JPH1187802A - Magnetic resistance effect material - Google Patents

Magnetic resistance effect material

Info

Publication number
JPH1187802A
JPH1187802A JP9244014A JP24401497A JPH1187802A JP H1187802 A JPH1187802 A JP H1187802A JP 9244014 A JP9244014 A JP 9244014A JP 24401497 A JP24401497 A JP 24401497A JP H1187802 A JPH1187802 A JP H1187802A
Authority
JP
Japan
Prior art keywords
layer
underlayer
metal
ferromagnetic
foundation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9244014A
Other languages
Japanese (ja)
Inventor
Takuji Umemoto
卓史 梅本
Atsushi Maeda
篤志 前田
Satoru Oikawa
悟 及川
Koji Yamano
耕治 山野
Toshio Tanuma
俊雄 田沼
Minoru Kume
実 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9244014A priority Critical patent/JPH1187802A/en
Publication of JPH1187802A publication Critical patent/JPH1187802A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve magnetic resistance change rate, and at the same time to reduce the magnetism-retaining force of a magnetic field reverse layer, by laminating a second foundation layer being formed by metal with face-centered solid structure on a first foundation layer being formed by one type of metal being selected from Ti, Hf, V, Nb, and Ta as a foundation layer. SOLUTION: A first foundation layer 2 is formed by one type of metal being selected from a group consisting of Ti, Hf, V, Nb, and Ta on a substrate 1, and a second foundation layer 3 is formed by metal with face-centered solid structure on the first foundation layer 2. Furthermore, CoFe, Cu, CoFe, and IrMn layers that are ferromagnetic, non-magnetic conductive, ferromagnetic, and antiferromagnetic layers 4, 5, 6, and 7, respectively, are successively laminated for forming, thus increasing a magnetic resistance change rate, reducing the magnetism-retaining force of a free layer, and hence improving magnetic sensitivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気抵抗効果材料
に関するものであり、特に、強磁性層、非磁性導電層、
強磁性層、及び反強磁性層を積層した構造を有するスピ
ンバルブ型の磁気抵抗効果材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect material, and more particularly, to a ferromagnetic layer, a non-magnetic conductive layer,
The present invention relates to a spin valve type magnetoresistive material having a structure in which a ferromagnetic layer and an antiferromagnetic layer are stacked.

【0002】[0002]

【従来の技術】ハードディスク(HDD)に用いる磁気
ヘッドとして、近年、磁気抵抗効果型(MR)ヘッドが
注目されている。MRヘッドは、外部磁界の変化を電気
伝導率の変化により検出するヘッドであり、従来の誘導
型磁気ヘッドに比べ高い磁界感度を有し、高密度記録化
を図ることができる。このようなMRヘッドに用いる磁
気抵抗効果材料としては、従来より、パーマロイ等の3
d遷移金属合金が採用されており、磁化方向の変化に対
応した抵抗の増減(異方性磁気抵抗効果:AMR)で信
号を検出している。
2. Description of the Related Art In recent years, a magnetoresistive (MR) head has attracted attention as a magnetic head used for a hard disk (HDD). The MR head is a head that detects a change in an external magnetic field by a change in electric conductivity, has a higher magnetic field sensitivity than a conventional inductive magnetic head, and can achieve high-density recording. As a magnetoresistive effect material used for such an MR head, conventionally, a material such as Permalloy is used.
A d-transition metal alloy is employed, and a signal is detected by increasing or decreasing the resistance (anisotropic magnetoresistance effect: AMR) according to the change in the magnetization direction.

【0003】しかしながら、最近、この従来のAMRに
比べ1桁高い抵抗変化率を示す巨大磁気抵抗効果(GM
R)型の磁気抵抗効果材料が見出され、注目されてい
る。GMR材料は、一般に、強磁性層と非磁性導電層と
を積層した多層膜構造を有しており、(1)反強磁性結
合型、(2)保磁力差型、及び(3)スピンバルブ型と
呼ばれる3種類の材料系が知られている。
However, recently, the giant magnetoresistive effect (GM) showing an order of magnitude higher resistance change rate than this conventional AMR has
An R) type magnetoresistive material has been found and attracted attention. The GMR material generally has a multilayer structure in which a ferromagnetic layer and a non-magnetic conductive layer are laminated, and includes (1) an antiferromagnetic coupling type, (2) a coercive force difference type, and (3) a spin valve. Three types of material systems called molds are known.

【0004】スピンバルブ型のGMR材料は、強磁性
層、非磁性導電層、強磁性層、及び反強磁性層を積層し
た構造を有しており、反強磁性層が一方の強磁性層と磁
気的に結合し、該強磁性層の磁化をピン留めしている。
このため、広い磁界領域で反平行磁化状態が安定化して
おり、磁気抵抗変化率が高く、かつ磁界感度が高いとこ
ろから、最も実用化に近いGMR材料とされている。
A spin valve type GMR material has a structure in which a ferromagnetic layer, a non-magnetic conductive layer, a ferromagnetic layer, and an antiferromagnetic layer are stacked, and the antiferromagnetic layer is in contact with one ferromagnetic layer. It is magnetically coupled to pin the magnetization of the ferromagnetic layer.
Therefore, the antiparallel magnetization state is stabilized in a wide magnetic field region, the magnetoresistance ratio is high, and the magnetic field sensitivity is high.

【0005】[0005]

【発明が解決しようとする課題】このようなスピンバル
ブ型のGMR材料においては、高い磁界検出感度を得る
ため、MR比が高く、かつ磁界反転(フリー)層の保磁
力(Hc)が低いことが望ましく、このような観点から
種々の検討がなされている。
In such a spin valve type GMR material, in order to obtain high magnetic field detection sensitivity, the MR ratio is high and the coercive force (Hc) of the magnetic field reversal (free) layer is low. However, various studies have been made from such a viewpoint.

【0006】しかしながら、このようなスピンバルブ型
のGMR材料の下地層については、十分な検討がなされ
ておらず、優れたMR特性を示す下地層を含めた磁気抵
抗効果材料の検討は十分にはなされていない。
However, the underlayer of such a spin valve type GMR material has not been sufficiently studied, and the study of a magnetoresistance effect material including the underlayer exhibiting excellent MR characteristics has not been sufficiently performed. Not done.

【0007】本発明の目的は、MR比が高く、かつ磁界
反転層の保磁力の低いスピンバルブ型の磁気抵抗効果材
料の下地層を含めた新規な構造を提供することにある。
An object of the present invention is to provide a novel structure including an underlayer of a spin valve type magnetoresistive material having a high MR ratio and a low coercive force of a magnetic field reversal layer.

【0008】[0008]

【課題を解決するための手段】本発明の磁気抵抗効果材
料は、下地層の上に、強磁性層、非磁性導電層、強磁性
層、及び反強磁性層をこの順序で積層した構造を有する
スピンバルブ型の磁気抵抗効果材料であり、下地層とし
て、Ti、Hf、V、Nb、及びTaからなるグループ
より選ばれる少なくとも1種の金属または該金属を主成
分とする合金から形成される第1の下地層の上に、面心
立方構造を有する金属または合金から形成される第2の
下地層を積層した下地層を用いることを特徴とする磁気
抵抗効果材料である。
The magnetoresistive effect material of the present invention has a structure in which a ferromagnetic layer, a nonmagnetic conductive layer, a ferromagnetic layer, and an antiferromagnetic layer are laminated in this order on an underlayer. A spin-valve magnetoresistive material having at least one metal selected from the group consisting of Ti, Hf, V, Nb, and Ta, or an alloy containing the metal as a main component. A magnetoresistive effect material characterized by using an underlayer in which a second underlayer formed of a metal or an alloy having a face-centered cubic structure is laminated on the first underlayer.

【0009】本発明において、第2の下地層を形成する
面心立方構造を有する金属または合金としては、Cu、
Pt、NiFe、CoFe、NiCo、及びNiCoF
eなどが挙げられる。なお、第2の下地層として、強磁
性体であるNiFe、CoFe、NiCo、及びNiC
oFe等の強磁性体を用いる場合には、その上に形成さ
れる強磁性層と異なる種類の強磁性体が用いられる。
In the present invention, the metal or alloy having a face-centered cubic structure forming the second underlayer is Cu,
Pt, NiFe, CoFe, NiCo, and NiCoF
e. As the second underlayer, ferromagnetic materials such as NiFe, CoFe, NiCo, and NiC
When a ferromagnetic material such as oFe is used, a different type of ferromagnetic material from the ferromagnetic layer formed thereon is used.

【0010】本発明における下地層は、下方の強磁性層
と接するように設けられるものである。従って、本発明
における下地層は、反強磁性層と磁気的に結合していな
い、フリーな強磁性層の下地層として形成される。本発
明において下地層を構成する第1の下地層及び第2の下
地層の膜厚は、特に限定されるものではないが、下地層
全体としては、5〜15nm程度であることが好まし
い。また第2の下地層としては、3nm以下の膜厚であ
ることが好ましく、さらには、3nm〜1nmの範囲内
の膜厚であることが好ましい。
The underlayer according to the present invention is provided so as to be in contact with the lower ferromagnetic layer. Therefore, the underlayer in the present invention is formed as a free underlayer of a ferromagnetic layer that is not magnetically coupled to the antiferromagnetic layer. In the present invention, the thicknesses of the first underlayer and the second underlayer constituting the underlayer are not particularly limited, but the total thickness of the underlayer is preferably about 5 to 15 nm. The thickness of the second underlayer is preferably 3 nm or less, and more preferably, 3 nm to 1 nm.

【0011】本発明の磁気抵抗効果材料に用いられる強
磁性層は、強磁性体から形成された層であれば特に限定
されるものではなく、例えば、NiFe層、Co層、C
oNiFe層、CoFe層等の強磁性層が挙げられる。
強磁性層の膜厚は、一般に1〜10nm程度である。
The ferromagnetic layer used in the magnetoresistive material of the present invention is not particularly limited as long as it is formed of a ferromagnetic material. For example, a NiFe layer, a Co layer, a C layer
Ferromagnetic layers, such as an oNiFe layer and a CoFe layer, are mentioned.
The thickness of the ferromagnetic layer is generally about 1 to 10 nm.

【0012】本発明の磁気抵抗効果材料に用いられる非
磁性導電層は、非磁性体であり、かつ導電性に優れたも
のであれば特に限定されるものではなく、例えば、Cu
層、Ag層などが挙げられる。非磁性導電層の膜厚は、
一般に1〜5nm程度である。
The non-magnetic conductive layer used in the magneto-resistance effect material of the present invention is not particularly limited as long as it is a non-magnetic material and has excellent conductivity.
And an Ag layer. The thickness of the nonmagnetic conductive layer is
Generally, it is about 1 to 5 nm.

【0013】本発明の磁気抵抗効果材料に用いられる反
強磁性層は、反強磁性体から形成された層であれば特に
限定されるものではなく、例えば、FeMn層、IrM
n層、及びNiMn層などや、NiO層、CoO層、及
びFe23 などの酸化物系反強磁性層などが挙げられ
る。反強磁性層の膜厚は、一般に5〜25nm程度であ
る。
The antiferromagnetic layer used for the magnetoresistance effect material of the present invention is not particularly limited as long as it is a layer formed of an antiferromagnetic material. For example, an FeMn layer, an IrM
Examples include an n-layer, a NiMn layer, an NiO layer, a CoO layer, and an oxide-based antiferromagnetic layer such as Fe 2 O 3 . The thickness of the antiferromagnetic layer is generally about 5 to 25 nm.

【0014】本発明の磁気抵抗効果材料は、一般に基板
上に形成されるが、基板の材質は非磁性であれば特に限
定されるものではなく、例えば、Si、TiC、Al2
3、及びガラスなどの基板が用いられる。
The magnetoresistive material of the present invention is generally formed on a substrate, but the material of the substrate is not particularly limited as long as it is non-magnetic. For example, Si, TiC, Al 2
Substrates such as O 3 and glass are used.

【0015】本発明に従い、第1の下地層及び第2の下
地層を積層した下地層の上に、強磁性層、非磁性導電
層、強磁性層、及び反強磁性層を積層することにより、
MR比が高く、かつフリー層の保磁力の低いスピンバル
ブ型の磁気抵抗効果材料とすることができる。第1の下
地層及び第2の下地層の積層膜を下地層として用いるこ
とにより、上記本発明の効果が得られる理由について詳
細は明らかでないが、第1の下地層が、基板及び第2の
下地層に対する濡れ性を有しており、かつ層状成長しや
すい膜質を有しているため、その上に、より良好な膜質
の面心立方構造の第2の下地層を形成させることがで
き、このような良好な膜質の第2の下地層の上に強磁性
層を形成することにより、強磁性層の結晶構造が良好に
制御され、より良好なMR特性をMR積層膜に付与する
ことができるものと思われる。
According to the present invention, a ferromagnetic layer, a nonmagnetic conductive layer, a ferromagnetic layer, and an antiferromagnetic layer are laminated on an underlayer in which a first underlayer and a second underlayer are laminated. ,
A spin-valve magnetoresistive material having a high MR ratio and a low coercive force of the free layer can be obtained. The reason why the effect of the present invention can be obtained by using the stacked film of the first and second underlayers as the underlayer is not clear, but the first underlayer is composed of the substrate and the second underlayer. Since it has wettability to the underlayer and has a film quality that facilitates layer growth, a second underlayer having a face-centered cubic structure with better film quality can be formed thereon. By forming a ferromagnetic layer on such a second underlayer having good film quality, the crystal structure of the ferromagnetic layer can be controlled well, and better MR characteristics can be imparted to the MR laminated film. It seems possible.

【0016】[0016]

【発明の実施の形態】図1は、本発明に従う一実施例の
磁気抵抗効果材料を示す断面図である。図1を参照し
て、磁気抵抗効果材料の積層膜は、基板1上に形成され
ている。本実施例では、基板1として、Si基板が用い
られている。基板1の上には、第1の下地層2(膜厚
6.5nm)が形成されており、第1の下地層2の上に
第2の下地層3(膜厚1.5nm)が形成されている。
第2の下地層3の上には、強磁性層4としてのCo90
10層(膜厚5nm)が形成され、その上には非磁性導
電層5としてのCu層(膜厚2.5nm)が形成されて
いる。非磁性導電層5の上には強磁性層6としてのCo
90Fe10層(膜厚3nm)が形成され、さらにその上に
は反強磁性層7としてのIr25Mn75層(膜厚15n
m)が形成されている。
FIG. 1 is a sectional view showing a magnetoresistive material according to one embodiment of the present invention. With reference to FIG. 1, a laminated film of a magnetoresistive effect material is formed on a substrate 1. In the present embodiment, a Si substrate is used as the substrate 1. A first underlayer 2 (6.5 nm in thickness) is formed on a substrate 1, and a second underlayer 3 (1.5 nm in thickness) is formed on the first underlayer 2. Have been.
On the second underlayer 3, Co 90 F as the ferromagnetic layer 4 is formed.
e 10 layers (thickness 5 nm) is formed, Cu layer as the non-magnetic conductive layer 5 (film thickness 2.5 nm) is formed thereon. On the nonmagnetic conductive layer 5, Co as a ferromagnetic layer 6 is formed.
A 90 Fe 10 layer (thickness 3 nm) is formed, and an Ir 25 Mn 75 layer (thickness 15 n) as the antiferromagnetic layer 7 is further formed thereon.
m) is formed.

【0017】第1の下地層2の材料としてTi、Hf、
V、Nb、及びTaを用い、第2の下地層3の材料とし
てCu、Pt、及びNi80Fe20を用い、表1及び表2
に示す組み合わせで、図1に示す磁気抵抗効果材料にお
ける第1の下地層2及び第2の下地層3を形成し、得ら
れた磁気抵抗効果材料について、MR比及びフリー層の
保磁力(Hc)を測定した。MR比の測定結果を表1
に、Hcの測定結果を表2に示す。また、比較として、
第1の下地層または第2の下地層を形成していない磁気
抵抗効果材料を作製し、それらについてもMR比及びH
cを測定し、測定結果を表1及び表2に示す。
As a material of the first underlayer 2, Ti, Hf,
Tables 1 and 2 were obtained by using V, Nb, and Ta, and using Cu, Pt, and Ni 80 Fe 20 as the material of the second underlayer 3.
The first underlayer 2 and the second underlayer 3 in the magnetoresistive material shown in FIG. 1 are formed by the combination shown in FIG. 1, and the MR ratio and the coercive force (Hc ) Was measured. Table 1 shows the measurement results of the MR ratio.
Table 2 shows the measurement results of Hc. Also, as a comparison,
A magnetoresistive material having no first or second underlayer formed therein is manufactured, and the MR ratio and H
c was measured, and the measurement results are shown in Tables 1 and 2.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】表1の結果から明らかなように、本発明に
従い第1の下地層及び第2の下地層を形成した磁気抵抗
効果材料は、比較の磁気抵抗効果材料に比べ、いずれも
高いMR比を示している。また、表2の結果から明らか
なように、本発明に従い第1の下地層及び第2の下地層
を形成した磁気抵抗効果材料は、比較の磁気抵抗効果材
料に比べ、フリー層の保磁力(Hc)が小さく、良好な
磁界感度を示すことがわかる。
As is evident from the results in Table 1, the magnetoresistance effect material formed with the first and second underlayers according to the present invention has a higher MR ratio than the comparative magnetoresistance effect material. Is shown. Further, as is clear from the results in Table 2, the magnetoresistance effect material in which the first underlayer and the second underlayer according to the present invention are formed has a higher coercive force of the free layer than the comparative magnetoresistance effect material. It can be seen that Hc) is small and good magnetic field sensitivity is exhibited.

【0021】本発明の磁気抵抗効果材料は、上記実施例
に限定されるものではなく、第1の下地層として、T
i、Hf、V、Nb、またはTaを主成分とする合金層
を形成してもよい。また、第2の下地層として、その他
の面心立方構造を有する金属または合金層を形成しても
よい。
The magnetoresistive effect material of the present invention is not limited to the above-described embodiment, but may be used as a first underlayer as a T underlayer.
An alloy layer containing i, Hf, V, Nb, or Ta as a main component may be formed. Further, a metal or alloy layer having another face-centered cubic structure may be formed as the second underlayer.

【0022】また、本発明の磁気抵抗効果材料における
各層の膜厚は、上記実施例に限定されるものではなく、
用途及び使用する材料等に応じて膜厚を設定することが
できる。さらに、本発明の磁気抵抗効果材料において
は、反強磁性層の上に、例えばZrなどからなる保護層
を形成してもよい。
The thickness of each layer in the magnetoresistive material of the present invention is not limited to the above embodiment.
The film thickness can be set according to the use and the material to be used. Further, in the magnetoresistive effect material of the present invention, a protective layer made of, for example, Zr may be formed on the antiferromagnetic layer.

【0023】[0023]

【発明の効果】本発明に従えば、MR比が高く、かつフ
リー層の保磁力が低く、良好な磁界感度を示すスピンバ
ルブ型の磁気抵抗効果材料とすることができる。従っ
て、MRヘッドとして用いた場合に、高い出力及び高い
磁界感度を有し、高密度記録化を図ることができる。
According to the present invention, a spin-valve magnetoresistive material having a high MR ratio, a low coercive force of the free layer, and excellent magnetic field sensitivity can be obtained. Therefore, when used as an MR head, it has high output and high magnetic field sensitivity and can achieve high-density recording.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う一実施例の磁気抵抗効果材料を示
す断面図。
FIG. 1 is a sectional view showing a magnetoresistive effect material according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…基板 2…第1の下地層 3…第2の下地層 4…強磁性層 5…非磁性導電層 6…強磁性層 7…反強磁性層 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... 1st underlayer 3 ... 2nd underlayer 4 ... Ferromagnetic layer 5 ... Nonmagnetic conductive layer 6 ... Ferromagnetic layer 7 ... Antiferromagnetic layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山野 耕治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 田沼 俊雄 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 久米 実 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Yamano, Inventor 2-5-2-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshio Tanuma 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Minoru Kume 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下地層の上に、強磁性層、非磁性導電
層、強磁性層、及び反強磁性層をこの順次で積層した構
造を有するスピンバルブ型の磁気抵抗効果材料におい
て、 前記下地層として、Ti、Hf、V、Nb、及びTaか
らなるグループより選ばれる少なくとも1種の金属また
は該金属を主成分とする合金から形成される第1の下地
層の上に、面心立方構造を有する金属または合金から形
成される第2の下地層を積層した下地層を用いることを
特徴とする磁気抵抗効果材料。
1. A spin valve type magnetoresistive material having a structure in which a ferromagnetic layer, a nonmagnetic conductive layer, a ferromagnetic layer, and an antiferromagnetic layer are sequentially stacked on an underlayer. As a base layer, a face-centered cubic structure is formed on a first underlayer formed of at least one metal selected from the group consisting of Ti, Hf, V, Nb, and Ta or an alloy containing the metal as a main component. 1. A magnetoresistive effect material comprising: a base layer formed by laminating a second base layer formed of a metal or an alloy having the following.
【請求項2】 前記第2の下地層を形成する面心立方構
造を有する金属または合金が、Cu、Pt、NiFe、
CoFe、NiCo、またはNiCoFeである請求項
1に記載の磁気抵抗効果材料。
2. A metal or alloy having a face-centered cubic structure forming the second underlayer is made of Cu, Pt, NiFe,
The magnetoresistance effect material according to claim 1, wherein the material is CoFe, NiCo, or NiCoFe.
JP9244014A 1997-09-09 1997-09-09 Magnetic resistance effect material Pending JPH1187802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9244014A JPH1187802A (en) 1997-09-09 1997-09-09 Magnetic resistance effect material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9244014A JPH1187802A (en) 1997-09-09 1997-09-09 Magnetic resistance effect material

Publications (1)

Publication Number Publication Date
JPH1187802A true JPH1187802A (en) 1999-03-30

Family

ID=17112435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9244014A Pending JPH1187802A (en) 1997-09-09 1997-09-09 Magnetic resistance effect material

Country Status (1)

Country Link
JP (1) JPH1187802A (en)

Similar Documents

Publication Publication Date Title
US6313973B1 (en) Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
US6292336B1 (en) Giant magnetoresistive (GMR) sensor element with enhanced magnetoresistive (MR) coefficient
JP4421822B2 (en) Bottom spin valve magnetoresistive sensor element and manufacturing method thereof
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
US5955211A (en) Magnetoresistive film
US7533456B2 (en) Fabrication process for magneto-resistive effect devices of the CPP structure
KR100690492B1 (en) Magnetoresistive element, magnetic head, and magnetic memory apparatus
JP2000340858A (en) Magnetoresistive effect film and magnetoresistive effect head
KR100304770B1 (en) Magnetoresistive effect film and method of manufacture thereof
KR100321956B1 (en) Magnetoresistance effect film and method for making the same
US6307708B1 (en) Exchange coupling film having a plurality of local magnetic regions, magnetic sensor having the exchange coupling film, and magnetic head having the same
KR100266518B1 (en) Megnetoresistive Effect Film and Manufacturing Method Therefor
JP2000215421A (en) Spin valve thin film magnetic element, thin film magnetic head, and production of spin valve thin film magnetic element
JPH10177706A (en) Spin valve type thin film element
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
JP3872958B2 (en) Magnetoresistive element and manufacturing method thereof
JPH0936455A (en) Magnetoresistive effect element
JPH06310329A (en) Multilayer magnetoresistance effect film and magnetic head
JPH10256621A (en) Magnetoresistance effect material
JPH1187802A (en) Magnetic resistance effect material
JP2000020926A (en) Magnetoresistance effect head
JPH10270776A (en) Method for manufacturing magnetoresistance effect film
JP3561026B2 (en) Magnetoresistive head
JPH07182629A (en) Magnetic sensor
JP3096589B2 (en) Magnetoresistive head