JPH10270776A - Method for manufacturing magnetoresistance effect film - Google Patents

Method for manufacturing magnetoresistance effect film

Info

Publication number
JPH10270776A
JPH10270776A JP9071790A JP7179097A JPH10270776A JP H10270776 A JPH10270776 A JP H10270776A JP 9071790 A JP9071790 A JP 9071790A JP 7179097 A JP7179097 A JP 7179097A JP H10270776 A JPH10270776 A JP H10270776A
Authority
JP
Japan
Prior art keywords
layer
film
ferromagnetic layer
hydrogen gas
laminated film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9071790A
Other languages
Japanese (ja)
Inventor
Takuji Umemoto
卓史 梅本
Atsushi Maeda
篤志 前田
Toshio Tanuma
俊雄 田沼
Minoru Kume
実 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9071790A priority Critical patent/JPH10270776A/en
Publication of JPH10270776A publication Critical patent/JPH10270776A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a magnetic field sensitivity by forming at lest one magnetic layer of a multilayer film in an atmosphere containing a hydrogen gas by the sputtering method. SOLUTION: A first ferromagnetic layer 3, a non-magnetic layer 4, and a second ferromagnetic layer 5 are sequentially formed. The coercive force of the first ferromagnetic layer 3 is smaller than the ferromagnetic layer 5. In this kind of coercive force difference type multilayer film, a first ferromagnetic layer 3 with a small coercive force becomes a free layer and its magnetization direction changes due to the influence of an external magnetic field. Therefore, in this kind of coercive force difference type multilayer film, at least the first ferromagnetic layer 3 of the multilayer film is formed by the sputtering method in an atmosphere containing a hydrogen gas, thus reducing the coercive force of the first ferromagnetic layer 3 and improving a magnetic field sensitivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性層を含む積層
膜から構成される、いわゆる巨大磁気抵抗効果を示す磁
気抵抗効果膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magneto-resistance effect film having a so-called giant magneto-resistance effect, which is composed of a laminated film including a magnetic layer.

【0002】[0002]

【従来の技術】ハードディスク(HDD)に用いる磁気
ヘッドとして、近年、磁気抵抗効果型(MR)ヘッドが
注目されている。MRヘッドは、外部磁界の変化によっ
て電気伝導率が変化する磁気抵抗効果膜を用いたヘッド
であり、従来の誘導型磁気ヘッドに比べ高い磁界感度を
有し、高密度記録化を図ることができる。このようなM
Rヘッドに用いる磁気抵抗効果膜としては、従来より、
パーマロイ等の合金膜が用いられており、磁化方向の変
化に対応した抵抗の増減(異方性磁気抵抗効果:AM
R)により外部磁界の変化を検出している。
2. Description of the Related Art In recent years, a magnetoresistive (MR) head has attracted attention as a magnetic head used for a hard disk (HDD). The MR head is a head using a magnetoresistive film whose electric conductivity changes according to a change in an external magnetic field. The MR head has higher magnetic field sensitivity than a conventional inductive magnetic head and can achieve high density recording. . Such M
Conventionally, as a magnetoresistive film used for an R head,
An alloy film such as permalloy is used, and the resistance is increased or decreased in accordance with the change in the magnetization direction (anisotropic magnetoresistance effect: AM
R) detects a change in the external magnetic field.

【0003】しかしながら、最近、この従来のAMRに
比べより高い抵抗変化率を示す巨大磁気抵抗効果(GM
R)型の磁気抵抗効果膜が見出され、注目されている。
GMR型の磁気抵抗効果膜としては、Coなどの強磁性
層とCuなどの非磁性導電層とを繰り返し積層し強磁性
層間を反強磁性結合させた人工格子型、非磁性導電層を
保磁力の異なる一対の強磁性層で挟んだ積層構造を有す
る保磁力差型、及び非磁性導電層を一対の強磁性層で挟
み、一方の強磁性層の上に反強磁性層を設け反強磁性層
との磁気的結合によって一方の強磁性層をピン留めした
スピンバルブ型などの磁気抵抗効果膜が知られている。
However, recently, the giant magnetoresistive effect (GM) showing a higher rate of change in resistance than this conventional AMR has
An R) type magnetoresistive film has been found and attracted attention.
The GMR type magnetoresistive film is an artificial lattice type in which a ferromagnetic layer such as Co and a nonmagnetic conductive layer such as Cu are repeatedly laminated and the ferromagnetic layers are antiferromagnetically coupled. Coercive force difference type with a laminated structure sandwiched between a pair of different ferromagnetic layers, and a nonmagnetic conductive layer sandwiched between a pair of ferromagnetic layers, and an antiferromagnetic layer provided on one ferromagnetic layer 2. Description of the Related Art A magnetoresistive film such as a spin valve type in which one ferromagnetic layer is pinned by magnetic coupling with a layer is known.

【0004】[0004]

【発明が解決しようとする課題】このようなGMR積層
膜を用いたMRヘッドの実用化に向けて、高密度記録化
を達成するため、高い磁界検出感度を有するGMR型の
磁気抵抗効果膜の研究開発が盛んになされている。しか
しながら、従来は、磁気抵抗効果膜を構成する磁性膜の
合金組成や積層膜の積層構造についての検討がほとんど
であり、磁気抵抗効果膜の薄膜形成方法の観点からの検
討はほとんどなされていない。
In order to achieve high-density recording for the practical use of an MR head using such a GMR laminated film, a GMR type magnetoresistive film having a high magnetic field detection sensitivity has been developed. Research and development are being actively pursued. However, conventionally, almost all studies have been made on the alloy composition of the magnetic film constituting the magnetoresistive film and the laminated structure of the laminated films, and there has been almost no study from the viewpoint of the method of forming a thin film of the magnetoresistive film.

【0005】本発明の目的は、このようなGMR型磁気
抵抗効果膜における磁性膜の形成方法に着目し、高い磁
界感度を有する磁気抵抗効果膜の製造方法を提供するこ
とにある。
An object of the present invention is to provide a method of manufacturing a magnetoresistive film having high magnetic field sensitivity, focusing on a method of forming a magnetic film in such a GMR type magnetoresistive film.

【0006】[0006]

【課題を解決するための手段】本発明は、磁性層を含む
積層膜から構成される磁気抵抗効果膜を製造する方法で
あり、積層膜のうちの少なくとも1つの磁性層を、水素
ガスを含む雰囲気中でスパッタリング法により形成する
ことを特徴としている。
SUMMARY OF THE INVENTION The present invention is a method of manufacturing a magnetoresistive film comprising a laminated film including a magnetic layer, wherein at least one magnetic layer of the laminated film contains hydrogen gas. It is characterized by being formed by a sputtering method in an atmosphere.

【0007】本発明においては、水素ガスを含む雰囲気
中で、積層膜のうちの少なくとも1つの磁性層をスパッ
タリング法により形成する。水素ガスを含む雰囲気とし
ては、例えば、水素ガスを含む不活性ガス雰囲気を用い
ることができる。不活性ガスとしては、Xe、Kr、A
r、Ne、Heなどを用いることができる。水素ガスの
含有量は、不活性ガスに対して、例えば0.1体積%〜
30体積%の範囲で適宜選択される。
In the present invention, at least one magnetic layer of the laminated film is formed by a sputtering method in an atmosphere containing hydrogen gas. As the atmosphere containing hydrogen gas, for example, an inert gas atmosphere containing hydrogen gas can be used. Xe, Kr, A as the inert gas
r, Ne, He or the like can be used. The content of the hydrogen gas is, for example, 0.1% by volume to the inert gas.
It is appropriately selected within a range of 30% by volume.

【0008】スパッタリング法としては、種々のスパッ
タリング法を採用することができ、例えば、イオンビー
ムスパッタリング法、RFスパッタリング法、DCマグ
ネトロンスパッタリング法などのスパッタリング法を用
いることができる。
As the sputtering method, various sputtering methods can be employed. For example, a sputtering method such as an ion beam sputtering method, an RF sputtering method, and a DC magnetron sputtering method can be used.

【0009】スピンバルブ型の磁気抵抗効果膜は、一般
に、第1の強磁性層、非磁性導電層、第2の強磁性層、
及び反強磁性層をこの順序で、あるいは逆の順序で積層
した構造を有しており、第2の強磁性層が反強磁性層と
の磁気的結合によってピン留めされた積層膜である。本
発明においては、このような積層膜のうちの、少なくと
も1つの強磁性層または反強磁性層を水素ガスを含む雰
囲気中でスパッタリング法により形成する。また、この
場合において、磁性層以外の非磁性導電層を、水素ガス
を含む雰囲気中でスパッタリング法により形成してもよ
い。
A spin-valve type magnetoresistive film generally comprises a first ferromagnetic layer, a non-magnetic conductive layer, a second ferromagnetic layer,
And the antiferromagnetic layer is laminated in this order or in the reverse order, and the second ferromagnetic layer is a laminated film pinned by magnetic coupling with the antiferromagnetic layer. In the present invention, at least one ferromagnetic layer or antiferromagnetic layer in such a laminated film is formed by a sputtering method in an atmosphere containing hydrogen gas. In this case, a nonmagnetic conductive layer other than the magnetic layer may be formed by a sputtering method in an atmosphere containing hydrogen gas.

【0010】第1の強磁性層を、水素ガスを含む雰囲気
中でスパッタリング法により形成することにより、第1
の強磁性層の保磁力(Hc)を小さくし、磁気抵抗効果
膜の磁界感度を向上させることができる。また、第2の
強磁性層及び反強磁性層の少なくとも何れか一方を、水
素ガスを含む雰囲気でスパッタリング法により形成する
ことにより、第2の強磁性層と反強磁性層の間の交換結
合磁界(Hua)を大きくすることができる。従って、
磁界検出における安定性の高い磁気抵抗効果膜とするこ
とができる。
The first ferromagnetic layer is formed by a sputtering method in an atmosphere containing a hydrogen gas, whereby the first ferromagnetic layer is formed.
, The coercive force (Hc) of the ferromagnetic layer can be reduced, and the magnetic field sensitivity of the magnetoresistive film can be improved. In addition, by forming at least one of the second ferromagnetic layer and the antiferromagnetic layer by a sputtering method in an atmosphere containing hydrogen gas, exchange coupling between the second ferromagnetic layer and the antiferromagnetic layer is achieved. The magnetic field (Hua) can be increased. Therefore,
A magnetoresistance effect film having high stability in magnetic field detection can be obtained.

【0011】第1の強磁性層及び第2の強磁性層として
は、例えば、NiFe層、Co層、CoNiFe層、C
oFe層等の強磁性層が挙げられる。強磁性層の一般的
な膜厚は、1〜10nm程度である。
As the first ferromagnetic layer and the second ferromagnetic layer, for example, a NiFe layer, a Co layer, a CoNiFe layer, a C
Examples include a ferromagnetic layer such as an oFe layer. A typical thickness of the ferromagnetic layer is about 1 to 10 nm.

【0012】非磁性導電層としては、非磁性体であり、
かつ導電性に優れたものであれば特に限定されるもので
はなく、例えば、Cu層、Ag層などが挙げられる。非
磁性導電層の一般的な膜厚は、1〜5nm程度である。
The non-magnetic conductive layer is a non-magnetic material,
The material is not particularly limited as long as it has excellent conductivity, and examples thereof include a Cu layer and an Ag layer. A typical thickness of the nonmagnetic conductive layer is about 1 to 5 nm.

【0013】反強磁性層としては、例えば、FeMn
層、IrMn層、及びNiMn層などや、NiO層、C
oO層、及びFeO3 などの酸化物系反強磁性層などが
挙げられる。反強磁性層の一般的な膜厚は、5〜25n
m程度である。
As the antiferromagnetic layer, for example, FeMn
Layer, IrMn layer, NiMn layer, NiO layer, C
An oO layer and an oxide-based antiferromagnetic layer such as FeO 3 are exemplified. A typical thickness of the antiferromagnetic layer is 5 to 25 n.
m.

【0014】保磁力差型の磁気抵抗効果膜は、一般に、
第1の強磁性層、非磁性導電層、及び第2の強磁性層を
この順序で、または逆の順序で積層した構造を有し、第
1の強磁性層の保磁力が第2の強磁性層よりも小さい積
層膜である。このような保磁力差型の積層膜において
は、保磁力の小さい第1の強磁性層がフリー層となり、
外部磁界の影響でその磁化方向が変化する。従って、こ
のような保磁力差型積層膜においては、積層膜のうちの
少なくとも第1の強磁性層を水素ガスを含む雰囲気中で
スパッタリング法により形成することが好ましい。これ
により、第1の強磁性層の保磁力(Hc)を小さくする
ことができ、磁界感度を向上させることができる。ま
た、必要に応じ、第1の強磁性層以外の、非磁性導電層
及び第2の強磁性層を、水素ガスを含む雰囲気中でスパ
ッタリング法により形成してもよい。
A coercive force difference type magnetoresistive film is generally
It has a structure in which a first ferromagnetic layer, a non-magnetic conductive layer, and a second ferromagnetic layer are stacked in this order or in the reverse order, and the coercive force of the first ferromagnetic layer is a second strength. This is a laminated film smaller than the magnetic layer. In such a coercive force difference type laminated film, the first ferromagnetic layer having a small coercive force becomes a free layer,
The magnetization direction changes under the influence of the external magnetic field. Therefore, in such a coercive force difference type laminated film, it is preferable that at least the first ferromagnetic layer of the laminated film is formed by a sputtering method in an atmosphere containing hydrogen gas. Thereby, the coercive force (Hc) of the first ferromagnetic layer can be reduced, and the magnetic field sensitivity can be improved. If necessary, the nonmagnetic conductive layer and the second ferromagnetic layer other than the first ferromagnetic layer may be formed by a sputtering method in an atmosphere containing hydrogen gas.

【0015】第1の強磁性層及び第2の強磁性層として
は、上記スピンバルブ型と同様の強磁性層を用いること
ができ、第1の強磁性層は、第2の強磁性層よりも保磁
力の小さな強磁性層が選ばれる。また、非磁性導電層と
しては、上記スピンバルブ型の非磁性導電層と同様の非
磁性導電層を用いることができる。
As the first ferromagnetic layer and the second ferromagnetic layer, the same ferromagnetic layer as that of the above-described spin valve type can be used. Also, a ferromagnetic layer having a small coercive force is selected. Further, as the nonmagnetic conductive layer, a nonmagnetic conductive layer similar to the above-described spin-valve type nonmagnetic conductive layer can be used.

【0016】また、本発明に従う製造方法は、人工格子
型の積層膜に対しても適用することができるものであ
る。本発明の製造方法に従い、水素ガスを含む雰囲気中
でスパッタリング法により形成することにより、結晶粒
径が7nm以下である強磁性層及び反強磁性層等の磁性
層を形成することができる。また、より好ましくは、結
晶粒径が5nm以下である磁性層を形成することができ
る。これにより、保磁力の小さな強磁性層を形成するこ
とができ、また反強磁性層と強磁性層の交換結合磁界を
大きくすることができる。
The manufacturing method according to the present invention can also be applied to an artificial lattice type laminated film. According to the manufacturing method of the present invention, a magnetic layer such as a ferromagnetic layer and an antiferromagnetic layer having a crystal grain size of 7 nm or less can be formed by forming the film by a sputtering method in an atmosphere containing hydrogen gas. More preferably, a magnetic layer having a crystal grain size of 5 nm or less can be formed. Thus, a ferromagnetic layer having a small coercive force can be formed, and the exchange coupling magnetic field between the antiferromagnetic layer and the ferromagnetic layer can be increased.

【0017】本発明の製造方法に従い、水素ガスを含む
雰囲気中でスパッタリング法により形成することによ
り、非晶質構造を有する強磁性層及び反強磁性層等の磁
性層を形成することができる。これにより、例えば、保
磁力の小さな強磁性層を形成することができる。また、
反強磁性層と強磁性層の交換結合磁界を大きくすること
ができる。
According to the manufacturing method of the present invention, a magnetic layer such as a ferromagnetic layer and an antiferromagnetic layer having an amorphous structure can be formed by sputtering in an atmosphere containing hydrogen gas. Thereby, for example, a ferromagnetic layer having a small coercive force can be formed. Also,
The exchange coupling magnetic field between the antiferromagnetic layer and the ferromagnetic layer can be increased.

【0018】本発明の第1の局面に従う磁気抵抗効果膜
は、磁性層を含む積層膜から構成される磁気抵抗効果膜
であり、積層膜のうちの少なくとも1つの磁性層が7n
m以下、好ましくは5nm以下の結晶粒径を有する磁性
層である。
The magnetoresistive film according to the first aspect of the present invention is a magnetoresistive film composed of a laminated film including a magnetic layer, wherein at least one magnetic layer of the laminated film has a thickness of 7n.
m, preferably a magnetic layer having a crystal grain size of 5 nm or less.

【0019】本発明の第2の局面に従う磁気抵抗効果膜
は、磁性層を含む積層膜から構成される磁気抵抗効果膜
であり、積層膜のうちの少なくとも1つの磁性層が、非
晶質構造を有する磁性層であることを特徴としている。
磁性層が強磁性層である場合には、保磁力の小さな強磁
性層とすることができ、磁界感度を向上させることがで
きる。
A magnetoresistive film according to a second aspect of the present invention is a magnetoresistive film comprising a laminated film including a magnetic layer, wherein at least one magnetic layer of the laminated film has an amorphous structure. Characterized by having a magnetic layer having
When the magnetic layer is a ferromagnetic layer, it can be a ferromagnetic layer having a small coercive force, and the magnetic field sensitivity can be improved.

【0020】本発明の製造方法に従えば、高い磁界感度
を有する磁気抵抗効果膜を製造することができる。
According to the manufacturing method of the present invention, a magnetoresistive film having high magnetic field sensitivity can be manufactured.

【0021】[0021]

【発明の実施の形態】以下、本発明をより具体的な実施
例により説明する。図1に示すような積層膜構造を有す
る磁気抵抗効果膜を作製した。Si基板1の(100)
面の上に、下地層2としてのTa層(膜厚6nm)、第
1の強磁性層3としてのCoFe層(膜厚2.5n
m)、非磁性導電層4としてのCu層(膜厚2.5n
m)、第2の強磁性層5としてのCoFe層(膜厚2.
5nm)、反強磁性層6としてのIrMn層(膜厚15
nm)、及び保護層7としてのTa層(膜厚5nm)を
順次、イオンビームスパッタリング法により形成した。
反応室内の圧力を4×10-5Torrとし、雰囲気ガス
としてはXeを用い、水素ガス流量を2sccmとし、
イオンビームの加速電圧を300〜700Vとして各薄
膜を形成した。なお基板は水冷し、基板温度を25℃程
度に保った。また、第1の強磁性層3及び第2の強磁性
層5を形成する際のターゲットとしては、Co 90Fe10
を用い、反強磁性層6を形成する際のターゲットとして
はIr25Mn75を用いた。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
This will be described with an example. It has a laminated film structure as shown in FIG.
A magnetoresistive film was manufactured. (100) of Si substrate 1
On the surface, a Ta layer (thickness: 6 nm) as an underlayer 2 was formed.
CoFe layer as ferromagnetic layer 3 (thickness: 2.5 n)
m), a Cu layer as the nonmagnetic conductive layer 4 (film thickness 2.5 n
m), a CoFe layer as the second ferromagnetic layer 5 (with a film thickness of 2.
5 nm), and an IrMn layer (film thickness 15) as the antiferromagnetic layer 6.
nm) and a Ta layer (thickness: 5 nm) as the protective layer 7.
The layers were sequentially formed by an ion beam sputtering method.
The pressure in the reaction chamber was 4 × 10-FiveTorr and atmosphere gas
Xe is used, the hydrogen gas flow rate is 2 sccm,
When the acceleration voltage of the ion beam is
A film was formed. The substrate is cooled with water and the substrate temperature is about 25 ° C.
I kept it. The first ferromagnetic layer 3 and the second ferromagnetic layer
As a target for forming the layer 5, Co was used. 90FeTen
As a target when forming the antiferromagnetic layer 6
Is Irtwenty fiveMn75Was used.

【0022】以上のようにして得られた実施例のスピン
バルブ型の磁気抵抗効果膜について、直流4端子法によ
りMR特性を評価した。図2は、この実施例のMR特性
を示しており、磁界変化に対するMR比の変化を示して
いる。図2のMR特性曲線から、フリー層の保磁力(H
c)は7.9Oeであり、交換結合磁界(Hua)は1
81.8Oeであることがわかる。
The MR characteristics of the spin-valve magnetoresistive film of the embodiment obtained as described above were evaluated by the DC four-terminal method. FIG. 2 shows the MR characteristics of this embodiment, showing the change of the MR ratio with respect to the change of the magnetic field. From the MR characteristic curve of FIG. 2, the coercive force (H
c) is 7.9 Oe, and the exchange coupling magnetic field (Hua) is 1
It turns out that it is 81.8 Oe.

【0023】比較として、水素ガス流量を0sccm、
すなわち水素ガスの存在しないXeガスの雰囲気下で、
図1に示す積層構造の磁気抵抗効果膜を作製した。水素
ガス流量を0sccmとする以外は、上記実施例と同様
の条件で各層を形成した。図3は、このようにして得ら
れた比較例の磁気抵抗効果膜のMR特性曲線を示す図で
ある。図3から、フリー層の保磁力(Hc)は17.6
Oeであり、交換結合磁界(Hua)は124.2Oe
であることがわかる。
For comparison, the hydrogen gas flow rate was set at 0 sccm,
That is, under an atmosphere of Xe gas in which no hydrogen gas exists,
A magnetoresistive film having a laminated structure shown in FIG. 1 was produced. Each layer was formed under the same conditions as in the above example except that the flow rate of the hydrogen gas was set to 0 sccm. FIG. 3 is a diagram showing an MR characteristic curve of the magnetoresistive film of the comparative example obtained in this way. From FIG. 3, the coercive force (Hc) of the free layer is 17.6.
Oe, and the exchange coupling magnetic field (Hua) is 124.2 Oe.
It can be seen that it is.

【0024】従って、本発明に従う実施例の磁気抵抗効
果膜は、比較例の磁気抵抗効果膜に比べ、フリー層の保
磁力が小さくなっており、交換結合磁界が大きくなって
いる。
Therefore, in the magnetoresistive film of the embodiment according to the present invention, the coercive force of the free layer is smaller and the exchange coupling magnetic field is larger than the magnetoresistive film of the comparative example.

【0025】図4は、以上のようにして得られた実施例
の磁気抵抗効果膜及び比較例の磁気抵抗効果膜のX線回
折パターンを示す図である。図4に示すように、本発明
に従い水素ガスを含む雰囲気中で形成した実施例の磁気
抵抗効果膜は、比較例の磁気抵抗効果膜に比べ、強磁性
層、反強磁性層、及び非磁性導電層において、それぞれ
ピーク強度が著しく小さくなっている。これは、水素ガ
スを含む雰囲気中で各層を形成したことに起因するもの
と考えられる。
FIG. 4 is a diagram showing the X-ray diffraction patterns of the magnetoresistive film of the example and the magnetoresistive film of the comparative example obtained as described above. As shown in FIG. 4, the magnetoresistive film of the example formed in an atmosphere containing hydrogen gas according to the present invention has a ferromagnetic layer, an antiferromagnetic layer, and a non-magnetic layer as compared with the magnetoresistive film of the comparative example. In each of the conductive layers, the peak intensity is significantly reduced. This is considered to be due to the fact that each layer was formed in an atmosphere containing hydrogen gas.

【0026】次に、図1に示す構造の磁気抵抗効果膜の
各層を形成する際の水素ガス流量を変化させて磁気抵抗
効果膜を作製し、水素ガス流量の影響について検討し
た。水素ガス流量は、0sccm、0.25sccm、
1sccm、2sccm、3sccm、4sccm、及
び5sccmに変化させた。その他の薄膜形成条件は、
上記実施例の磁気抵抗効果膜と同様にした。
Next, the magnetoresistive film was manufactured by changing the hydrogen gas flow rate when forming each layer of the magnetoresistive film having the structure shown in FIG. 1, and the effect of the hydrogen gas flow rate was examined. The hydrogen gas flow rate is 0 sccm, 0.25 sccm,
It was changed to 1 sccm, 2 sccm, 3 sccm, 4 sccm, and 5 sccm. Other thin film formation conditions are as follows:
It was the same as the magnetoresistive film of the above embodiment.

【0027】図5は、以上のようにして水素ガス流量を
変化させて得られた磁気抵抗効果膜のMR比、フリー層
の保磁力(Hc)、交換結合磁界(Hua)を示す図で
ある。図5においては、水素ガス流量が0sccmの磁
気抵抗効果膜の値を基準とし、規格化した値でそれぞれ
の測定値を示している。図5から明らかなように、水素
ガス流量が0.25sccmと少量の流量であっても、
保磁力が著しく低減し、交換結合磁界が大きくなってい
る。図5に示す結果からは、水素ガス流量が2sccm
で保磁力は1/10以下にまで低下していることがわか
る。また交換結合磁界は、水素ガス流量が4sccmで
最大40%増大していることがわかる。このような結果
からは、磁気抵抗効果膜の各層を形成する際に、それぞ
れにおける特性が最大となるように、水素ガス流量を各
層の形成において異ならせてもよいことがわかる。例え
ば、フリー層である第1の強磁性層3を形成する際に
は、水素ガス流量を2sccmとし、第2の強磁性層5
及び反強磁性層6を形成する際には、水素ガス流量を4
sccmとしてもよい。
FIG. 5 is a diagram showing the MR ratio of the magnetoresistive film, the coercive force (Hc) of the free layer, and the exchange coupling magnetic field (Hua) obtained by changing the flow rate of the hydrogen gas as described above. . In FIG. 5, each measured value is shown as a standardized value based on the value of the magnetoresistive film having a hydrogen gas flow rate of 0 sccm. As is clear from FIG. 5, even when the hydrogen gas flow rate is as small as 0.25 sccm,
The coercive force is significantly reduced, and the exchange coupling magnetic field is increased. From the results shown in FIG. 5, the hydrogen gas flow rate was 2 sccm.
It can be seen that the coercive force is reduced to 1/10 or less. Further, it can be seen that the exchange coupling magnetic field increases at the maximum by 40% when the hydrogen gas flow rate is 4 sccm. From these results, it can be seen that when forming each layer of the magnetoresistive film, the hydrogen gas flow rate may be varied in the formation of each layer so that the characteristics in each layer are maximized. For example, when forming the first ferromagnetic layer 3 which is a free layer, the hydrogen gas flow rate is set to 2 sccm and the second ferromagnetic layer 5 is formed.
When forming the antiferromagnetic layer 6, the hydrogen gas flow rate is
It may be sccm.

【0028】次に、図1に示す構造の磁気抵抗効果膜を
形成する際、各層の形成において水素ガスを流さず水素
ガスが存在しない雰囲気で形成した積層膜(A)、第1
の強磁性層3の形成のときにのみ水素ガス流量を2sc
cmとし、その他の層の形成の際には水素ガスを存在さ
せずに形成した積層膜(B)、及び最下層の下地層2か
ら最上層の保護膜7までの各層の形成において、水素ガ
ス流量を2sccmとして作製した積層膜(C)につい
て、MR比、交換結合磁界、及びフリー層の保磁力を測
定し、図6にその結果を示した。
Next, when forming the magnetoresistive effect film having the structure shown in FIG. 1, a laminated film (A) formed in an atmosphere in which no hydrogen gas flows and no hydrogen gas is present in the formation of each layer,
Only when the ferromagnetic layer 3 of FIG.
cm, and when forming the other layers, the laminated film (B) formed without the presence of hydrogen gas, and the formation of each layer from the lowermost underlayer 2 to the uppermost protective film 7, hydrogen gas was used. The MR ratio, the exchange coupling magnetic field, and the coercive force of the free layer were measured for the laminated film (C) manufactured at a flow rate of 2 sccm, and the results are shown in FIG.

【0029】図6においては、比較の積層膜Aの各特性
値を基準として、規格化した値で示している。図6にお
いて、横軸のAの位置には積層膜Aの値を示しており、
横軸のBの位置には積層膜Bの値を示し、横軸のCの位
置には積層膜Cの値をそれぞれ示している。図6に示す
結果から明らかなように、積層膜Bのようにフリー層の
強磁性層を形成するときにのみ水素ガスを存在させてお
いても、保磁力が低減し、交換結合磁界が増加する。従
って、少なくともフリー層の強磁性層を形成させる際
に、本発明を適用し、水素ガスの雰囲気下で強磁性層を
形成することにより、磁界感度をある程度向上できるこ
とがわかる。
In FIG. 6, the values are normalized with reference to the characteristic values of the comparative laminated film A. In FIG. 6, the value of the laminated film A is shown at the position A on the horizontal axis,
The position of B on the horizontal axis indicates the value of the laminated film B, and the position of C on the horizontal axis indicates the value of the laminated film C. As is clear from the results shown in FIG. 6, the coercive force is reduced and the exchange coupling magnetic field is increased even if hydrogen gas is present only when the ferromagnetic layer of the free layer is formed, as in the laminated film B. I do. Therefore, it is understood that the magnetic field sensitivity can be improved to some extent by applying the present invention and forming the ferromagnetic layer in an atmosphere of hydrogen gas at least when forming the free ferromagnetic layer.

【0030】上記実施例では、スピンバルブ型の積層膜
を例示したが、保磁力差型の積層膜においても、少なく
とも低い保磁力を有する強磁性層を水素ガスの存在下に
スパッタリング法により形成することにより、磁界感度
を向上させることができる。
In the above embodiment, a spin-valve type laminated film is exemplified. However, also in a coercive force difference type laminated film, a ferromagnetic layer having at least a low coercive force is formed by a sputtering method in the presence of hydrogen gas. Thereby, the magnetic field sensitivity can be improved.

【0031】本発明は、上記実施例の積層膜の構造に限
定されるものではなく、その他の積層膜構造に対しても
同様に適用し、磁界感度を向上させることができる。
The present invention is not limited to the structure of the laminated film of the above embodiment, but can be similarly applied to other laminated film structures to improve the magnetic field sensitivity.

【0032】[0032]

【発明の効果】本発明によれば、高い磁界感度を有する
磁気抵抗効果膜を製造することができ、例えば、MRヘ
ッドにおいて磁界感度を向上させ、HDDディスクなど
における磁気記録において高密度記録化を図ることがで
きる。
According to the present invention, it is possible to manufacture a magnetoresistive film having high magnetic field sensitivity. For example, it is possible to improve the magnetic field sensitivity in an MR head and to achieve high density recording in magnetic recording on an HDD disk or the like. Can be planned.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従い製造される磁気抵抗効果膜の一実
施例を示す概略断面図。
FIG. 1 is a schematic sectional view showing one embodiment of a magnetoresistive film manufactured according to the present invention.

【図2】本発明に従い製造される一実施例の磁気抵抗効
果膜のMR特性曲線を示す図。
FIG. 2 is a diagram showing an MR characteristic curve of a magnetoresistive film of one embodiment manufactured according to the present invention.

【図3】比較の磁気抵抗効果膜のMR特性曲線を示す
図。
FIG. 3 is a view showing an MR characteristic curve of a comparative magnetoresistive film.

【図4】本発明に従う一実施例の磁気抵抗効果膜のX線
回折パターンを示す図。
FIG. 4 is a view showing an X-ray diffraction pattern of a magnetoresistive film of one example according to the present invention.

【図5】本発明に従う実施例において水素ガス流量を変
化させたときの各磁気抵抗効果膜のMR比、交換結合磁
界、及びフリー層の保磁力を示す図。
FIG. 5 is a diagram showing an MR ratio, an exchange coupling magnetic field, and a coercive force of a free layer of each magnetoresistive film when a hydrogen gas flow rate is changed in the example according to the present invention.

【図6】本発明に従う実施例において、第1の強磁性層
形成の際にのみ水素ガスを存在させて作製した積層膜
(B)と、各層を形成させる際に水素ガスを存在させて
作製した積層膜(C)のMR比、交換結合磁界、及びフ
リー層の保磁力を示す図。
FIG. 6 shows a laminated film (B) produced in the presence of hydrogen gas only when forming the first ferromagnetic layer and a hydrogen gas present when forming each layer in the embodiment according to the present invention. The figure which shows the MR ratio of the laminated film (C), the exchange coupling magnetic field, and the coercive force of the free layer.

【符号の説明】[Explanation of symbols]

1…基板 2…下地層 3…第1の強磁性層 4…非磁性導電層 5…第2の強磁性層 6…反強磁性層 7…保護層 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Underlayer 3 ... 1st ferromagnetic layer 4 ... Nonmagnetic conductive layer 5 ... 2nd ferromagnetic layer 6 ... Antiferromagnetic layer 7 ... Protective layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久米 実 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Minoru Kume 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 磁性層を含む積層膜から構成される磁気
抵抗効果膜を製造する方法において、 前記積層膜のうちの少なくとも1つの磁性層を、水素ガ
スを含む雰囲気中でスパッタリング法により形成するこ
とを特徴とする磁気抵抗効果膜の製造方法。
1. A method of manufacturing a magnetoresistive film comprising a laminated film including a magnetic layer, wherein at least one magnetic layer of the laminated film is formed by a sputtering method in an atmosphere containing hydrogen gas. A method for producing a magnetoresistive film, comprising:
【請求項2】 前記積層膜における磁性層以外の層も、
水素ガスを含む雰囲気中でスパッタリング法により形成
することを特徴とする請求項1に記載の磁気抵抗効果膜
の製造方法。
2. A layer other than the magnetic layer in the laminated film,
2. The method according to claim 1, wherein the film is formed by a sputtering method in an atmosphere containing hydrogen gas.
【請求項3】 前記積層膜が、第1の強磁性層、非磁性
導電層、第2の強磁性層、及び反強磁性層を積層した構
造を有し、第2の強磁性層が反強磁性層との磁気的結合
によってピン留めされたスピンバルブ型の積層膜である
ことを特徴とする請求項1または2に記載の磁気抵抗効
果膜の製造方法。
3. The laminated film has a structure in which a first ferromagnetic layer, a non-magnetic conductive layer, a second ferromagnetic layer, and an antiferromagnetic layer are laminated, and the second ferromagnetic layer has an antiferromagnetic layer. 3. The method of manufacturing a magnetoresistive film according to claim 1, wherein the film is a spin-valve type laminated film pinned by magnetic coupling with a ferromagnetic layer.
【請求項4】 前記スピンバルブ型の積層膜において、
少なくとも前記第1の強磁性層を、水素ガスを含む雰囲
気中でスパッタリング法により形成することを特徴とす
る請求項3に記載の磁気抵抗効果膜の製造方法。
4. In the spin-valve type laminated film,
4. The method according to claim 3, wherein at least the first ferromagnetic layer is formed by a sputtering method in an atmosphere containing hydrogen gas.
【請求項5】 前記スピンバルブ型の積層膜において、
前記第2の強磁性層及び前記反強磁性層のうちの少なく
とも一方を、水素ガスを含む雰囲気中でスパッタリング
法により形成することを特徴とする請求項3または4に
記載の磁気抵抗効果膜の製造方法。
5. The spin-valve type laminated film,
5. The magnetoresistive film according to claim 3, wherein at least one of the second ferromagnetic layer and the antiferromagnetic layer is formed by a sputtering method in an atmosphere containing hydrogen gas. Production method.
【請求項6】 前記積層膜が、第1の強磁性層、非磁性
導電層、及び第2の強磁性層を積層した構造を有し、第
1の強磁性層の保磁力が第2の強磁性層の保磁力よりも
小さい保磁力差型の積層膜であることを特徴とする請求
項1または2に記載の磁気抵抗効果膜の製造方法。
6. The laminated film has a structure in which a first ferromagnetic layer, a nonmagnetic conductive layer, and a second ferromagnetic layer are laminated, and the coercive force of the first ferromagnetic layer is a second coercive force. 3. The method according to claim 1, wherein the laminated film is a coercive force difference type laminated film having a smaller coercive force than the ferromagnetic layer.
【請求項7】 前記保磁力差型の積層膜において、少な
くとも前記第1の強磁性層を、水素ガスを含む雰囲気中
でスパッタリング法により形成することを特徴とする請
求項6に記載の磁気抵抗効果膜の製造方法。
7. The magnetoresistive device according to claim 6, wherein at least the first ferromagnetic layer in the coercive force difference type laminated film is formed by a sputtering method in an atmosphere containing hydrogen gas. Method for producing effect film.
【請求項8】 請求項1〜7の何れか1項に記載の製造
方法に従い、水素ガスを含む雰囲気中でスパッタリング
法により形成された磁性層中の結晶粒径が7nm以下で
あることを特徴とする磁気抵抗効果膜。
8. A magnetic layer formed by a sputtering method in an atmosphere containing hydrogen gas according to the method of claim 1, wherein the magnetic layer has a crystal grain size of 7 nm or less. And a magnetoresistive effect film.
【請求項9】 請求項1〜7の何れか1項に記載の製造
方法に従い、水素ガスを含む雰囲気中でスパッタリング
法により形成された磁性層が非晶質構造を有することを
特徴とする磁気抵抗効果膜。
9. The magnetic layer according to claim 1, wherein the magnetic layer formed by a sputtering method in an atmosphere containing hydrogen gas has an amorphous structure. Resistive film.
【請求項10】 磁性層を含む積層膜から構成される磁
気抵抗効果膜であって、 前記積層膜のうちの少なくとも1つの磁性層が、7nm
以下の結晶粒径の磁性層である磁気抵抗効果膜。
10. A magnetoresistive film comprising a laminated film including a magnetic layer, wherein at least one magnetic layer of the laminated film has a thickness of 7 nm.
A magnetoresistive film which is a magnetic layer having the following crystal grain size.
【請求項11】 磁性層を含む積層膜から構成される磁
気抵抗効果膜であって、 前記積層膜のうちの少なくとも1つの磁性層が、非晶質
構造を有する磁性層である磁気抵抗効果膜。
11. A magnetoresistive film comprising a laminated film including a magnetic layer, wherein at least one magnetic layer of the laminated film is a magnetic layer having an amorphous structure. .
JP9071790A 1997-03-25 1997-03-25 Method for manufacturing magnetoresistance effect film Pending JPH10270776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9071790A JPH10270776A (en) 1997-03-25 1997-03-25 Method for manufacturing magnetoresistance effect film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9071790A JPH10270776A (en) 1997-03-25 1997-03-25 Method for manufacturing magnetoresistance effect film

Publications (1)

Publication Number Publication Date
JPH10270776A true JPH10270776A (en) 1998-10-09

Family

ID=13470732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9071790A Pending JPH10270776A (en) 1997-03-25 1997-03-25 Method for manufacturing magnetoresistance effect film

Country Status (1)

Country Link
JP (1) JPH10270776A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065614A1 (en) * 1999-04-22 2000-11-02 Migaku Takahashi Method for forming magnetoresistance effect film
WO2001084570A2 (en) * 2000-04-28 2001-11-08 Motorola, Inc. Magnetic element with insulating veils and fabricating method thereof
JP2007324171A (en) * 2006-05-30 2007-12-13 Fujitsu Ltd Magnetic memory device and its fabrication process
US9397287B1 (en) * 2015-12-29 2016-07-19 International Business Machines Corporation Magnetic tunnel junction with post-deposition hydrogenation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065614A1 (en) * 1999-04-22 2000-11-02 Migaku Takahashi Method for forming magnetoresistance effect film
WO2001084570A2 (en) * 2000-04-28 2001-11-08 Motorola, Inc. Magnetic element with insulating veils and fabricating method thereof
WO2001084570A3 (en) * 2000-04-28 2002-03-28 Motorola Inc Magnetic element with insulating veils and fabricating method thereof
JP2007324171A (en) * 2006-05-30 2007-12-13 Fujitsu Ltd Magnetic memory device and its fabrication process
US9397287B1 (en) * 2015-12-29 2016-07-19 International Business Machines Corporation Magnetic tunnel junction with post-deposition hydrogenation

Similar Documents

Publication Publication Date Title
JP5570824B2 (en) Magnetoresistive element and method for forming the same
JP5138204B2 (en) Method for forming tunnel barrier layer, TMR sensor and method for manufacturing the same
KR100288466B1 (en) Magnetoresistive element, magnetoresistive head, memory element and amplification element using the same
JP5172472B2 (en) Pinned layer, TMR sensor using the same, and method for manufacturing TMR sensor
JP3890893B2 (en) Spin tunnel magnetoresistive film and element, magnetoresistive sensor using the same, magnetic device, and manufacturing method thereof
JP5674297B2 (en) TMR element and method for forming the same
US6882509B2 (en) GMR configuration with enhanced spin filtering
JP5815204B2 (en) TMR element and method for forming the same
JP2009004784A (en) Exchange-coupling film, magnetoresistance effect element using the same and method of manufacturing magnetoresistance effect element
US6721147B2 (en) Longitudinally biased magnetoresistance effect magnetic head and magnetic reproducing apparatus
JPH1041132A (en) Magnetic resistance effect film
KR100304770B1 (en) Magnetoresistive effect film and method of manufacture thereof
KR100321956B1 (en) Magnetoresistance effect film and method for making the same
US7515388B2 (en) Composite hard bias design with a soft magnetic underlayer for sensor applications
US6307708B1 (en) Exchange coupling film having a plurality of local magnetic regions, magnetic sensor having the exchange coupling film, and magnetic head having the same
JP2006196892A (en) Formation method for magnetized free layer of magnetic tunnel junction element as well as tunnel junction type reproducing head, and its manufacturing method
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
US6721148B2 (en) Magnetoresistive sensor, thin-film read/write head, and magnetic recording apparatus using the sensor
JPH0963021A (en) Magneto-resistive effect element having spin valve structure and its production
JPH10270776A (en) Method for manufacturing magnetoresistance effect film
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
JPH10294217A (en) Spin valve type magnetoresistance effect film and magnetic head having the same
JPH0936455A (en) Magnetoresistive effect element
JP2001202606A (en) Magnetic spin valve head and method for forming same
JPH10289421A (en) Production of magneto-resistive multilayered films