JPH1187163A - Manufacture of rare-earths and iron permanent magnet - Google Patents

Manufacture of rare-earths and iron permanent magnet

Info

Publication number
JPH1187163A
JPH1187163A JP23933997A JP23933997A JPH1187163A JP H1187163 A JPH1187163 A JP H1187163A JP 23933997 A JP23933997 A JP 23933997A JP 23933997 A JP23933997 A JP 23933997A JP H1187163 A JPH1187163 A JP H1187163A
Authority
JP
Japan
Prior art keywords
heat
axis direction
cavity
sectional area
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23933997A
Other languages
Japanese (ja)
Inventor
Kazuhiro Obara
一浩 小原
Yasutaka Kitagawa
泰隆 北川
Fumitoshi Yamashita
文敏 山下
Masami Wada
正美 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23933997A priority Critical patent/JPH1187163A/en
Publication of JPH1187163A publication Critical patent/JPH1187163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Abstract

PROBLEM TO BE SOLVED: To obtain magnets exhibiting less variations, at low cost in a method for manufacturing permanent magnets in which powders of an alloycomposed of rare-earth metals and iron are bulked by Joule heat obtained from electric conduction. SOLUTION: A mold comprises a nonconductive ceramic dies 1, electrodes 2a and 2b for forming n cavities together wtih the dies 1, and heat-compensating members 3a and 3b. Portions in which a cross section, extending along which pressure is applied less than the total cavity portion are provided in the members 3a and 3b, respectively, so that the object is achieved through conduction at a current which is smaller than a conventional value. In addition, the temperature of the members 3a and 3b is increased more quickly, so that the variations in the speed at which the temperature of powders in the cavities is increased can be compensated for by heat transfer derived from Joule heat produced at the members 3a and 3b. As a result, the equipment cost can be suppressed, and bulked permanent magnets with less variations from one cavity to another can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類鉄系合金粉
末の集合体を出発原料とし、この粉末の集合体からバル
ク状永久磁石を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bulk permanent magnet from an aggregate of rare earth iron-based alloy powders as a starting material.

【0002】[0002]

【従来の技術】希土類鉄系合金粉末には、磁気的に等方
性のものと異方性のものがあり、等方性希土類鉄系合金
粉末としては、例えば、特開昭59-64739号公報に示され
るような、R2TM14B(R:Nd/Pr、TM:Fe/Co)相と非晶質相と
を共有するR-Fe-B系超急冷粉末が挙げられる。これは、
溶融した希土類鉄系合金を、小さなオリフィスを通じて
回転する冷表面上に絞り出して急冷し、得られた厚さ20
〜30μmの薄片を必要に応じて熱処理したのち粉砕して
得られる。異方性希土類鉄系合金粉末としては、特公平
6-82575号公報に示されるような、R-Fe-B系合金に、水
素吸蔵処理および放出処理を施すことによって得られる
磁気異方性を持つ粉末(以下HDDR粉末と呼ぶ)や、R-Fe-B
系超急冷粉末を温間加工などによりバルク化した後、さ
らに温間塑性加工を施して得られた異方化バルク磁石
(特開昭60-100402号公報参照)を粉砕して得られる粉末
などが挙げられる。これらはいずれも粉末そのものが有
用な磁石であるが、実用上は何らかの手段を用いて粉末
をバルク状永久磁石とする必要がある。
2. Description of the Related Art Rare earth iron-based alloy powders are classified into magnetically isotropic ones and anisotropic ones. An R-Fe-B-based super-quenched powder sharing an amorphous phase with an R 2 TM 14 B (R: Nd / Pr, TM: Fe / Co) phase as described in the gazette is exemplified. this is,
The molten rare-earth iron-based alloy is squeezed through a small orifice onto a rotating cold surface and quenched, resulting in a thickness of 20 mm.
It is obtained by subjecting a 薄 30 μm flake to heat treatment as required and then pulverizing. As an anisotropic rare earth iron-based alloy powder,
As shown in JP-A-6-82575, a powder having magnetic anisotropy obtained by subjecting an R-Fe-B-based alloy to a hydrogen storage treatment and a release treatment (hereinafter referred to as HDR powder), Fe-B
Anisotropic bulk magnets obtained by bulking ultra-rapid quenched powders by warm working and then subjecting them to warm plastic working
(See Japanese Patent Application Laid-Open No. 60-100402). In any of these, the powder itself is a useful magnet, but in practice it is necessary to make the powder into a bulk permanent magnet using some means.

【0003】希土類鉄系合金粉末をバルク状永久磁石と
する従来技術としては、特開昭59-211549号公報にある
ように、粉末同士を樹脂により接着した樹脂磁石、ある
いは特開昭60-100402号公報にあるようなホットプレス
磁石が知られている。さらに、USP5,167,915および特開
平3-284809号公報には、少なくとも1つの貫通孔を設け
た非導電性セラミックからなる1つ以上のダイとダイに
対応する一対の電極とでキャビティ部を形成し、該キャ
ビティ部に希土類鉄系合金粉末を充填し、一対の熱補償
部材を介して全電極の圧力軸方向断面積に一軸の圧力を
加え、通電し、通電により発生する熱補償部材のジュー
ル熱を全電極を介して粉末へ伝熱して粉末を加熱圧着
し、バルク状永久磁石とする希土類鉄系磁石の製造方法
が開示されている。
[0003] As a conventional technique of using a rare earth iron-based alloy powder as a bulk permanent magnet, as disclosed in Japanese Patent Application Laid-Open No. 59-211549, a resin magnet in which powders are bonded to each other with a resin or Japanese Patent Application Laid-Open No. 60-100402 is disclosed. There is known a hot-pressed magnet as disclosed in Japanese Patent Application Laid-Open Publication No. HEI 10-125, 1988. Further, US Pat. No. 5,167,915 and Japanese Patent Application Laid-Open No. 3-284809 disclose that a cavity is formed by at least one die made of non-conductive ceramic having at least one through hole and a pair of electrodes corresponding to the die. The cavity is filled with a rare earth iron-based alloy powder, a uniaxial pressure is applied to the cross-sectional area in the pressure axis direction of all the electrodes via a pair of heat compensating members, and a current is applied. Is transferred to the powder through all the electrodes, and the powder is heated and pressed to form a rare earth iron-based magnet as a bulk permanent magnet.

【0004】[0004]

【発明が解決しようとする課題】樹脂磁石は、希土類鉄
系粉末同士を樹脂で接着するために、合金に対する相対
密度は80%程度であり、これ以上の高密度化は困難であ
る。一方、ホットプレス磁石は、合金に対する相対密度
98〜99%のバルク状永久磁石を得ることができ、例えば
モータ等の小型化,高出力化等に有効であるが、600℃
から900℃の加工温度と、1〜3ton/cm2の加工圧力を必要
とする。加工温度は、R2TM14B(R:Nd/Pr、TM:Fe/Co)相が
生成し、成長する温度領域であるため、加工温度と圧
力、加工時間を関連させて正確に制御する必要がある。
The relative density of the resin magnet with respect to the alloy is about 80% because the rare earth iron-based powders are bonded to each other with the resin, and it is difficult to further increase the density. On the other hand, hot pressed magnets have a relative density
A bulk permanent magnet of 98-99% can be obtained, which is effective for miniaturization and high output of motors and the like.
It requires a processing temperature of up to 900 ° C. and a processing pressure of 1-3 ton / cm 2 . The processing temperature is the temperature range where the R 2 TM 14 B (R: Nd / Pr, TM: Fe / Co) phase is generated and grows, so the processing temperature, pressure and processing time are accurately controlled. There is a need.

【0005】また、USP5,167,915および特開平3-284809
号公報には、少なくとも1つの貫通孔を設けた非導電性
セラミックからなる1つ以上のダイとダイに対応する一
対の電極とでキャビティ部を形成し、該キャビティ部に
希土類鉄系合金粉末を充填し、一対の熱補償部材を介し
て全電極の圧力軸方向断面積に一軸の圧力を加え、通電
し、通電により発生する熱補償部材のジュール熱を全電
極を介して粉末へ伝熱して粉末を加熱圧着し、バルク状
永久磁石とする希土類鉄系磁石の製造方法が開示されて
おり、電極のρ/sc(ρは固有抵抗Ωcm、sは比重、cは比
熱)値を10のマイナス4乗水準とし、熱補償部材のρ/sc
値を10のマイナス3乗水準とすることで、キャビティ群
への通電電流の不均一性に基づく昇温速度の変動を熱補
償部材からの熱伝導により補償できることが示されてい
る。この場合、全キャビティ部の圧力軸方向断面に対し
て1平方cm当り250〜300Aの電流密度で直流通電を行う必
要があり、圧力軸方向断面積の大きなバルク状永久磁石
を製造する場合、あるいはキャビティ数を増加させた場
合には、必要とする電源の電流容量が大きくなるために
設備コストが増加し、また消費電力が増加するという問
題があった。
Further, US Pat. No. 5,167,915 and JP-A-3-284809
In the publication, a cavity is formed by at least one die made of non-conductive ceramic having at least one through hole and a pair of electrodes corresponding to the die, and a rare earth iron-based alloy powder is formed in the cavity. Filling, applying uniaxial pressure to the pressure axis cross-sectional area of all electrodes through a pair of heat compensating members, energizing, transferring Joule heat of heat compensating member generated by energization to powder through all electrodes A method for manufacturing a rare-earth iron-based magnet in which powder is heated and pressed to form a bulk permanent magnet is disclosed, and the ρ / sc (ρ is specific resistance Ωcm, s is specific gravity, c is specific heat) value of the electrode is minus 10. 4th power level, ρ / sc of thermal compensation member
It is shown that when the value is set to the level of minus 10 to the power of 3, the fluctuation of the heating rate due to the non-uniformity of the current flowing through the cavity group can be compensated by the heat conduction from the heat compensation member. In this case, it is necessary to conduct DC current at a current density of 250 to 300 A per square cm with respect to the cross section in the pressure axis direction of all cavities, when manufacturing a bulk permanent magnet having a large cross section in the pressure axis direction, or When the number of cavities is increased, there is a problem that the required current capacity of the power supply is increased, so that the equipment cost is increased and the power consumption is increased.

【0006】本発明は、上記の問題点を解決するための
希土類鉄系磁石の製造方法の改善に関するものである。
The present invention relates to an improvement in a method for manufacturing a rare-earth iron-based magnet to solve the above problems.

【0007】[0007]

【課題を解決するための手段】本発明は少なくとも1つ
の貫通孔を設けた非導電性セラミックからなる1つ以上
のダイとダイに対応する一対の電極とでキャビティ部を
形成し、該キャビティ部に、必要に応じて結合剤を添加
した希土類鉄系合金粉末を充填し、必要に応じてキャビ
ティ部に充填した粉末を磁場配向したのち、一対の熱補
償部材を介して全電極の圧力軸方向断面積に一軸の圧力
を加え、通電し、通電により発生する熱補償部材のジュ
ール熱を全電極を介して粉末へ伝熱して粉末を加熱圧着
し、バルク状永久磁石とする希土類鉄系磁石の製造方法
において、熱補償部材に圧力軸方向断面積が全キャビテ
ィ部の圧力軸方向断面積以下である部分を設けたことを
特徴とする希土類鉄系磁石の製造方法である。
According to the present invention, a cavity is formed by at least one die made of a non-conductive ceramic having at least one through hole and a pair of electrodes corresponding to the die. Is filled with a rare earth iron-based alloy powder to which a binder is added as necessary, and the powder filled in the cavity portion is magnetically oriented as necessary, and then the pressure axis direction of all electrodes is passed through a pair of heat compensating members. Applying uniaxial pressure to the cross-sectional area, energizing it, transferring the Joule heat of the heat compensating member generated by the energization to the powder through all the electrodes, heat-compressing the powder, and forming a bulk permanent magnet A method of manufacturing a rare-earth iron-based magnet, characterized in that the heat compensating member is provided with a portion having a cross-sectional area in the pressure axis direction equal to or smaller than the cross-sectional area in the pressure axis direction of the entire cavity.

【0008】上記本発明の利点は、熱補償部材の、圧力
軸方向断面積が全キャビティ部の圧力軸方向断面積以下
である部分の圧力軸方向断面積に対して、1平方cm当り2
50〜300Aの電流密度での通電を行うことで、通電により
発生する熱補償部材のジュール熱を全電極を介して希土
類鉄系合金粉末へ伝熱して粉末を加熱圧着し、バルク状
永久磁石とすることが可能である点である。従来、USP
5,167,915および特開平3-284809号公報では全キャビテ
ィ部の圧力軸方向断面に対して1平方cm当り250〜300Aの
電流密度での直流通電を必要としており、圧力軸方向断
面積の大きなバルク状永久磁石を製造する場合、あるい
はキャビティ数を増加させた場合には、通電時の電流値
が高くなり、必要とする電源の電流容量が大きくなるた
めに設備コストが増加し、また消費電力が増加するとい
う問題があった。
The advantage of the present invention is that the heat-compensating member has a pressure-axis cross-sectional area of less than or equal to the pressure-axis cross-sectional area of the entire cavity portion.
By conducting electricity at a current density of 50 to 300 A, the Joule heat of the heat compensating member generated by the conduction is transferred to the rare-earth iron-based alloy powder through all the electrodes, and the powder is heated and pressed to form a bulk permanent magnet. It is possible to do it. Conventionally, USP
5,167,915 and JP-A-3-284809 require direct current at a current density of 250 to 300 A per square cm with respect to the cross section in the pressure axis direction of the entire cavity, and a bulk permanent magnet having a large cross section in the pressure axis direction is required. When a magnet is manufactured or the number of cavities is increased, the current value at the time of energization is increased, and the required current capacity of the power supply is increased, thereby increasing equipment costs and power consumption. There was a problem.

【0009】本発明によれば、熱補償部材の圧力軸方向
断面積が全キャビティ部の圧力軸方向断面積以下である
部分の圧力軸方向断面積に対して1平方cm当り250〜300A
の密度での直流通電ですみ、必要とする電源の電流容量
が小さくて済むために設備コストを抑えることができ、
消費電力を抑えることができる。さらに、熱補償部材
に、圧力軸方向断面積が全キャビティ部の圧力軸方向断
面積以下である部分を設けることで、熱補償部材の昇温
速度をキャビティに充填した粉末の昇温速度よりも速く
し、キャビティ群への通電電流の不均一性に基づく昇温
速度の変動を熱補償部材からの熱伝導により効果的に補
償することができる。この本発明によれば、600℃から7
00℃というホットプレス法よりも低い加工温度と、1平
方cm当り200〜500kgfというホットプレス法より低い加
工圧力において、粉末から磁気特性を維持しつつ、高度
な寸法精度を確保した相対密度98〜99%のバルク状永久
磁石を製造しうる。また、キャビティ群を形成するダイ
および電極を伝熱部材を介して圧力軸方向に多段積層し
た構成とすることで、さらに生産性を高めることができ
る。
According to the present invention, the heat-compensating member has a cross-sectional area in the pressure axis direction which is smaller than the cross-sectional area in the pressure axis direction of the entire cavity portion.
DC current at a density of only one, and the required current capacity of the power supply can be small, which can reduce equipment costs.
Power consumption can be reduced. Further, by providing the heat compensating member with a portion whose sectional area in the pressure axis direction is equal to or smaller than the sectional area in the pressure axis direction of all the cavities, the rate of temperature rise of the heat compensating member is higher than the rate of temperature rise of the powder filled in the cavity. It is possible to effectively compensate for fluctuations in the heating rate due to the non-uniformity of the current flowing through the cavity group by heat conduction from the heat compensating member. According to this invention, 600 ° C.
At a processing temperature lower than the hot press method of 00 ° C and a processing pressure lower than the hot press method of 200 to 500 kgf per square cm, the relative density of 98 to 99% bulk permanent magnets can be produced. In addition, productivity is further improved by adopting a configuration in which the dies and electrodes forming the cavity group are stacked in multiple stages in the pressure axis direction via the heat transfer member.

【0010】[0010]

【発明の実施の形態】本発明の請求項1に記載の発明
は、少なくとも1つの貫通孔を設けた非導電性セラミッ
クからなる1つ以上のダイとダイに対応する一対の電極
とでキャビティ部を形成し、該キャビティ部に、必要に
応じて結合剤を添加した希土類鉄系合金粉末を充填し、
必要に応じてキャビティ部に充填した粉末を磁場配向し
たのち、一対の熱補償部材を介して全電極の圧力軸方向
断面積に一軸の圧力を加え、通電し、通電により発生す
る熱補償部材のジュール熱を全電極を介して粉末へ伝熱
して粉末を加熱圧着し、バルク状永久磁石とする希土類
鉄系磁石の製造方法において、熱補償部材に圧力軸方向
断面積が全キャビティ部の圧力軸方向断面積以下である
部分を設けたものであり、熱補償部材に圧力軸方向断面
積が全キャビティ部の圧力軸方向断面積以下である部分
を設けることで、直流通電時に必要とする電流値を下げ
ることができるとともに、当該部での電流密度(I/S)を
全キャビティ部での電流密度よりも相対的に高め、1W=
0.2389(cal/sec)、I:通電電流(A)、R:電気抵抗(Ω)、C:
熱容量(cal/℃)、ρ:比抵抗(Ωcm)、s:比重、c:比熱(ca
l/℃g)、S:圧力軸方向断面積(cm2)としたときに、ΔT/
Δt=0.2389I2R/C=(0.2389ρ/sc)(I/S)2で表される
通電時のジュール熱による昇温速度を、キャビティ部に
充填した粉末よりも速くし、接触抵抗などの影響によっ
て複数のキャビティ群に対して必ずしも均一に分流しな
い通電電流に起因する各キャビティ中の粉末昇温のばら
つきを、一対の熱補償部材のジュール熱による伝熱で補
償するという作用を有する。
DETAILED DESCRIPTION OF THE INVENTION The invention as set forth in claim 1 of the present invention is directed to a method of manufacturing a semiconductor device comprising at least one die made of non-conductive ceramic having at least one through hole and a pair of electrodes corresponding to the die. Is formed, and the cavity is filled with a rare earth iron-based alloy powder to which a binder is added as necessary.
If necessary, after the powder filled in the cavity is magnetically oriented, a uniaxial pressure is applied to the cross-sectional area in the pressure axis direction of all the electrodes through a pair of heat compensating members, and a current is applied. In a method of manufacturing a rare earth iron-based magnet that transfers Joule heat to powder through all electrodes and heat-presses the powder to form a bulk permanent magnet, the heat compensation member has a pressure axis cross-sectional area of the pressure axis of all cavities. The current compensating part is provided with a part whose cross-sectional area is smaller than the cross-sectional area in the pressure axis direction. And the current density (I / S) in the part concerned is relatively increased from the current density in the whole cavity part, and 1W =
0.2389 (cal / sec), I: energizing current (A), R: electric resistance (Ω), C:
Heat capacity (cal / ° C), ρ: specific resistance (Ωcm), s: specific gravity, c: specific heat (ca
l / ℃ g), S: when the compression axis direction cross-sectional area (cm 2), ΔT /
Δt = 0.2389I 2 R / C = (0.2389ρ / sc) (I / S) The temperature rise rate by Joule heat at the time of energization expressed by 2 is faster than that of the powder filled in the cavity, and the contact resistance etc. Has the effect of compensating for the variation in the temperature rise of the powder in each cavity caused by the current flowing through the plurality of cavities, which is not necessarily evenly distributed to the plurality of cavities, by the heat transfer by the Joule heat of the pair of heat compensating members.

【0011】請求項2記載の発明は、熱補償部材のう
ち、圧力軸方向断面積が全キャビティ部の圧力軸方向断
面積以下である部分の材質の比抵抗を、他の部分よりも
高くすることで、当該部での昇温速度を速くするととも
に、熱補償部材内での好ましくない温度むらを低減さ
せ、バルク状永久磁石の品質を安定させるとともに、熱
補償部材の耐久性を改善するという作用を有する。
According to a second aspect of the present invention, in the heat compensating member, the specific resistance of the material of the portion having a cross-sectional area in the pressure axis direction equal to or less than the cross-sectional area in the pressure axis direction of all the cavities is made higher than the other portions. By doing so, it is possible to increase the rate of temperature rise in the part, reduce undesirable temperature unevenness in the heat compensating member, stabilize the quality of the bulk permanent magnet, and improve the durability of the heat compensating member. Has an action.

【0012】[0012]

【実施例】以下本発明の実施例について、図1および図
2を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0013】(実施例1)図1は、本発明の実施例に基
づく成形型構成例であり、等方性もしくは異方性または
等方性および異方性の希土類鉄系合金粉末の磁気特性を
維持しつつ、高度な寸法精度を確保したバルク状永久磁
石を製造しうるものの要部外観図である。図2は図1の
A-B断面図である。図1において1は非導電性セラミッ
クスダイで複数が円周状をなすように配置されている。
2aおよび2bは1対の電極であり非導電性セラミック
スダイ1と同数がそれぞれに対応して配置されている。
ここで電極2a,2bは非導電性セラミックスダイ1と
ともにキャビティを形成し、それぞれが電極であるとと
もにアッパ、ロアポンチを兼ねるものである。
(Example 1) FIG. 1 shows an example of the configuration of a molding die according to an example of the present invention. The magnetic properties of an isotropic or anisotropic or an isotropic and anisotropic rare earth iron-based alloy powder are shown. FIG. 3 is an external view of a main part of a bulk permanent magnet that can be manufactured with high dimensional accuracy while maintaining the above conditions. FIG.
It is AB sectional drawing. In FIG. 1, reference numeral 1 denotes a non-conductive ceramic die, a plurality of which are arranged so as to form a circumference.
2a and 2b are a pair of electrodes, and the same number as the non-conductive ceramic die 1 is arranged corresponding to each.
Here, the electrodes 2a and 2b form a cavity together with the non-conductive ceramic die 1, and each serves as an electrode and also serves as an upper and a lower punch.

【0014】なお一対の電極2a,2bのキャビティ面
は窒化ボロン粉末を有効成分とする層で被覆しておくこ
とが望ましい。3a,3bは圧力軸方向断面積が全キャ
ビティ部の圧力軸方向断面積以下である部分を設けた熱
補償部材である。図2は図1のA-B断面図であり、4は
希土類鉄系合金粉末である。希土類鉄系合金粉末として
は、磁気的に等方性または異方性のものを使用できる。
等方性の希土類鉄系合金粉末としては、例えば、特開昭
59-64739号公報に示されるような、R2TM14B(R:Nd/Pr、T
M:Fe/Co)相と非晶質相とを共有するR-Fe-B系超急冷粉末
を使用することができる。これは、溶融した希土類鉄系
合金を、小さなオリフィスを通じて回転する冷表面上に
絞り出して急冷し、得られた厚さ20〜30μmの薄片を必
要に応じて熱処理したのち粉砕して得られる。また、異
方性希土類鉄系合金粉末としては、特公平6-82575号公
報に示されるような、R-Fe-B系合金に、水素吸蔵処理お
よび放出処理を施すことによって得られる粉末(以下HDD
R粉末と呼ぶ)や、R-Fe-B系超急冷粉末を温間加工などに
よりバルク化した後、さらに温間塑性加工を施して得ら
れた異方化バルク磁石(特開昭60-100402号公報参照)を
粉砕して得られる粉末などが使用できる。異方性希土類
鉄系合金粉末を使用する場合には、キャビティに充填し
た後に磁場配向を行い、異方性希土類鉄系合金粉末の磁
化容易軸を揃えることで、バルク状とした永久磁石の磁
気特性が向上する。さらに、希土類鉄系合金粉末には、
必要に応じてZnなどの金属、あるいはMgO、ZrO、PbOな
どを含む低融点ガラス等の結合剤を添加してもよい。
It is desirable that the cavity surfaces of the pair of electrodes 2a and 2b be covered with a layer containing boron nitride powder as an active ingredient. Reference numerals 3a and 3b denote heat compensating members provided with portions whose sectional area in the pressure axis direction is equal to or smaller than the sectional area in the pressure axis direction of all cavities. FIG. 2 is a cross-sectional view taken along the line AB in FIG. 1, and reference numeral 4 denotes a rare earth iron-based alloy powder. As the rare earth iron-based alloy powder, magnetically isotropic or anisotropic one can be used.
As an isotropic rare earth iron-based alloy powder, for example,
As shown in JP-A-59-64739, R 2 TM 14 B (R: Nd / Pr, T
An R-Fe-B-based super-quenched powder sharing an (M: Fe / Co) phase and an amorphous phase can be used. This is obtained by squeezing the molten rare-earth iron-based alloy onto a rotating cold surface through a small orifice, quenching it, heat-treating the obtained flakes having a thickness of 20 to 30 μm if necessary, and then pulverizing the flakes. Further, as the anisotropic rare earth iron-based alloy powder, as shown in Japanese Patent Publication No. 6-82575, a powder obtained by subjecting an R-Fe-B-based alloy to a hydrogen storage treatment and a release treatment (hereinafter referred to as a powder). HDD
R powder), or R-Fe-B-based super-quenched powder, after being bulked by warm working, etc., and further subjected to warm plastic working to obtain an anisotropic bulk magnet (Japanese Patent Application Laid-Open No. 60-100402). And the like can be used. When using anisotropic rare-earth iron-based alloy powder, the magnetic field is oriented after filling the cavity, and the easy axis of magnetization of the anisotropic rare-earth iron-based alloy powder is aligned, so that the magnetic properties of the bulk permanent magnet The characteristics are improved. Furthermore, rare earth iron-based alloy powders include:
If necessary, a binder such as a metal such as Zn or a low-melting glass containing MgO, ZrO, or PbO may be added.

【0015】複数のキャビティは、円周上に等間隔に配
置することが望ましく、円筒状熱補償部材の内外径はキ
ャビティを等配する円周と同心円であることが望まし
い。
The plurality of cavities are preferably arranged at equal intervals on the circumference, and the inner and outer diameters of the cylindrical heat compensating member are desirably concentric with the circumference on which the cavities are equally arranged.

【0016】次に本発明の作用を上記構成の成形型によ
り説明する。先ず、0.1〜0.001Torrの減圧下にて、一対
の熱補償部材3a,3bの両端面より全電極2a,2b
を介して希土類鉄系合金粉末4に、キャビティ部の圧力
軸方向断面に対して1平方cm当り200〜500kgfの圧力を加
える。これにより希土類鉄系合金粉末4の個々の粒子間
のポテンシャルエネルギーが低下する。
Next, the operation of the present invention will be described with reference to the mold having the above configuration. First, under reduced pressure of 0.1 to 0.001 Torr, all the electrodes 2a, 2b are pulled from both end surfaces of the pair of heat compensating members 3a, 3b.
A pressure of 200 to 500 kgf per square centimeter is applied to the rare-earth iron-based alloy powder 4 with respect to the cross section in the pressure axis direction of the cavity portion through. Thereby, the potential energy between the individual particles of the rare-earth iron-based alloy powder 4 decreases.

【0017】次に希土類鉄系合金粉末4に対してパルス
通電処理を行う。パルス通電処理には、粉末表面に付着
している汚染物質や低分子化合物と反応するエッチング
効果があり、これにより希土類鉄系合金粉末4の個々の
粉末間のポテンシャルエネルギーがさらに低下する。
Next, a pulse energization process is performed on the rare-earth iron-based alloy powder 4. The pulse current treatment has an etching effect of reacting with contaminants and low molecular compounds adhering to the powder surface, thereby further reducing the potential energy between the individual rare earth iron-based alloy powders 4.

【0018】前記のようなパルス通電処理ののち、一定
の真空雰囲気と希土類鉄系合金粉末4への圧力を維持し
たまま、一対の熱補償部材3a,3bの両端面より、全
電極2a,2bを介して希土類鉄系合金粉末4に、熱補
償部材3a,3bの、圧力軸方向断面積が全キャビティ
部の圧力軸方向断面積以下である部分3aa,3bbに
対して1平方cm当り250〜300Aの電流密度で通電を行う。
通電時の各部材の昇温速度は、1W=0.2389(cal/sec)、I:
通電電流(A)、R:電気抵抗(Ω)、C:熱容量(cal/℃)、ρ:
比抵抗(Ωcm)、s:比重、c:比熱(cal/℃g)、S:圧力軸方
向断面積(cm2)としたときに、ΔT/Δt=0.2389I2R/C=
(0.2389ρ/sc)(I/S)2で与えられる。即ち、昇温速度
ΔT/Δtは、(I/S)2ρ/scとなり、電流密度(I/S)の二乗
と比抵抗ρ(Ωcm)に比例し、比熱c(cal/℃g)と比重に反
比例する。ここで、熱補償部材3a,3bに圧力軸方向
断面積が全キャビティ部の圧力軸方向断面積以下である
部分3aa,3bbを設けることで、当該部での電流密
度をキャビティ部よりも相対的に高め、当該部の昇温速
度をキャビティ部よりも速くすることができ、接触抵抗
などの影響によって複数のキャビティ群に対して必ずし
も均一に分流しない通電電流に起因する各キャビティ中
の粉末のジュール熱に基づく昇温速度のばらつきを、一
対の熱補償部材3a,3bのジュール熱による伝熱で補
償することができる。その結果、各キャビティ中の希土
類鉄系合金粉末4の均一な昇温速度を確保することがで
きる。上記のような通電によるジュール熱、特に熱補償
部材3a,3bのジュール熱の伝熱によりその昇温速度
を律則された各キャビティ中の希土類鉄系合金粉末4
は、加熱圧着されてバルク状永久磁石となる。なお、磁
場配向を行った場合でも、通電時の昇温で熱消磁される
ため、バルク状となった永久磁石の脱磁処理は不必要で
ある。
After the above-described pulse energizing treatment, while maintaining a constant vacuum atmosphere and pressure on the rare-earth iron-based alloy powder 4, all the electrodes 2a, 2b are applied from both end surfaces of the pair of heat compensating members 3a, 3b. To the rare-earth iron-based alloy powder 4 through the heat-compensating members 3a, 3b with respect to the portions 3aa, 3bb whose cross-sectional area in the pressure axis direction is equal to or less than the cross-sectional area in the pressure axis direction of all cavities. Energize at a current density of 300A.
The temperature rise rate of each member when energized is 1W = 0.2389 (cal / sec), I:
Current (A), R: Electric resistance (Ω), C: Heat capacity (cal / ° C), ρ:
When specific resistance (Ωcm), s: specific gravity, c: specific heat (cal / ° C g), and S: cross-sectional area in the pressure axis direction (cm 2 ), ΔT / Δt = 0.2389I 2 R / C =
(0.2389ρ / sc) (I / S) 2 That is, the heating rate ΔT / Δt is (I / S) 2ρ / sc, which is proportional to the square of the current density (I / S) and the specific resistance ρ (Ωcm), and the specific heat c (cal / ° C.g) and the specific gravity. Is inversely proportional to Here, by providing the heat compensating members 3a and 3b with portions 3aa and 3bb whose cross-sectional area in the pressure axis direction is smaller than the cross-sectional area in the pressure axis direction of the entire cavity portion, the current density in the corresponding portions is relatively higher than that in the cavity portion. And the temperature rise rate of the part can be made faster than that of the cavity part, and the joule of the powder in each cavity caused by a current flowing through the plurality of groups of cavities that is not always uniformly distributed due to the influence of contact resistance and the like. Variations in the heating rate due to heat can be compensated for by the heat transfer of the pair of heat compensating members 3a and 3b due to Joule heat. As a result, a uniform heating rate of the rare-earth iron-based alloy powder 4 in each cavity can be secured. The rare-earth iron-based alloy powder 4 in each cavity whose heating rate is controlled by the transfer of Joule heat due to the above-described energization, particularly the heat transfer of the Joule heat of the heat compensating members 3a and 3b.
Are thermocompressed to form a bulk permanent magnet. Even when the magnetic field orientation is performed, thermal demagnetization is performed by increasing the temperature during energization, so that demagnetization of the bulk permanent magnet is unnecessary.

【0019】通電電流遮断後の圧縮圧力と真空雰囲気の
維持は、少なくとも非導電性セラミックス製のダイの外
表面温度が冷却に転じるまで行う。ここでダイが非導電
性であることは熱伝導率が小さいことにもなり、電流や
熱の流れを抑制し、熱効率を高めることに効果的であ
る。
The maintenance of the compression pressure and the vacuum atmosphere after the interruption of the conduction current is performed at least until the temperature of the outer surface of the die made of non-conductive ceramics starts to cool. Here, the fact that the die is non-conductive means that the thermal conductivity is small, which is effective in suppressing the flow of current and heat and increasing the thermal efficiency.

【0020】さらに詳しく説明すると、等方性希土類鉄
系合金粉末(商品名MQP-C,Magnequench International I
nc.製)と、異方性希土類鉄系合金粉末(商品名MQA-T,Mag
nequench International Inc.製)を混合、適宜秤量し、
図1の構成のキャビティ群に充填した。図1において1
は直径25mmの貫通孔を設けた非導電性セラミックスから
なるダイ、2a,2bは非導電性セラミックスからなる
ダイ1の貫通孔に対応する一対の電極である。ただし、
ここではダイおよび電極対の数nは6としており、全キ
ャビティ部の圧力軸方向断面積は29.5cm2となる。ダイ
1の材質はサイアロン、電極2a,2bの材質は超硬合
金(JIS H5501 G5)としている。電極2a,2bのキャビ
テイ側の面には、窒化ボロン粉末層を設けた。3a,3
bは、一対の電極2a,2bと非導電性セラミックスか
らなるダイ1の貫通孔とで6個の複数のキャビティを構
成した全電極の反キャビテイ面に配置した一対の熱補償
部材であり、圧力軸方向の断面積が10平方cmである部分
を設けた。熱補償部材の材質はグラファイトである。
More specifically, an isotropic rare earth iron-based alloy powder (trade name: MQP-C, Magnequench International I
nc.) and anisotropic rare earth iron-based alloy powder (trade name MQA-T, Mag
nequench International Inc.), weigh appropriately,
The cavity group having the configuration shown in FIG. 1 was filled. In FIG. 1, 1
Is a die made of non-conductive ceramic provided with a through-hole having a diameter of 25 mm, and 2a and 2b are a pair of electrodes corresponding to the through-hole of the die 1 made of non-conductive ceramic. However,
Here, the number n of the die and the electrode pair is 6, and the sectional area in the pressure axis direction of all the cavity portions is 29.5 cm 2 . The material of the die 1 is sialon, and the material of the electrodes 2a and 2b is a cemented carbide (JIS H5501 G5). A boron nitride powder layer was provided on the surfaces of the electrodes 2a and 2b on the cavity side. 3a, 3
b denotes a pair of heat compensating members arranged on the anti-cavity surfaces of all the electrodes comprising a pair of electrodes 2a and 2b and a through-hole of the die 1 made of non-conductive ceramics and forming a plurality of six cavities. A portion having an axial sectional area of 10 cm 2 was provided. The material of the heat compensating member is graphite.

【0021】図2は図1のA-B断面図であり、4が希土
類鉄系合金粉末である。希土類鉄系合金粉末4には磁場
配向を施し、異方性希土類鉄系合金粉末の磁化容易軸を
揃えた。次に、上記成形型を0.1〜0.001Torrの減圧雰囲
気におき、一対の熱補償部材3a,3bおよび全電極を
介して、キャビティ中の粉末4の圧力軸方向断面に対し
て1平方cm当り250kgfの圧力で圧縮した。そして減圧雰
囲気と圧縮圧力を一定に維持したまま熱補償部材3a,
3bおよび全電極を介してキャビティ中の粉末4にパル
ス幅300msec、10Vの直流電圧を90sec印加することによ
りパルス通電処理を行った。続いて減圧雰囲気と圧縮圧
力を維持したまま、熱補償部材3a,3bの圧力軸方向
断面積が全キャビティ部の圧力軸方向断面積以下である
部分3aa,3bbの断面積に対して1平方cm当り300A
の電流密度で直流通電を行うとともに、圧力軸方向に加
圧圧縮されるキャビティ中の粉末4の変位量を検出し、
それを時間微分した歪み速度を連続的に測定した。歪み
速度はキャビティ中の粉末4の昇温に従って増加する
が、キャビティ中の粉末4の圧密化が進行するにつれて
減少してゆく。歪み速度が減少してゆく過程において、
歪み速度0.003〜0.006mm/secの範囲で通電電流を遮断
し、非導電性セラミックスからなるダイ1の外表面温度
が400℃以下となったところで、減圧雰囲気と圧縮圧力
を解除し、適宜冷却後磁石を離型した。この操作によっ
て、希土類鉄系合金粉末4から直接直径25mm、高さ7.4m
mのバルク状永久磁石6個を得た。
FIG. 2 is a cross-sectional view taken along the line AB of FIG. 1, and reference numeral 4 denotes a rare earth iron-based alloy powder. The rare earth iron-based alloy powder 4 was subjected to magnetic field orientation, and the axes of easy magnetization of the anisotropic rare earth iron-based alloy powder were aligned. Next, the mold is placed in a reduced-pressure atmosphere of 0.1 to 0.001 Torr, and a pressure of 250 kgf per square centimeter with respect to a section in the pressure axis direction of the powder 4 in the cavity is passed through the pair of heat compensating members 3a and 3b and all electrodes. And compressed. Then, the heat compensating member 3a,
Pulse current was applied by applying a DC voltage of 10 mV and a pulse width of 300 msec to the powder 4 in the cavity through the electrode 3b and all the electrodes for 90 seconds. Subsequently, while maintaining the decompressed atmosphere and the compression pressure, the pressure compensating members 3a and 3b have a sectional area in the pressure axis direction smaller than the sectional area in the pressure axis direction of all the cavities by 1 cm 2 with respect to the sectional area of the portions 3aa and 3bb. 300A per
DC current is applied at the current density of, and the displacement amount of the powder 4 in the cavity that is pressurized and compressed in the pressure axis direction is detected,
The strain rate obtained by differentiating the time was continuously measured. The strain rate increases as the temperature of the powder 4 in the cavity increases, but decreases as the powder 4 in the cavity becomes more compact. In the process of decreasing the strain rate,
When the current is cut off at a strain rate of 0.003 to 0.006 mm / sec and the outer surface temperature of the die 1 made of non-conductive ceramics becomes 400 ° C. or less, the decompression atmosphere and the compression pressure are released, and after cooling as appropriate. The magnet was released. By this operation, the diameter is 25mm and the height is 7.4m directly from the rare earth iron based alloy powder 4.
m bulk permanent magnets were obtained.

【0022】なお、上述のような構成をとれば、直流通
電時の電流値は、熱補償部材3a,3bの圧力軸方向断
面積が全キャビティ部の圧力軸方向断面積以下である部
分3aa,3bbの断面積10平方cmと電流密度の積とな
り、2500〜3000Aとなる。しかし、本発明によらない場
合は、直流通電時の電流値は、全キャビティ部の圧力軸
方向断面積と電流密度の積となり、7375〜8850Aとな
る。
With the above-described configuration, the current value at the time of direct current is applied to the portions 3aa, 3aa, 3a, 3b in which the cross-sectional area in the pressure axis direction of the heat compensating members 3a, 3b is smaller than the cross-sectional area in the pressure axis direction of all cavities. The product of the cross-sectional area of 3 bb of 10 cm 2 and the current density is 2500 to 3000 A. However, when the present invention is not applied, the current value at the time of direct current application is the product of the cross-sectional area in the pressure axis direction of all the cavity portions and the current density, and is 7375 to 8850A.

【0023】このように、本発明では熱補償部材3a,
3bの圧力軸方向断面積が全キャビティ部の圧力軸方向
断面積以下である部分3aa,3bbの断面積に対して
1平方cm当り250〜300Aの密度での直流通電ですみ、必要
とする電源の電流容量が従来よりも小さくてすむために
設備コストを抑えることができ、また消費電力を抑える
ことができる。
As described above, in the present invention, the heat compensating members 3a, 3a
The sectional area of the portions 3aa and 3bb whose sectional area in the pressure axis direction of 3b is smaller than the sectional area in the pressure axis direction of all the cavities
DC current at a density of 250 to 300 A per square centimeter is sufficient, and the required current capacity of the power supply can be smaller than before so that equipment costs can be reduced and power consumption can be reduced.

【0024】(実施例2)等方性希土類鉄系合金粉末
(商品名MQP-C,Magnequench International Inc.製)と、
異方性希土類鉄系合金粉末(商品名MQA-T,Magnequench I
nternational Inc.製)を混合、適宜秤量し、図1の構成
のキャビティ群に充填した。図1において1は直径25mm
の貫通孔を設けた非導電性セラミックスからなるダイ、
2a,2bは非導電性セラミックスからなるダイ1の貫
通孔に対応する一対の電極である。ただし、ここではダ
イおよび電極対の数nは6としており、全キャビティ部
の圧力軸方向断面積は29.5平方cmとなる。ダイ1の材質
はサイアロン、電極2a,2bの材質は超硬合金(JIS H
5501 G5)とした。電極2a,2bのキャビテイ側の面に
は、窒化ボロン粉末層を設けた。3a,3bは、一対の
電極2a,2bと非導電性セラミックスからなるダイ1
の貫通孔とで6個のキャビティを構成した電極2a,2
bの反キャビテイ面に配置した一対の熱補償部材であ
り、圧力軸方向の断面積が10平方cmである部分3aa,
3bbを設けた。熱補償部材3a,3bの圧力軸方向断
面積が全キャビティ部の圧力軸方向断面積以下である部
分3aa,3bbの材質は固有抵抗は1.55mΩcmのグラ
ファイトであり、その他の部分は固有抵抗25×10μΩcm
の94W-4Ni-2Cuのタングステン合金からなる。
(Example 2) Isotropic rare earth iron-based alloy powder
(Trade name MQP-C, manufactured by Magnequench International Inc.)
Anisotropic rare earth iron-based alloy powder (trade name MQA-T, Magnequench I
nternational Inc.) was mixed, weighed appropriately, and filled in the cavity group having the configuration shown in FIG. In FIG. 1, 1 is 25 mm in diameter.
A die made of non-conductive ceramics provided with through holes of
2a and 2b are a pair of electrodes corresponding to the through holes of the die 1 made of non-conductive ceramics. However, here, the number n of the die and the electrode pair is 6, and the sectional area in the pressure axis direction of all the cavity portions is 29.5 square cm. The material of the die 1 is sialon, and the material of the electrodes 2a and 2b is a cemented carbide (JIS H
5501 G5). A boron nitride powder layer was provided on the surfaces of the electrodes 2a and 2b on the cavity side. 3a and 3b are a pair of electrodes 2a and 2b and a die 1 made of non-conductive ceramics.
Electrodes 2a, 2a comprising six cavities with
b, a pair of heat compensating members arranged on the anti-cavity surface, and a portion 3aa having a sectional area of 10 square cm in the pressure axis direction.
3bb was provided. The material of the portions 3aa and 3bb in which the cross-sectional area in the pressure axis direction of the heat compensating members 3a and 3b is equal to or smaller than the cross-sectional area in the pressure axis direction of the entire cavity portion is made of graphite having a specific resistance of 1.55 mΩcm. 10μΩcm
94W-4Ni-2Cu tungsten alloy.

【0025】図2は図1のA-B断面図であり、4が希土
類鉄系合金粉末である。次に、上記成形型を0.1〜0.001
Torrの減圧雰囲気におき、一対の熱補償部材3a,3
b、全電極3a,2bを介して、キャビティ中の粉末4
の圧力軸方向断面に対して1平方cm当り250kgfの圧力で
圧縮した。そして減圧雰囲気と圧縮圧力を一定に維持し
たまま熱補償部材3a,3bおよび全電極2a,2bを
介してキャビティ中の粉末4にパルス幅300msec、10Vの
直流電圧を90sec印加することによりパルス通電処理を
行った。続いて減圧雰囲気と圧縮圧力を維持したまま、
熱補償部材3a,3bの圧力軸方向断面積が全キャビテ
ィ部の圧力軸方向断面積以下である部分3aa,3bb
の断面積に対して1平方cm当り300Aの電流密度で直流通
電を行うとともに、圧力軸方向に加圧圧縮されるキャビ
ティ中の粉末4の変位量を検出し、それを時間微分した
歪み速度を連続的に測定した。歪み速度はキャビティ中
の粉末の昇温に従って増加するが、粉末の圧密化が進行
するにつれて減少してゆく。歪み速度が減少してゆく過
程において、歪み速度0.003〜0.006mm/secの範囲で通電
電流を遮断し、非導電性セラミックスからなるダイ1の
外表面温度が400℃以下となったところで、減圧雰囲気
と圧縮圧力を解除し、適宜冷却後磁石を離型した。
FIG. 2 is a cross-sectional view taken along the line AB in FIG. 1, and reference numeral 4 denotes a rare earth iron-based alloy powder. Next, the above mold is 0.1 to 0.001
A pair of heat compensating members 3a, 3
b, powder 4 in the cavity through all electrodes 3a, 2b
Was compressed at a pressure of 250 kgf per square cm with respect to the pressure axial section. Then, while maintaining the decompressed atmosphere and the compression pressure constant, the pulse current is applied by applying a DC voltage of 300 msec and 10 V for 90 sec to the powder 4 in the cavity through the heat compensating members 3a and 3b and all the electrodes 2a and 2b. Was done. Then, while maintaining the reduced pressure atmosphere and the compression pressure,
Parts 3aa, 3bb in which the cross-sectional area in the pressure axis direction of the heat compensating members 3a, 3b is smaller than the cross-sectional area in the pressure axis direction of all the cavities.
DC current is applied at a current density of 300 A per square cm with respect to the cross-sectional area of, and the amount of displacement of the powder 4 in the cavity that is compressed and compressed in the pressure axis direction is detected, and the strain rate obtained by differentiating it with time is calculated. Measured continuously. The strain rate increases with increasing temperature of the powder in the cavity, but decreases as the powder consolidation proceeds. In the process of decreasing the strain rate, the current was cut off within the strain rate range of 0.003 to 0.006 mm / sec, and when the outer surface temperature of the die 1 made of non-conductive ceramics became 400 ° C. or less, the reduced pressure atmosphere was applied. And the compression pressure was released, and after cooling as appropriate, the magnet was released.

【0026】この操作によって、希土類鉄系合金粉末4
から直接直径25mm、高さ7.4mmのバルク状永久磁石6個
を得た。なお、ここに示した構成をとれば、直流通電時
の通電時間は、実施例1よりも短縮されるとともに、実
施例1よりも熱補償部内の好ましくない温度むら、すな
わち圧力軸方向の温度差以外の温度むらを低減させるこ
とができた。また、熱補償部材の耐久性も向上した。
By this operation, the rare-earth iron-based alloy powder 4
Directly obtained six bulk permanent magnets having a diameter of 25 mm and a height of 7.4 mm. With the configuration shown here, the energization time during DC energization is shorter than in the first embodiment, and the unfavorable temperature unevenness in the heat compensator, ie, the temperature difference in the pressure axis direction, is lower than in the first embodiment. Temperature non-uniformity other than the above was able to be reduced. Further, the durability of the heat compensating member was also improved.

【0027】[0027]

【発明の効果】以上のように、請求項1に記載の発明は
熱補償部材に圧力軸方向断面積が全キャビティ部の圧力
軸方向断面積以下である部分を設けることで、直流通電
時に必要とする電流値を下げることができるとともに、
当該部での電流密度を全キャビティ部での電流密度より
も相対的に高め、通電時のジュール熱による昇温速度
を、キャビティ部に充填した粉末よりも速くし、接触抵
抗などの影響によって複数のキャビティ群に対して必ず
しも均一に分流しない通電電流に起因する各キャビティ
中の粉末昇温のばらつきを、一対の熱補償部材のジュー
ル熱による伝熱で補償し、バルク状永久磁石の品質を安
定させるという有利な作用を有する。
As described above, according to the first aspect of the present invention, when the heat compensating member is provided with a portion having a cross-sectional area in the pressure axis direction smaller than the cross-sectional area in the pressure axis direction of all the cavities, the heat compensating member is required for direct current application. And the current value
The current density in this part is relatively higher than the current density in all cavities, and the rate of temperature rise due to Joule heat during energization is faster than that of the powder filled in the cavities. Variations in powder temperature rise in each cavity due to a current flow that is not necessarily evenly distributed to the group of cavities are compensated by heat transfer by Joule heat of a pair of thermal compensation members, stabilizing the quality of the bulk permanent magnet Has the advantageous effect of causing

【0028】請求項2記載の発明は、熱補償部材のう
ち、圧力軸方向断面積が全キャビティ部の圧力軸方向断
面積以下である部分の材質の比抵抗を、他の部分よりも
高くすることで、当該部での昇温速度を速くするととも
に、熱補償部材内での好ましくない温度むらを低減さ
せ、バルク状永久磁石の品質を安定させるとともに、熱
補償部材の耐久性を改善するという有利な効果が得られ
る。
According to a second aspect of the present invention, in the heat compensating member, the specific resistance of the material of a portion having a cross-sectional area in the pressure axis direction equal to or smaller than the cross-sectional area in the pressure axis direction of all the cavities is made higher than the other portions. By doing so, it is possible to increase the rate of temperature rise in the part, reduce undesirable temperature unevenness in the heat compensating member, stabilize the quality of the bulk permanent magnet, and improve the durability of the heat compensating member. An advantageous effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる型の構成例を示す図FIG. 1 shows a configuration example of a mold according to the present invention.

【図2】図1のA-B断面図FIG. 2 is a cross-sectional view taken along a line AB in FIG.

【符号の説明】[Explanation of symbols]

1 ダイ 2a,2b 電極 3a,3b 熱補償部材 3aa,3bb 圧力軸方向断面積が全キャビティ部の
圧力軸方向断面積以下である部分 4 希土類鉄系合金粉末
DESCRIPTION OF SYMBOLS 1 Die 2a, 2b Electrode 3a, 3b Heat compensating member 3aa, 3bb Part whose cross-sectional area in the pressure axis direction is less than or equal to cross-sectional area in the pressure axis direction of all cavities 4 Rare earth iron-based alloy powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 正美 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masami Wada 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも1つの貫通孔を設けた非導電性
セラミックからなる1つ以上のダイとダイに対応する一
対の電極とでキャビティ部を形成し、該キャビティ部
に、必要に応じて結合剤を添加した希土類鉄系合金粉末
を充填し、必要に応じてキャビティ部に充填した粉末を
磁場配向したのち、一対の熱補償部材を介して全電極の
圧力軸方向断面積に一軸の圧力を加え、通電し、通電に
より発生する熱補償部材のジュール熱を全電極を介して
粉末へ伝熱して粉末を加熱圧着し、バルク状永久磁石と
する希土類鉄系磁石の製造方法であって、熱補償部材に
圧力軸方向断面積が全キャビティ部の圧力軸方向断面積
以下である部分を設けたことを特徴とする希土類鉄系磁
石の製造方法。
1. A cavity is formed by at least one die made of non-conductive ceramic having at least one through hole and a pair of electrodes corresponding to the die, and coupled to the cavity as required. After adding the rare-earth iron-based alloy powder to which the additive has been added and, if necessary, orienting the powder filled in the cavity in a magnetic field, a uniaxial pressure is applied to the cross-sectional area in the pressure axis direction of all the electrodes via a pair of heat compensating members. In addition, a method of manufacturing a rare earth iron-based magnet, which is energized, transfers the Joule heat of the heat compensating member generated by the energization to the powder through all the electrodes, heat-compresses the powder, and forms a bulk permanent magnet, A method of manufacturing a rare-earth iron-based magnet, wherein a portion having a sectional area in the pressure axis direction equal to or smaller than a sectional area in the pressure axis direction of all cavities is provided in the compensating member.
【請求項2】熱補償部材のうち、圧力軸方向断面積がキ
ャビティ部の圧力軸方向断面積以下である部分の材質の
比抵抗を、他の部分よりも高くしたことを特徴とする請
求項1記載の希土類鉄系磁石の製造方法。
2. The heat compensating member, wherein a portion of the material having a sectional area in the pressure axis direction smaller than that of the cavity in the pressure axis direction has a higher specific resistance than other parts. 2. The method for producing a rare earth iron-based magnet according to 1.
JP23933997A 1997-09-04 1997-09-04 Manufacture of rare-earths and iron permanent magnet Pending JPH1187163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23933997A JPH1187163A (en) 1997-09-04 1997-09-04 Manufacture of rare-earths and iron permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23933997A JPH1187163A (en) 1997-09-04 1997-09-04 Manufacture of rare-earths and iron permanent magnet

Publications (1)

Publication Number Publication Date
JPH1187163A true JPH1187163A (en) 1999-03-30

Family

ID=17043271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23933997A Pending JPH1187163A (en) 1997-09-04 1997-09-04 Manufacture of rare-earths and iron permanent magnet

Country Status (1)

Country Link
JP (1) JPH1187163A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104511626A (en) * 2014-11-27 2015-04-15 苏州速腾电子科技有限公司 Drill bit machining die
CN105562692A (en) * 2016-03-03 2016-05-11 中国科学院物理研究所 Sintering mold
CN109556944A (en) * 2018-10-26 2019-04-02 中国航发北京航空材料研究院 A kind of high throughput mechanical testing equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104511626A (en) * 2014-11-27 2015-04-15 苏州速腾电子科技有限公司 Drill bit machining die
CN105562692A (en) * 2016-03-03 2016-05-11 中国科学院物理研究所 Sintering mold
CN109556944A (en) * 2018-10-26 2019-04-02 中国航发北京航空材料研究院 A kind of high throughput mechanical testing equipment
CN109556944B (en) * 2018-10-26 2021-04-20 中国航发北京航空材料研究院 High-flux mechanical test device

Similar Documents

Publication Publication Date Title
US4710239A (en) Hot pressed permanent magnet having high and low coercivity regions
JP2780429B2 (en) Rare earth-iron magnet manufacturing method
JP2013219353A (en) Manufacturing method of sintered magnet controlled in structure and component distribution
CA1244322A (en) Hot pressed permanent magnet having high and low coercivity regions
CN102766835B (en) Method for preparing high performance SmCo permanent magnet material
US5178691A (en) Process for producing a rare earth element-iron anisotropic magnet
EP0392799B1 (en) Method and apparatus for producing anisotropic rare earth magnet
US20120098162A1 (en) Rapid hot pressing using an inductive heater
EP0378698B1 (en) Method of producing permanent magnet
JPH1187163A (en) Manufacture of rare-earths and iron permanent magnet
US5201962A (en) Method of making permanent magnet containing rare earth metal and ferrous component
JP4714839B2 (en) Method for producing high-performance magnetic material and sintered body thereof
JP3510384B2 (en) Manufacturing method of thermoelectric conversion element
JPH06302417A (en) Permanent magnet and its manufacture
JP2827457B2 (en) Manufacturing method of rare earth iron based magnet
JPH01171209A (en) Manufacture of permanent magnet
JP2007123467A (en) Method for manufacturing anisotropic magnet
JP2765198B2 (en) Rare earth-iron magnet manufacturing method
JP2946676B2 (en) Rare earth-iron based hollow magnet manufacturing method
JPH05199686A (en) Laminated-magnet type rotor for motor
JP2003229306A (en) Manufacturing method of rare earth iron based hollow thick film magnet and magnet motor
JPH01111303A (en) Manufacture of rare earth magnet
JPH04198402A (en) Production and apparatus for magnet element
JP4154787B2 (en) Hybrid sintering apparatus and method
JPH04329602A (en) Manufacture of composite magnet