
能で、血圧値の正確な推定が可能となる。
Since the output correction means corrects the output of the acceleration pulse wave output means using the attenuation amount of the waveform dividing means, the attenuation amount during a certain period of time during attenuation indicating the ease of blood flow in the peripheral blood vessels. Eliminates the effect of pulse wave magnitude, which changes the magnitude of heart beat output indicated by acceleration with skin color and measurement conditions by correcting acceleration pulse wave indicating the magnitude of heart beat output using It is possible to express the pulse output of heart blood and the ease of blood flow in peripheral blood vessels, which are components of blood pressure, with one index, and accurate estimation of blood pressure value can be performed. It becomes possible.

【0015】また、本発明の請求項4にかかる非観血式
血圧計は、出力補正手段が、加速度脈波出力手段の出力
のうち心臓の弁が開いて初めに発生する上に凸の第1の
ピークに対してのみ補正を行う構成としている。
According to a fourth aspect of the present invention, in the non-invasive sphygmomanometer according to the fourth aspect of the present invention, the output correcting means may include an upwardly convex first output which is generated first when the heart valve is opened among the outputs of the acceleration pulse wave output means. The correction is performed only for one peak.

【0016】そして、出力補正手段が加速度脈波出力手
段が出力する加速度脈波波形のうち、心臓の弁が開いて
初めに発生する上に凸の第1のピークに対してのみ補正
を行うので、補正による効果をほとんど減少させること
なく演算を縮小することが可能で、正確かつ簡単に血圧
値の推定が可能となる。
Since the output correction means corrects only the first upwardly convex first peak of the acceleration pulse wave waveform output by the acceleration pulse wave output means, which is generated first when the heart valve is opened. The calculation can be reduced without substantially reducing the effect of the correction, and the blood pressure value can be accurately and easily estimated.

【0017】[0017]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】(実施例1)図1は本発明の実施例1の非
観血式血圧計のブロック図である。
Embodiment 1 FIG. 1 is a block diagram of a non-invasive blood pressure monitor according to Embodiment 1 of the present invention.

【0019】図中、11は脈波検出手段、16は波形分
割手段、12は加速度脈波出力手段、13は血圧値演算
手段、14は表示器である。ここで、脈波検出手段11
は、心臓の拍動による血液量の増減を光の透過量の変化
により検出する光電管容積脈波計で、発光素子11a、
受光素子11b、変換回路11cからなり、発光素子1
1aは血液中のヘモグロビンが強い選択性を持って吸収
する5000〜8000Åの波長光を含む光を放射する。なお、
本実施例では手の指15の光電管容積脈波を検出して出
力しており、発光素子11aと受光素子11bは固定具
(図示せず)により被験者の指の一定位置に固定される
とともに、外部からの光を遮断する構成としている。ま
た、血圧値演算手段13は出力補正手段13aと、波高
算出手段13bと、ピーク時点算出手段13cと、血圧
値算出手段13dとからなる。
In the figure, 11 is a pulse wave detecting means, 16 is a waveform dividing means, 12 is an acceleration pulse wave output means, 13 is a blood pressure value calculating means, and 14 is a display. Here, the pulse wave detecting means 11
Is a photovoltaic plethysmograph which detects an increase or decrease in blood volume due to the pulsation of the heart based on a change in the amount of transmitted light.
The light emitting element 1 includes a light receiving element 11b and a conversion circuit 11c.
1a emits light including light having a wavelength of 5000 to 8000 °, which is absorbed by hemoglobin in blood with high selectivity. In addition,
In the present embodiment, the phototube plethysmogram of the finger 15 of the hand is detected and output, and the light emitting element 11a and the light receiving element 11b are fixed at a fixed position on the subject's finger by a fixture (not shown). It is configured to block external light. The blood pressure value calculating means 13 includes an output correcting means 13a, a wave height calculating means 13b, a peak time point calculating means 13c, and a blood pressure value calculating means 13d.

【0020】本実施例の非観血式血圧計は上記構成によ
り以下のように作用する。すなわち、被験者が、脈波検
出手段11を固定具により手の指15に固定すると、発
光素子11aから5000〜8000Åの波長光を含む光が放射
され、この光が被験者の指にあたると血液中のヘモグロ
ビンが強い選択性を持って吸収するので、指を透過した
透過光の量は血液量の増減を正確に反映する。受光素子
11bでは、このような透過光を受光し、変換回路11
cを通じて受光した量に対応する電気信号に変換してお
り、これによってこの変換回路11cの出力信号は発光
素子11aと受光素子11bが取り付けられた部分の心
臓の拍動による血液量の増減を電気信号に変換して取り
出すことが可能になっている。この信号を取り出すため
に人体に及ぼす作用は、発光素子11aと受光素子11
bを持つ固定具を被験者の指に容易に動かない様に固定
するだけですみ、固定具の取り付けによる圧力以外の力
を被験者に加えることはない。この血液量の増減を示す
信号は、脈波検出手段11から波形分割手段16へ出力
されて心臓の拍動の1周期に対応する時間の波形に分割
されて加速度加速度脈波出力手段12へ出力され、加速
度脈波出力手段12ではこの信号を2段の微分回路を通
過させることにより2回微分して脈波の加速度(加速度
脈波)を算出し血圧値演算手段13に出力している。こ
こで、加速度脈波は、脈波に加えられる力を表し、正の
値ならば心臓の拍動をはじめとする血液の循環を促す方
向の力、負の値ならば血管の抵抗等の血液の循環を阻害
する方向の力の大きさを知ることができる。このような
加速度脈波の変化は、血管内の血液に加えられる力を表
しているので、個人間で大きな差がある心臓の能力や、
血管の柔軟性や血管内の搬送抵抗等を強く反映してお
り、血液循環系の異常の診断等に用いられている。加速
度脈波と血圧とは強い関連があり、この波形を解析する
ことによって最高血圧値、最低血圧値、平均血圧値を推
定することが可能となる。
The non-invasive sphygmomanometer of this embodiment operates as follows by the above configuration. That is, when the subject fixes the pulse wave detecting means 11 to the finger 15 of the hand with the fixture, light including light having a wavelength of 5000 to 8000 ° is emitted from the light emitting element 11a. Because hemoglobin absorbs with strong selectivity, the amount of light transmitted through the finger accurately reflects the increase or decrease in blood volume. The light receiving element 11b receives such transmitted light, and converts the light into the conversion circuit 11b.
c, the signal is converted into an electric signal corresponding to the amount of light received. The output signal of the conversion circuit 11c is used to determine whether the increase or decrease in blood volume due to the pulsation of the heart in the portion where the light emitting element 11a and the light receiving element 11b are attached. It can be converted into a signal and extracted. The effect on the human body to extract this signal is based on the light emitting element 11a and the light receiving element 11a.
It is only necessary to fix the fixture having b to the subject's finger so as not to move easily, and no force other than the pressure due to the attachment of the fixture is applied to the subject. The signal indicating the increase or decrease of the blood volume is output from the pulse wave detecting means 11 to the waveform dividing means 16, divided into a waveform having a time corresponding to one cycle of the heart beat, and outputted to the acceleration acceleration pulse wave outputting means 12. The acceleration pulse wave output means 12 differentiates this signal twice by passing it through a two-stage differentiation circuit to calculate the acceleration of the pulse wave (acceleration pulse wave) and outputs the acceleration to the blood pressure value calculation means 13. Here, the acceleration pulse wave represents a force applied to the pulse wave, and a positive value indicates a force in a direction that promotes blood circulation such as a heartbeat, and a negative value indicates a blood resistance such as blood vessel resistance. The magnitude of the force in the direction that inhibits the circulation of Since such a change in the acceleration pulse wave represents the force applied to the blood in the blood vessel, the ability of the heart, which varies greatly between individuals,
It strongly reflects the flexibility of blood vessels, transport resistance in blood vessels, and the like, and is used for diagnosis of abnormalities in the blood circulation system. The acceleration pulse wave and the blood pressure have a strong relationship, and by analyzing this waveform, the systolic blood pressure value, the diastolic blood pressure value, and the average blood pressure value can be estimated.

【0021】このような非観血式血圧計の場合、本来そ
の部位を流れる血液の変化量を反映している脈波を細か
く分析することによって被験者の血圧値を推定してい
る。しかし、脈波、特にその振幅は血液の変化量のほか
にも発光素子と受光素子の位置関係、指の大きさ、皮膚
の色、測定時の指と発光素子や受光素子の間隔などのさ
まざまな要因の影響も受けて変化しており、加速度脈波
においても各ピークの大きさの絶対値はそれらの影響を
受けるため、評価に用いる場合は測定条件の設定などが
難しく再現性にも難点があった。しかし、加速度脈波の
絶対値には被験者の心臓の拍出力の情報も含まれてお
り、このような重要な情報を測定条件等の影響を受けず
に算出する方法が求められていた。
In the case of such a non-invasive sphygmomanometer, the subject's blood pressure value is estimated by finely analyzing a pulse wave that originally reflects the amount of change in the blood flowing through the site. However, the pulse wave, especially its amplitude, varies in addition to the amount of change in blood, such as the positional relationship between the light emitting element and the light receiving element, the size of the finger, the color of the skin, the distance between the finger and the light emitting element and the light receiving element during measurement, Because the absolute value of each peak is also affected by the acceleration pulse wave, it is difficult to set the measurement conditions when using it for evaluation. was there. However, the absolute value of the acceleration pulse wave also includes information on the pulse output of the subject's heart, and a method for calculating such important information without being affected by measurement conditions or the like has been required.

【0022】そこで、本実施例の非観血式血圧計では、
出力補正手段13aは波形分割手段16が出力したある
周期の脈波波形から脈波の振幅Pp-pを算出し、この値
を用いて加速度脈波出力手段12が出力した加速度脈波
の大きさを除算して補正した値を用いて出力し、血圧値
算出手段13dが被験者の血圧値を推定するために用い
ている。
Therefore, in the non-invasive blood pressure monitor of this embodiment,
The output correction means 13a calculates the amplitude Pp-p of the pulse wave from the pulse wave waveform of a certain cycle output from the waveform dividing means 16, and uses this value to calculate the magnitude of the acceleration pulse wave output from the acceleration pulse wave output means 12. Is output using the corrected value, and the blood pressure value calculating means 13d is used to estimate the blood pressure value of the subject.

【0023】脈波信号は血液量の変化量を示しているの
で、その振幅は最高血圧時の最大血液量と最低血圧時の
最小血液量の差に相当する。その変化量を満たすために
心臓がどのような拍出力をもって実現しているかを調べ
ると、心臓にかかる負荷の状態を推定できる。すなわ
ち、血液の流量に対し心臓の拍出力が十分大きければ、
心臓は負荷に対し余裕を持って動作しているといえる
し、逆に血液の流量に対し心臓の拍出力が小さければ、
心臓は余裕のない動作をしており結果として血圧が高く
なる様に動作していることがわかる。本実施例の非観血
式血圧計では加速度脈波出力手段12が出力した加速度
脈波の絶対値を脈波の振幅で除算することにより、血液
の変化量あたりの心臓の負荷量を求めて血圧値の推定に
使用している。
Since the pulse wave signal indicates the amount of change in blood volume, its amplitude corresponds to the difference between the maximum blood volume at the time of systolic blood pressure and the minimum blood volume at the time of diastolic blood pressure. By examining what kind of pulse output the heart realizes in order to satisfy the change amount, it is possible to estimate the state of the load applied to the heart. In other words, if the heart beat output is large enough for the blood flow,
It can be said that the heart is operating with a margin for the load, and conversely, if the heart's pulse output is small with respect to the blood flow,
It can be seen that the heart is operating with no margin, and as a result, is operating so as to increase the blood pressure. In the non-invasive sphygmomanometer of the present embodiment, the absolute load value of the acceleration pulse wave output from the acceleration pulse wave output means 12 is divided by the amplitude of the pulse wave to obtain the heart load per blood change. Used for estimating blood pressure values.

【0024】なお、本実施例の非観血式血圧計では、加
速度脈波の第1の正のピークであるa波の極大値を脈波
の振幅で除算して血圧値の算出に用いている。これは、
a波が弁が開いた直後の心臓が最大の拍出力を持つ時点
の出力であるため、心臓の拍出力を評価するにはもっと
も利用価値が高いからである。なお、補正波形を詳しく
解析することによりもっと詳しく心臓の負荷を推定でき
るので、補正波形からa波の極大値以外の特徴量を抽出
し血圧値の推定に用いてももちろんよい。
In the non-invasive sphygmomanometer of the present embodiment, the maximum value of the a-wave, which is the first positive peak of the acceleration pulse wave, is divided by the amplitude of the pulse wave to be used for calculating the blood pressure value. I have. this is,
This is because the a-wave is the output at the time when the heart has the maximum pulse output immediately after the valve is opened, and is therefore most useful for evaluating the pulse output of the heart. Since the heart load can be estimated in more detail by analyzing the correction waveform in detail, it is of course possible to extract a characteristic amount other than the maximum value of the a-wave from the correction waveform and use it for estimating the blood pressure value.

【0025】本実施例では、上記のように出力補正手段
13aが振幅Pp-pで除算した加速度脈波の高さと、加
速度脈波出力手段12の出力した加速度脈波の信号を用
いて、統計的手段によりあらかじめ得られた算出式に代
入することによって被験者の血圧値を算出している。す
なわち、加速度脈波出力手段12の出力信号は、波形分
割手段16が加速度脈波の波形を心臓の拍動と同期した
波形、すなわち、図2のECGで示したRとRの間の波
形に分割した波形を、血圧値演算手段13において、波
高算出手段13bが、a、b、c、d、eの各ピークの
基線Oからの波高ha、hb、hc、hd、heを算出
し、ピーク時点算出手段13cが、複数のピークが極大
値や極小値となるピーク時点Ta、Tb、Tc、Td、
Teを算出するとともに、同様に出力補正手段13aが
加速度脈波出力手段12の出力波形を波形分割手段16
の出力の振幅Pp-pで除算して補正した加速度脈波の出
力からa波の波高ha'を算出し、血圧値算出手段13
dが、これら複数のピークの波高とピーク時点の情報を
予め得られた算出式(1)式、(2)式、(3)式に代入する
ことによって最高血圧値Ph、最低血圧値Pl、平均血圧
値Paを算出している。
In the present embodiment, as described above, the output correction means 13a uses the acceleration pulse wave height divided by the amplitude Pp-p and the acceleration pulse wave signal output from the acceleration pulse wave output means 12 to calculate statistically. The blood pressure value of the subject is calculated by substituting it into a calculation formula obtained in advance by an appropriate means. That is, the output signal of the acceleration pulse wave output means 12 is converted into a waveform synchronized with the heart beat by the waveform dividing means 16, that is, a waveform between R and R shown by the ECG in FIG. In the blood pressure value calculating means 13, the wave height calculating means 13b calculates the wave heights ha, hb, hc, hd, and he from the base line O of each of the peaks a, b, c, d, and e, and calculates the peaks. The time point calculation means 13c calculates the peak time points Ta, Tb, Tc, Td, at which the plurality of peaks have the maximum value or the minimum value.
In addition to calculating Te, the output correcting means 13a similarly divides the output waveform of the acceleration pulse wave output means 12 into the waveform dividing means 16a.
The wave height ha ′ of the a-wave is calculated from the acceleration pulse wave output corrected by dividing by the output amplitude Pp-p of the
d is the maximum blood pressure value Ph, the minimum blood pressure value Pl, by substituting the information of the peak height and the peak time of the plurality of peaks into the calculation expressions (1), (2), and (3) obtained in advance. The average blood pressure value Pa is calculated.

【0026】(1)Ph=Ah0+Ah1×ha'+Ah2×h
b/ha+Ah3×hc/ha+Ah4×hd/ha+Ah5
×he+Ah6×(Tb−Ta)+Ah7×(Tc−Ta)+A
h8×(Td−Ta)+Ah9×(Te−Ta) (2)Pl=Al0+Al1×ha'+Al2×hb/ha+A
l3×hc/ha+Al4×hd/ha+Al5×he/h
a+Al6×(Tb−Ta)+Al7×(Tc−Ta)+Al8×
(Td−Ta)+Al9×(Te−Ta) (3)Pa=Aa0+Aa1×ha'+Aa2×hb/ha+A
a3×hc/ha+Aa4×hd/ha+Aa5×he/ha
+Aa6×(Tb−Ta)+Aa7×(Tc−Ta)+Aa8×
(Td−Ta)+Aa9×(Te−Ta) ここで、Ah0、Ah1…Aa9は、あらかじめ得られた算出
式の係数である。本実施例では、これらの係数は、複数
の被験者の最高血圧値Ph、最低血圧値Plについては、
非観血的に測定できるコロトコフ法により測定し、平均
血圧値Paはこれらの値から(4)式の簡易換算式を用い
て計算し、これらの血圧値とその前後の被験者の脈波を
採取して処理して得られたデータとから最小2乗法を用
いて統計的に求めている。
(1) Ph = A h0 + A h1 × ha ′ + A h2 × h
b / ha + A h3 × hc / ha + A h4 × hd / ha + A h5
× he + A h6 × (Tb−Ta) + A h7 × (Tc−Ta) + A
h8 × (Td-Ta) + A h9 × (Te-Ta) (2) Pl = A l0 + A l1 × ha '+ A l2 × hb / ha + A
l3 × hc / ha + Al4 × hd / ha + A l5 × he / h
a + A 16 × (Tb−Ta) + A 17 × (Tc−Ta) + A 18 ×
(Td-Ta) + A l9 × (Te-Ta) (3) Pa = A a0 + A a1 × ha '+ A a2 × hb / ha + A
a3 × hc / ha + A a4 × hd / ha + A a5 × he / ha
+ A a6 × (Tb-Ta) + A a7 × (Tc-Ta) + A a8 ×
(Td−Ta) + A a9 × (Te−Ta) where A h0 , A h1 ... A a9 are coefficients of a previously obtained calculation formula. In the present embodiment, these coefficients are used for the systolic blood pressure value Ph and the diastolic blood pressure value Pl of a plurality of subjects.
The blood pressure is measured by the Korotkoff method, which can be measured noninvasively, and the average blood pressure value Pa is calculated from these values using the simplified conversion formula of equation (4), and these blood pressure values and the pulse wave of the subject before and after the blood pressure values are collected. Statistically using the least squares method from the data obtained by processing.

【0027】(4)Pa=(Ph−Pl)/3+Pl なお、上記(1)式、(2)式、(3)式では加速度脈波の波
高の項ではa波の波高haで除算した値を求めて血圧値
算出に使用しているが、これも加速度脈波の波形から脈
波の大きさの影響を排除するために行われている方法で
ある。しかし、この場合、脈波の大きさの変化の影響は
排除できるが、心臓の負荷を推定することは困難であ
り、出力補正手段による補正とは目的が異なっている。
(4) Pa = (Ph-Pl) / 3 + Pl In the above equations (1), (2) and (3), the term of the pulse height of the acceleration pulse wave is divided by the wave height ha of the a wave. Is used to calculate the blood pressure value, but this is also a method that is performed to eliminate the influence of the magnitude of the pulse wave from the waveform of the acceleration pulse wave. However, in this case, although the influence of the change in the magnitude of the pulse wave can be eliminated, it is difficult to estimate the load on the heart, and the purpose is different from the correction by the output correction means.

【0028】また、本実施例では、上記のように算出式
を求めるための血圧値の測定法として、コロトコフ法を
用いたが、血管内にカテーテルを挿入して観血的に直接
圧力値を測定する直接法など、血圧値を高い精度で測定
できる方法ならば、いかなる方法でもよい。
In this embodiment, the Korotkoff method is used as a method for measuring the blood pressure value for obtaining the calculation formula as described above. However, a catheter is inserted into a blood vessel to directly and directly measure the pressure value. Any method can be used as long as it can measure the blood pressure value with high accuracy, such as a direct method of measuring.

【0029】また、波形分割手段16による波形の分割
は、本実施例の非観血式血圧計では心電図を採集する手
段を持たないので、脈波検出手段11が検出した脈波の
極小値となる時点を求め、そこから一定時間Trだけ溯
った時点を基準として一拍毎の脈波波形に分割してい
る。
Since the non-invasive sphygmomanometer according to the present embodiment does not have a means for collecting an electrocardiogram, the division of the waveform by the waveform dividing means 16 corresponds to the minimum value of the pulse wave detected by the pulse wave detecting means 11. A certain point in time is obtained, and a pulse wave waveform for each beat is divided based on a point in time which is traced back by a certain time Tr from that point.

【0030】このようにして算出された被験者の最高血
圧値Ph、最低血圧値Pl、平均血圧値Paは、表示器1
4に数値として表示され、被験者に告知している。
The subject's systolic blood pressure Ph, diastolic blood pressure Pl, and average blood pressure Pa thus calculated are indicated on the display 1.
4 is displayed as a numerical value and notified to the subject.

【0031】上記のように、本発明の非観血式血圧計
は、出力補正手段13aが、加速度脈波出力手段12の
出力を脈波の振幅を用いて補正しているので、脈波の振
幅あたりの心臓の拍出力に応じた信号を取り出すことが
可能で、この信号を用いることにより正確な血圧値の推
定が可能となる。
As described above, in the non-invasive sphygmomanometer of the present invention, the output correction means 13a corrects the output of the acceleration pulse wave output means 12 using the amplitude of the pulse wave. A signal corresponding to the pulse output of the heart per amplitude can be extracted, and accurate estimation of the blood pressure value can be performed by using this signal.

【0032】なお、本実施例の非観血式血圧計では出力
補正手段13aが加速度脈波出力手段12の出力の補正
に用いる脈波の特徴量として、脈波の振幅を用いている
が、この値は最大値を取る付近では心臓の活動の影響を
受けるため身体の活動状況により大きく変わることがあ
り、安定した値が取れない場合がある。常に安定した脈
波の大きさを示す指標を必要とする場合、脈波の最大値
から最小値へと変化していく減衰時の一定時間の減衰量
を算出して振幅のかわりに用いると、この時の信号は心
臓の活動の影響をあまり受けないので安定した値が得ら
れる。例えば、図2のPTGのグラフ上で示すように、
極小値からTiだけ前の時点より前のΔTで示される時
間中の脈波の減衰量ΔPを算出し、補正に用いればよ
い。この場合、より安定した値を得るためには、ΔTの
区間は心臓の弁が閉じてから次に弁が開くまでの間にあ
り、弁が閉じた後一定時間経過後からΔTが開始するよ
うに時間を設定することが望ましい。なお、この減衰量
は、末梢の血液の流れやすさを示す重要な指標でもあ
り、心臓の拍出力とともに血圧を構成している重要な要
素である。従って、血圧値の推定にはこの値を直接用い
てもよい。
In the non-invasive sphygmomanometer of this embodiment, the amplitude of the pulse wave is used as the characteristic value of the pulse wave used by the output correction means 13a for correcting the output of the acceleration pulse wave output means 12. Since this value is affected by the activity of the heart near the maximum value, it may vary greatly depending on the state of physical activity, and a stable value may not be obtained. If an index indicating the magnitude of a pulse wave that is always stable is required, calculating the amount of attenuation during a certain period of time when the attenuation changes from the maximum value to the minimum value of the pulse wave and using it instead of the amplitude, Since the signal at this time is not significantly affected by the activity of the heart, a stable value can be obtained. For example, as shown on the PTG graph of FIG.
The amount of attenuation ΔP of the pulse wave during the time indicated by ΔT before the time point before Ti by the minimum value may be calculated and used for correction. In this case, in order to obtain a more stable value, the interval of ΔT is between the time when the heart valve is closed and the time when the valve is next opened, and the time ΔT starts after a lapse of a certain time after the valve is closed. It is desirable to set the time. The amount of attenuation is also an important index indicating the ease of peripheral blood flow, and is an important factor that constitutes blood pressure together with cardiac output. Therefore, this value may be directly used for estimating the blood pressure value.

【0033】また、上記実施例では、出力補正手段13
aを波高算出手段13bと独立に設けているが、波高の
みを補正して用いる場合は波高算出手段13bで算出し
た波高データを補正して血圧値算出手段13dに出力す
る構成でもよい。図3にこの場合の構成図を示す。
In the above embodiment, the output correction means 13
Although a is provided independently of the wave height calculating means 13b, when only the wave height is corrected and used, the wave height data calculated by the wave height calculating means 13b may be corrected and output to the blood pressure value calculating means 13d. FIG. 3 shows a configuration diagram in this case.

【0034】また、上記実施例では、出力補正手段13
aは加速度脈波出力手段12出力波形を脈波から得られ
た特徴量で除算して補正しているが、補正方法は除算に
限らず、多項式を用いるなど補正が妥当なものであれば
いかなる方法でもよい。
In the above embodiment, the output correction means 13
Although a is corrected by dividing the output waveform of the acceleration pulse wave output means 12 by the characteristic amount obtained from the pulse wave, the correction method is not limited to division, and any correction can be performed using a polynomial if the correction is appropriate. It may be a method.

【0035】また、上記実施例では、脈波検出手段11
を指の先端部に取り付けて血圧値を推定しているが、指
の先端部に限らず手首や上腕、足首、耳たぶ等脈波が検
出できる部位ならば、脈波と血圧値を関連付けて相関を
とることが可能である。しかし、体動による影響を受け
難い点や、脈波の検出のしやすさ、心臓からの血管の接
続状況などの点から、手の指が本実施例の非観血式血圧
計にはもっとも望ましい。
In the above embodiment, the pulse wave detecting means 11
Is attached to the tip of the finger to estimate the blood pressure value.However, if the pulse wave can be detected not only at the tip of the finger but also at the wrist, upper arm, ankle, earlobe, etc., the pulse wave is correlated with the blood pressure value. It is possible to take However, the finger of the hand is the most suitable for the non-invasive sphygmomanometer according to the present embodiment because it is hardly affected by body motion, easy to detect the pulse wave, and the connection status of the blood vessel from the heart. desirable.

【0036】[0036]

【発明の効果】以上説明したように本発明の請求項1に
かかる非観血式血圧計は、人体の血液循環系の状態を反
映する加速度脈波用いて間接的に人体の血圧を推定する
ので、カフを用いて測定部に最高血圧値以上の圧力を加
える必要がなく、被験者に締め付けによる圧迫感や不快
感を与えることがない。さらに、出力補正手段が波形分
割手段の出力により決定した特徴量を用いて加速度脈波
出力手段の出力を補正し、血圧値演算手段では加速度脈
波出力手段の出力波形のほかに出力補正手段が補正した
出力も用いて血圧値を算出するので、正確な血圧値の算
出が可能となる。
As described above, the non-invasive sphygmomanometer according to the first aspect of the present invention indirectly estimates the blood pressure of the human body using the acceleration pulse wave reflecting the state of the blood circulation system of the human body. Therefore, it is not necessary to apply a pressure equal to or higher than the systolic blood pressure value to the measurement unit using the cuff, and the subject does not feel pressure or discomfort due to tightening. Further, the output correction means corrects the output of the acceleration pulse wave output means using the characteristic amount determined by the output of the waveform dividing means, and in the blood pressure value calculation means, in addition to the output waveform of the acceleration pulse wave output means, the output correction means Since the blood pressure value is calculated using the corrected output, it is possible to calculate the blood pressure value accurately.

【0037】また、請求項2にかかる非観血式血圧計
は、出力補正手段が波形分割手段の振幅を用いて加速度
脈波の出力手段の出力を補正するので、振幅に対する加
速度の大きさを算出することによって、加速度が示す心
臓の拍出力の大きさを皮膚の色や測定条件で変化する脈
波の大きさの影響を排除して求めることが可能で、血圧
値の正確な推定が可能となる。
In the non-invasive sphygmomanometer according to the second aspect, the output correction means corrects the output of the acceleration pulse wave output means using the amplitude of the waveform dividing means. By calculating, it is possible to obtain the magnitude of the pulse output of the heart indicated by the acceleration excluding the influence of the pulse wave size that changes with the skin color and measurement conditions, and it is possible to accurately estimate the blood pressure value Becomes

【0038】また、請求項3にかかる非観血式血圧計
は、出力補正手段が波形分割手段の出力の極大値から極
小値までに至る減衰時間中のある一定時間の減衰量を用
いて加速度脈波の出力手段の出力を補正するので、末梢
血管における血液の流れやすさを示す減衰時の一定時間
中の減衰量を用いて心臓の拍出力の大きさを補正するこ
とにより、加速度が示す心臓の拍出力の大きさを皮膚の
色や測定条件で変化する脈波の大きさの影響を排除して
求めることが可能、かつ、血圧を構成する要素である心
臓の血液の拍出力と末梢血管の血液の流れやすさとを一
つの指標で表現することが可能で、血圧値の正確な推定
が可能となる。
According to a third aspect of the present invention, there is provided a non-invasive sphygmomanometer according to claim 3, wherein the output correcting means uses the amount of attenuation during a certain period of time from the maximum value to the minimum value of the output of the waveform dividing means. Since the output of the output means of the pulse wave is corrected, the acceleration is indicated by correcting the magnitude of the cardiac pulse output using the attenuation during a certain period of time during attenuation indicating the ease of blood flow in the peripheral blood vessels. It is possible to determine the magnitude of the pulse output of the heart, excluding the influence of the pulse wave magnitude that changes depending on the skin color and measurement conditions, and the pulse output of the heart blood and peripheral components that are components of blood pressure It is possible to express the ease of blood flow in a blood vessel with one index, and it is possible to accurately estimate a blood pressure value.

【0039】また、請求項4にかかる非観血式血圧計
は、出力補正手段が加速度脈波出力手段が出力する加速
度脈波波形のうち、心臓の弁が開いて初めに発生する上
に凸の第1のピークに対してのみ補正を行うので、補正
による効果をほとんど減少させることなく演算を縮小す
ることが可能で、正確かつ簡単に血圧値の推定が可能と
なる。
According to a fourth aspect of the present invention, there is provided a non-invasive sphygmomanometer according to the fourth aspect, wherein the output correcting means includes an upwardly convex waveform which is generated first when the heart valve is opened in the acceleration pulse wave output from the acceleration pulse wave output means. Since the correction is performed only on the first peak, the calculation can be reduced without substantially reducing the effect of the correction, and the blood pressure value can be accurately and easily estimated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における非観血式血圧計のブ
ロック図
FIG. 1 is a block diagram of a non-invasive sphygmomanometer according to one embodiment of the present invention.

【図2】同装置の血圧値の推定に用いる心電図、脈波、
加速度脈波の波形図
FIG. 2 shows an electrocardiogram, a pulse wave,
Waveform diagram of acceleration pulse wave

【図3】本発明の実施例における出力補正手段が波高算
出手段の出力を補正する場合の非観血式血圧計のブロッ
ク図
FIG. 3 is a block diagram of a non-invasive sphygmomanometer when the output correction means corrects the output of the wave height calculation means in the embodiment of the present invention.

【図4】従来のカフを用いた非観血式血圧計の外観図FIG. 4 is an external view of a conventional non-invasive sphygmomanometer using a cuff.

【符号の説明】[Explanation of symbols]

1 本体 2,14 表示器 3 スイッチ 4 コネクタ 5 腕帯チューブ 6 カフ 7 マイクロフォン 11 脈波検出手段 11a 発光素子 11b 受光素子 11c 変換回路 12 加速度脈波出力手段 13 血圧値演算手段 13a 出力補正手段 13b 波高算出手段 13c ピーク時点算出手段 13d 血圧値算出手段 15 指 16 波形分割手段 DESCRIPTION OF SYMBOLS 1 Main body 2, 14 Display 3 Switch 4 Connector 5 Arm band tube 6 Cuff 7 Microphone 11 Pulse wave detection means 11a Light emitting element 11b Light receiving element 11c Conversion circuit 12 Acceleration pulse wave output means 13 Blood pressure value calculation means 13a Output correction means 13b Wave height Calculation means 13c Peak time point calculation means 13d Blood pressure value calculation means 15 Finger 16 Waveform division means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】人体の血液の循環により生じる脈波を検出
して脈波の大きさに応じた信号を出力する脈波検出手段
と、前記脈波検出手段の出力信号を心臓の拍動の1周期
に相当する時間の波形に分割する波形分割手段と、波形
分割手段の出力波形を2回微分して得られる加速度脈波
を算出して出力する加速度脈波出力手段と、前記波形分
割手段の出力と前記加速度脈波出力手段が出力した加速
度脈波から得られる情報に基づき前記人体の最高血圧
値、平均血圧値、最低血圧値のうち少なくとも1つを算
出して出力する血圧値演算手段と、前記血圧値演算手段
の出力を被験者または第三者に知らせる報知手段を備
え、前記血圧値演算手段は、前記波形分割手段の出力に
より決定した特徴量を用いて前記加速度脈波出力手段の
出力を補正する出力補正手段を持ち、前記血圧値演算手
段は前記加速度脈波出力手段が出力した加速度脈波から
得られる情報の一部として前記出力補正手段の出力を血
圧値の算出に用いる非観血式血圧計。
1. A pulse wave detecting means for detecting a pulse wave generated by the circulation of blood in a human body and outputting a signal corresponding to the magnitude of the pulse wave, and an output signal of the pulse wave detecting means is used for detecting a pulse of the heart. Waveform dividing means for dividing into a waveform having a time corresponding to one cycle; acceleration pulse wave output means for calculating and outputting an acceleration pulse wave obtained by differentiating an output waveform of the waveform dividing means twice; Blood pressure value calculating means for calculating and outputting at least one of a systolic blood pressure value, an average blood pressure value and a diastolic blood pressure value of the human body based on the output of the acceleration pulse wave output means and information obtained from the acceleration pulse wave output means And a notifying means for notifying a subject or a third party of an output of the blood pressure value calculating means, wherein the blood pressure value calculating means uses the feature amount determined by the output of the waveform dividing means to output the acceleration pulse wave output means. Output compensation to correct output Has means, said blood pressure value calculation means noninvasive sphygmomanometer for use in the calculation of the blood pressure value the output of the output correction means as a part of the information obtained from the acceleration pulse wave output by the acceleration pulse wave output unit.
【請求項2】出力補正手段は、波形分割手段の出力の振
幅を特徴量として抽出し、加速度脈波出力手段の出力値
を前記振幅で補正する請求項1に記載の非観血式血圧
計。
2. The non-invasive sphygmomanometer according to claim 1, wherein the output correction means extracts the amplitude of the output of the waveform dividing means as a feature quantity and corrects the output value of the acceleration pulse wave output means with the amplitude. .
【請求項3】出力補正手段は、波形分割手段の出力の極
大値から極小値へ至る間の減衰期間中のある一定時間中
の減衰量を特徴量として抽出し、加速度脈波出力手段の
出力値を前記減衰量で補正する請求項1に記載の非観血
式血圧計。
3. An output correction means for extracting, as a characteristic amount, an amount of attenuation during a certain time during an attenuation period from a maximum value to a minimum value of the output of the waveform dividing means, and outputs the output of the acceleration pulse wave output means. 2. The non-invasive sphygmomanometer according to claim 1, wherein a value is corrected by the amount of attenuation.
【請求項4】出力補正手段は、加速度脈波出力手段の出
力のうち心臓の弁が開いて初めに発生する上に凸の第1
のピークに対してのみ補正を行う請求項2または3に記
載の非観血式血圧計。
4. An output correcting means, comprising: an output of the acceleration pulse wave output means, which is an upwardly convex first generated when a heart valve is opened.
4. The non-invasive sphygmomanometer according to claim 2, wherein the correction is performed only on the peak of the blood pressure.
JP9253149A 1997-09-18 1997-09-18 Bloodless sphygmomanometer Pending JPH1189806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9253149A JPH1189806A (en) 1997-09-18 1997-09-18 Bloodless sphygmomanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9253149A JPH1189806A (en) 1997-09-18 1997-09-18 Bloodless sphygmomanometer

Publications (1)

Publication Number Publication Date
JPH1189806A true JPH1189806A (en) 1999-04-06

Family

ID=17247212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9253149A Pending JPH1189806A (en) 1997-09-18 1997-09-18 Bloodless sphygmomanometer

Country Status (1)

Country Link
JP (1) JPH1189806A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155826A (en) * 1997-12-02 1999-06-15 Matsushita Electric Ind Co Ltd Blood pressure measurement device
JP2006263354A (en) * 2005-03-25 2006-10-05 Denso Corp Apparatus for acquiring individual information of human body, sphygmomanometer, and pulse wave analyzer
JP2007007075A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure measuring apparatus
JP2008302127A (en) * 2007-06-11 2008-12-18 Denso Corp Blood pressure measuring apparatus, program, and recording medium
JP2011526513A (en) * 2008-06-30 2011-10-13 ネルコア・ピユーリタン・ベネツト・アイルランド System and method for non-invasive blood pressure monitoring
CN103211587A (en) * 2012-01-23 2013-07-24 欧姆龙健康医疗事业株式会社 Blood pressure measurer
JP2014505533A (en) * 2010-12-29 2014-03-06 ベイシス サイエンス インコーポレイテッド Integrated biometric sensing and display device
WO2023189483A1 (en) * 2022-03-31 2023-10-05 株式会社村田製作所 Peripheral blood pressure estimation method and biological information measurement system
WO2024034305A1 (en) * 2022-08-12 2024-02-15 株式会社村田製作所 Pulse pressure measurement device and pulse pressure measurement method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155826A (en) * 1997-12-02 1999-06-15 Matsushita Electric Ind Co Ltd Blood pressure measurement device
JP2006263354A (en) * 2005-03-25 2006-10-05 Denso Corp Apparatus for acquiring individual information of human body, sphygmomanometer, and pulse wave analyzer
JP2007007075A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure measuring apparatus
JP2008302127A (en) * 2007-06-11 2008-12-18 Denso Corp Blood pressure measuring apparatus, program, and recording medium
JP2011526513A (en) * 2008-06-30 2011-10-13 ネルコア・ピユーリタン・ベネツト・アイルランド System and method for non-invasive blood pressure monitoring
JP2014505533A (en) * 2010-12-29 2014-03-06 ベイシス サイエンス インコーポレイテッド Integrated biometric sensing and display device
CN103211587A (en) * 2012-01-23 2013-07-24 欧姆龙健康医疗事业株式会社 Blood pressure measurer
CN103211587B (en) * 2012-01-23 2016-04-06 欧姆龙健康医疗事业株式会社 Blood pressure measurement apparatus
WO2023189483A1 (en) * 2022-03-31 2023-10-05 株式会社村田製作所 Peripheral blood pressure estimation method and biological information measurement system
WO2024034305A1 (en) * 2022-08-12 2024-02-15 株式会社村田製作所 Pulse pressure measurement device and pulse pressure measurement method

Similar Documents

Publication Publication Date Title
US20210244302A1 (en) Methods to estimate the blood pressure and the arterial stiffness based on photoplethysmographic (ppg) signals
US7270636B2 (en) Apparatus and method for pulse detection
US7029447B2 (en) Measuring blood pressure
US8313439B2 (en) Calibration of pulse transit time measurements to arterial blood pressure using external arterial pressure applied along the pulse transit path
US20060264771A1 (en) Apparatus for evaluating cardiovascular functions
KR100871230B1 (en) Method and?apparatus for the cuffless and non-invasive device connected to communication device which measures blood pressure from a wrist
US7220230B2 (en) Pressure-based system and method for determining cardiac stroke volume
US6120459A (en) Method and device for arterial blood pressure measurement
US7544168B2 (en) Measuring systolic blood pressure by photoplethysmography
KR101068116B1 (en) Apparatus and method for sensing radial arterial pulses for noninvasive and continuous measurement of blood pressure
US7402138B2 (en) Method and apparatus for measuring blood volume, and vital sign monitor using the same
EP3270772B1 (en) Method and apparatus for measuring blood pressure
US20070055163A1 (en) Wearable blood pressure sensor and method of calibration
US20220296113A1 (en) Non-invasive blood pressure measurement
WO2002085203A1 (en) Central blood pressure waveform estimating device and peripheral blood pressure waveform detecting device
KR20050117825A (en) Blood pressure measuring system and method of measuring blood pressure using the same
RU2750745C1 (en) Method and device for measuring the pulse wave propagation velocity when measuring blood pressure by oscillometric method
JPH1189806A (en) Bloodless sphygmomanometer
KR102272019B1 (en) Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same
JPH10295656A (en) Bloodless sphygmomanometer
JPH10314127A (en) Bloodless sphygmomanometer
Baek et al. Validation of cuffless blood pressure monitoring using wearable device
JP2000225097A (en) Portable blood pressure gauge
CN112040851A (en) Vital sign measuring device
JP2007252767A (en) Blood oxygen concentration analyzer, and method and apparatus for measuring blood pressure value by electrocardiograph