JPH1187067A - Hole transfer material having silacyclopentadiene ring - Google Patents

Hole transfer material having silacyclopentadiene ring

Info

Publication number
JPH1187067A
JPH1187067A JP9257730A JP25773097A JPH1187067A JP H1187067 A JPH1187067 A JP H1187067A JP 9257730 A JP9257730 A JP 9257730A JP 25773097 A JP25773097 A JP 25773097A JP H1187067 A JPH1187067 A JP H1187067A
Authority
JP
Japan
Prior art keywords
group
hole transporting
layer
organic electroluminescent
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9257730A
Other languages
Japanese (ja)
Other versions
JP3834954B2 (en
Inventor
Manabu Uchida
内田  学
Yusho Izumisawa
勇昇 泉澤
Kenji Furukawa
顕治 古川
Kohei Tamao
皓平 玉尾
Shigehiro Yamaguchi
茂弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP25773097A priority Critical patent/JP3834954B2/en
Publication of JPH1187067A publication Critical patent/JPH1187067A/en
Application granted granted Critical
Publication of JP3834954B2 publication Critical patent/JP3834954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic electroluminescent element for emitting light at a high efficiency at a low voltage by containing a specified silacyclopentadiene derivative including a part having hole transporting ability in a ring and hard to be formed with an exciting complex and having excellent hole transporting ability in a layer to be sandwiched between electrodes. SOLUTION: Silacyclopentadiene derivative expressed with a formula (in the formula, X, Y mean saturated or un-saturated hydrocarbon group, alkoxy group, alkenyloxy group, alkynyloxy group, hydroxy group, aryl group, hetero ring, ring structure formed by bonding X to Y, and Z1 , Z2 mean a nitrogen atom, three or more aromacyclic group, and R1 , R2 mean hydrogen, alkyl group, aryl group, heterocyclic group, cyclic condensation structure) is used as a hole transporting material of an organic electroluminescent element. In the case where an organic electroluminescent element has a hole transporting layer, the described hole transporting material is desirably contained in the hole transfer layer of the organic electroluminescent element. This silacyclopentadiene derivative shows strong fluorescence and has electron transfer ability and it can be efficiently used even in the single layer structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機電界発光素子
などに使用できる、シラシクロペンタジエン誘導体を用
いた正孔輸送材料及び該正孔材料を用いた正孔電界発光
素子に関する。
The present invention relates to a hole transport material using a silacyclopentadiene derivative and a hole electroluminescent device using the hole material, which can be used for an organic electroluminescent device and the like.

【0002】[0002]

【従来の技術】近年、これまでにない高輝度な平面ディ
スプレイの候補として有機電界発光素子(以後、有機E
L素子と略する)が注目され、その研究開発が活発化し
ている。有機EL素子の構造は、発光色素を含む有機発
光層を2つの電極で挟んでおり、陽極から注入された正
孔と陰極から注入された電子とが、該発光層中で再結合
して光を発する。有機EL素子に用いられる有機材料に
は、低分子材料と高分子材料があり、これらを用いた有
機EL素子の発光は共に高輝度である。
2. Description of the Related Art In recent years, an organic electroluminescent device (hereinafter referred to as an organic electroluminescent device) has been proposed as a candidate for a flat display with high brightness.
(Abbreviated as L element)), and its research and development has been activated. The structure of an organic EL element is such that an organic light emitting layer containing a light emitting dye is sandwiched between two electrodes, and holes injected from an anode and electrons injected from a cathode are recombined in the light emitting layer to generate light. Emits. The organic material used for the organic EL element includes a low molecular weight material and a high molecular weight material, and the light emission of the organic EL element using these materials has high luminance.

【0003】有機EL素子には2つのタイプがある。1
つは、タン(C.W.Tang)らによって発表された、蛍光色
素を、電子および/もしくは正孔、を輸送する電荷輸送
層中に添加して有機発光層としたもの(ジャーナル オ
ブ ジ アプライド フィジックス(J.Appl.Phys.),65,
3610(1989))であり、もう1つは、有機発光層に蛍光色
素を単独に用いたものである(例えば、ジャパニーズ
ジャーナル オブ ジアプライド フィジックス(Jpn.
J.Appl.Phys.),27,L269(1988)に記載されている素
子)。有機発光層に蛍光色素を単独に用いた有機EL素
子は、さらに3つのタイプに分けられる。1つ目は、有
機発光層を電荷の1つである正孔のみを輸送する正孔輸
送層及び電子のみを輸送する電子輸送層とで挟んで三層
としたもの、2つ目は、正孔輸送層と有機発光層とを積
層して二層としたもの、3つ目は、電子輸送層と有機発
光層とを積層して二層としたものである。また、有機E
L素子は、二層もしくは三層にすることにより、発光効
率が向上することが知られている。
[0003] There are two types of organic EL elements. 1
First, a fluorescent dye added to a charge transporting layer for transporting electrons and / or holes to form an organic light-emitting layer disclosed by CWTang et al. (Journal of the Applied Physics (J. Appl.Phys.), 65,
3610 (1989)), and the other uses a fluorescent dye alone in the organic light emitting layer (for example, Japanese)
Journal of Gia Pride Physics (Jpn.
J. Appl. Phys.), 27, L269 (1988)). Organic EL devices using a fluorescent dye alone in the organic light emitting layer are further divided into three types. The first is that the organic light emitting layer is a three-layer structure sandwiched between a hole transport layer that transports only holes, which is one of the charges, and an electron transport layer that transports only electrons. A hole transport layer and an organic light emitting layer are laminated to form two layers, and a third is a layer in which an electron transport layer and an organic light emitting layer are laminated to form two layers. Organic E
It is known that the luminous efficiency is improved by forming the L element in two or three layers.

【0004】有機EL素子に使用される正孔輸送材料
は、トリフェニルアミン誘導体を中心にして多種多様の
材料が知られている。しかしながら、これらの材料は同
時に使われる発光色素もしくは電子輸送材料と励起錯体
を形成し、素子の効率を低下させる欠点を有していた。
例えば、N,N'-シ゛フェニル-N,N'-シ゛(3-メチルフェニル)-4,4'-シ゛アミノヒ
゛フェニル(以後、TPDと略する)を、有機EL素子に使
用した場合、多くの発光色素及び電子輸送材料と励起錯
体を形成し、使用する発光色素及び電子輸送材料が制限
されるという問題点があった。このような電子輸送材料
の具体例としては、2-(4-ヒ゛フェニルイル)-5-(4-tert-フ゛チルフェニ
ル)-1,3,4-オキサシ゛アソ゛ール(以後、PBDと略する)などが知
られている。有機EL素子に用いられる正孔輸送材料の
特性としては、何よりもまず励起錯体を形成し難い必要
があり、なおかつ、正孔輸送能に優れている必要があ
る。
[0004] As the hole transporting material used in the organic EL device, various kinds of materials are known, centering on triphenylamine derivatives. However, these materials have a drawback that they form an exciplex with a luminescent dye or an electron transporting material used at the same time, and reduce the efficiency of the device.
For example, when N, N'-diphenyl-N, N'-di (3-methylphenyl) -4,4'-diaminodiphenyl (hereinafter abbreviated as TPD) is used in an organic EL device, a large amount of light is emitted. There is a problem that an exciplex is formed with the dye and the electron transport material, and the luminescent dye and the electron transport material to be used are limited. Specific examples of such an electron transport material include 2- (4-diphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (hereinafter abbreviated as PBD). It has been known. Among the characteristics of the hole transport material used in the organic EL device, first of all, it is necessary that it is difficult to form an exciplex and that the hole transport material has excellent hole transport ability.

【0005】一方、シラシクロペンタジエン誘導体の最
近の報告例としては、特開平7-179477号公報に示されて
いるように、π電子共役系有機ポリマーへの応用を意図
した反応性中間体に関するものに限定されている。ま
た、シラシクロペンタジエンとチオフェンとの共重合体
の例は、特開平6-166746号公報及び特開平9-87616号公
報に示されているが、これらの化合物は正孔輸送能が低
いという欠点を有するため、有機EL素子の正孔輸送材
料としては不向きであるという問題点があった。さら
に、DE4442050に示されているアミノ基の付いたシラシ
クロペンタジエン誘導体は、同時に使われる発光色素、
電子輸送材料などとの間に、素子の効率を低下させる原
因となる励起錯体を形成しやすく、使用できる発光色素
及び電子輸送材料が制限される欠点を有していた。
On the other hand, a recent report of a silacyclopentadiene derivative relates to a reactive intermediate intended for application to a π-electron conjugated organic polymer, as disclosed in Japanese Patent Application Laid-Open No. Hei 7-197977. Is limited to Further, examples of copolymers of silacyclopentadiene and thiophene are disclosed in JP-A-6-166746 and JP-A-9-87616, but these compounds have a disadvantage that they have low hole transporting ability. Therefore, there is a problem that it is not suitable as a hole transport material of an organic EL device. Furthermore, the silacyclopentadiene derivative with an amino group shown in DE4442050 is used as a luminescent dye,
An exciplex which causes a reduction in the efficiency of the device is easily formed with an electron transporting material or the like, and there is a disadvantage that the luminescent dye and the electron transporting material that can be used are limited.

【0006】また、シラン誘導体を有機EL素子に利用
した例として、特開平5-343184号公報、特開平6-124784
号公報、特開平6-234968号公報、特開平6-293778号公
報、特開平6-325871号公報、特開平7-11244号公報があ
るが、これらに示されている有機シラン化合物にはシラ
シクロペンタジエン環は含まれていない。さらに、これ
らのシラン化合物についても、実際に使用されている例
は、正孔輸送材料もしくは発光層と、陰極との間の密着
性向上のための界面層としての使用に限定されていて、
正孔輸送材料として使用されることは全く知られていな
かった。すでに、本発明者らは、特開平9-194487号公報
開示のように、シラシクロペンタジエン誘導体が、電子
輸送材料に優れた性能を持つことを見出していた。
Further, as examples in which a silane derivative is used for an organic EL device, see Japanese Patent Application Laid-Open Nos. 5-343184 and 6-124784.
JP-A-6-234968, JP-A-6-293778, JP-A-6-325871, and JP-A-7-11244. No cyclopentadiene ring is included. Furthermore, examples of these silane compounds that are actually used are limited to use as an interface layer for improving adhesion between a hole transporting material or a light emitting layer and a cathode,
It has never been known to be used as a hole transport material. The present inventors have already found that a silacyclopentadiene derivative has excellent performance as an electron transport material as disclosed in Japanese Patent Application Laid-Open No. 9-94487.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、低電
圧、高発光効率な有機EL素子の基になる正孔輸送材料
を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hole transporting material which is a base of an organic EL device having a low voltage and a high luminous efficiency.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者らは、
鋭意検討した結果、シラシクロペンタジエン誘導体を正
孔輸送材料に使用した場合、低電圧、高発光効率な有機
EL素子を得ることができることを見いだし、本発明を
完成した。すなわち、本発明は、下記(1)から(3)
で構成される。
Means for Solving the Problems Accordingly, the present inventors have:
As a result of intensive studies, they have found that when a silacyclopentadiene derivative is used as a hole transport material, an organic EL device having low voltage and high luminous efficiency can be obtained, and the present invention has been completed. That is, the present invention provides the following (1) to (3)
It consists of.

【0009】(1)下記化2で表される化合物を用いる
ことを特徴とする正孔輸送材料。
(1) A hole transport material characterized by using a compound represented by the following chemical formula (2).

【化2】 [式中、X及びYは、それぞれ独立に飽和もしくは不飽
和の炭化水素基、アルコキシ基、アルケニルオキシ基、
アルキニルオキシ基、ヒドロキシ基、置換もしくは無置
換のアリール基、置換もしくは無置換のヘテロ環、又は
XとYが結合して飽和もしくは不飽和の環を形成した構
造であり、Z1及びZ2は、それぞれ独立に少なくとも1
個以上の窒素原子、及び少くとも3個の芳香環を有する
基であり、R1及びR2は、それぞれ独立に水素、置換も
しくは無置換のアルキル基、アリール基、ヘテロ環基、
又は置換もしくは無置換の環が縮合した構造を示す] (2)上記(1)記載の正孔輸送材料が含まれているこ
とを特徴とする有機電界発光素子。 (3)正孔輸送層を有し、この正孔輸送層に上記(1)
記載の正孔輸送材料が含まれていることを特徴とする有
機電界発光素子。
Embedded image [Wherein, X and Y each independently represent a saturated or unsaturated hydrocarbon group, an alkoxy group, an alkenyloxy group,
An alkynyloxy group, a hydroxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocycle, or a structure in which X and Y are combined to form a saturated or unsaturated ring, and Z 1 and Z 2 are , Each independently at least one
R 1 and R 2 are each independently a hydrogen, a substituted or unsubstituted alkyl group, an aryl group, a heterocyclic group,
Or a structure in which a substituted or unsubstituted ring is condensed.] (2) An organic electroluminescent device comprising the hole transport material according to (1). (3) having a hole transport layer;
An organic electroluminescent device comprising the hole transporting material according to claim 1.

【0010】[0010]

【発明の実施の形態】本発明で用いられるシラシクロペ
ンタジエン誘導体の例としては、1,1-シ゛メチル-2,5-ヒ゛ス(4-
N,N-シ゛フェニルアニリノ)-3,4-シ゛フェニルシラシクロヘ゜ンタシ゛エン(以後、TP
ASと略する)、1,1-シ゛メチル-2,5-ヒ゛ス(3-N,N-シ゛フェニルアニリ
ノ)-3,4-シ゛フェニルシラシクロヘ゜ンタシ゛エン、1,1-シ゛メチル-2,5-ヒ゛ス{4-N-
(1-ナフチル)-N-フェニルアニリノ}-3,4-シ゛フェニルシラシクロヘ゜ンタシ゛エン、1,1-
シ゛メチル-2,5-ヒ゛ス(2-N,N-シ゛エチルアニリノ)-3,4-シ゛フェニルシラシクロヘ゜ンタ
シ゛エン、1,1-シ゛イソフ゜ロヒ゜ル-2,5-ヒ゛ス{4-N-(3-メチルフェニル)-N-フェニ
ルアニリノ}-3,4-シ゛フェニルシラシクロヘ゜ンタシ゛エン、1,1,3,4-テトラフェニル-2,
5-ヒ゛ス{4-N-(3-メチルフェニル)-N-フェニルアニリノ}シラシクロヘ゜ンタシ゛エン、下
記化3で示される化合物などがあげられるが、これらの
化合物に限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the silacyclopentadiene derivative used in the present invention include 1,1-dimethyl-2,5-bis (4-
(N, N-diphenylanilino) -3,4-diphenylsilacyclopentanediene (hereinafter referred to as TP
AS), 1,1-dimethyl-2,5-bis (3-N, N-diphenylanilino) -3,4-diphenylsilacyclopentane, 1,1-dimethyl-2,5-bis { 4-N-
(1-Naphthyl) -N-phenylanilino} -3,4-diphenylphenylcyclocyclopentane, 1,1-
Dimethyl-2,5-bis (2-N, N-diethylanilino) -3,4-diphenylsilacyclopentane, 1,1-diisopropyl-2,5-bis {4-N- (3-methylphenyl) -N-Phenylanilino} -3,4-diphenylsilacyclopentane, 1,1,3,4-tetraphenyl-2,
Examples include 5-bis {4-N- (3-methylphenyl) -N-phenylanilino} silacyclopentane, a compound represented by the following formula 3, but are not limited to these compounds.

【化3】 Embedded image

【0011】本発明で用いられるシラシクロペンタジエ
ン誘導体は、例えば、以下に示す製造法により得ること
ができるが、本発明はこれらの製造方法に限定されな
い。下記化4で表されるシラペンタジイン誘導体にアル
カリ金属錯体を反応させ、ついで、下記化5で表される
シラン誘導体を反応させ、さらに続いて、塩化亜鉛ある
いは塩化亜鉛錯体を反応させることによって下記化6で
表される反応性シラシクロペンタジエン誘導体が得るこ
とができる。ついで、該反応性シラシクロペンタジエン
誘導体に触媒の存在下、下記化7で表されるハロゲン化
物を反応させることによって、本発明で用いられるシラ
シクロペンタジエン誘導体が得られる。
The silacyclopentadiene derivative used in the present invention can be obtained, for example, by the following production methods, but the present invention is not limited to these production methods. The silapentadiyne derivative represented by the following formula 4 is reacted with an alkali metal complex, the silane derivative represented by the following formula 5 is reacted, and subsequently, zinc chloride or a zinc chloride complex is reacted. A reactive silacyclopentadiene derivative represented by the following formula can be obtained. Next, a silacyclopentadiene derivative used in the present invention is obtained by reacting the reactive silacyclopentadiene derivative with a halide represented by the following formula 7 in the presence of a catalyst.

【0012】[0012]

【化4】 [式中、X及びYは、それぞれ独立に炭素数1から6ま
での飽和もしくは不飽和の炭化水素基、アルコキシ基、
アルケニルオキシ基、アルキニルオキシ基、置換もしく
は無置換のアリール基、置換もしくは無置換のヘテロ環
を示すか、又はXとYが結合して飽和もしくは不飽和の
環を形成しており、R1及びR2は、それぞれ独立に水
素、置換もしくは無置換のアルキル基、アリール基、ヘ
テロ環基、又は置換もしくは無置換の環が縮合した構造
を示す]
Embedded image [Wherein, X and Y each independently represent a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group,
An alkenyloxy group, an alkynyloxy group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic ring, or X and Y combine to form a saturated or unsaturated ring, and R 1 and R 2 each independently represents a structure in which hydrogen, a substituted or unsubstituted alkyl group, an aryl group, a heterocyclic group, or a substituted or unsubstituted ring is fused.

【0013】[0013]

【化5】 [式中、X、Y及びZは、それぞれ独立に、ターシャリ
ーブチル基もしくはアリール基を示す]
Embedded image [Wherein, X, Y and Z each independently represent a tertiary butyl group or an aryl group]

【0014】[0014]

【化6】 [式中、X及びYは、それぞれ独立に飽和もしくは不飽
和の炭化水素基、アルコキシ基、アルケニルオキシ基、
アルキニルオキシ基、ヒドロキシ基、置換もしくは無置
換のアリール基、置換もしくは無置換のヘテロ環、又は
XとYが結合して飽和もしくは不飽和の環を形成した構
造であり、 R1及びR2は、それぞれ独立に水素、置換
もしくは無置換のアルキル基、アリール基、ヘテロ環
基、又は置換もしくは無置換の環が縮合した構造を示
す]
Embedded image [Wherein, X and Y each independently represent a saturated or unsaturated hydrocarbon group, an alkoxy group, an alkenyloxy group,
An alkynyloxy group, a hydroxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocycle, or a structure in which X and Y are combined to form a saturated or unsaturated ring, and R 1 and R 2 are Each independently represents a structure in which a hydrogen, a substituted or unsubstituted alkyl group, an aryl group, a heterocyclic group, or a substituted or unsubstituted ring is condensed]

【0015】[0015]

【化7】 [式中、Z1は、窒素原子もしくは、少くとも3個の芳
香環を有する基であり、Wは、ハロゲン原子を示す]
Embedded image [Wherein, Z 1 is a nitrogen atom or a group having at least three aromatic rings, and W represents a halogen atom]

【0016】まず始めの原料として用いられるシラペン
タジイン誘導体に付く置換基としては、アルカリ金属錯
体とシラペンタジインとの反応を阻害しにくいものが好
ましく、アルカリ金属錯体に対して不活性なものがさら
に好ましい。用いられるアルカリ金属錯体としては、例
えば、リチウムナフタレニト゛、ナトリウムナフタレニト゛、カリウムナフタレニト゛、リチウム
4,4'-シ゛ターシャリ-フ゛チル-2,2'-ヒ゛フェニリト゛、リチウム(N、N-シ゛メチルアミ
ノ)ナフタレニト゛などがあげられる。反応に用いられる溶媒と
しては、アルカリ金属もしくはアルカリ金属錯体に不活
性なものなら特に限定されず、エーテルおよびテトラヒ
ドロフランのようなエーテル系の溶媒が好適である。こ
の反応で使用されるシラン誘導体の置換基としては、嵩
高いものが好ましく、具体的にはターシャリーフ゛チルシ゛フェニルクロロシ
ラン、シ゛ターシャリーフ゛チルフェニルクロロシランなどが挙げられる。
As the substituent attached to the silapentadiyne derivative used as the first raw material, a substituent which does not easily inhibit the reaction between the alkali metal complex and the silapentadiyne is preferable, and a substituent which is inert to the alkali metal complex is more preferable. Examples of the alkali metal complex used include lithium naphthalenite, sodium naphthalenite, potassium naphthalenite, and lithium naphthalenite.
4,4'-tert-butyl-2,2'-phenylene and lithium (N, N-dimethylamino) naphthalenite. The solvent used in the reaction is not particularly limited as long as it is inert to the alkali metal or the alkali metal complex, and ether solvents such as ether and tetrahydrofuran are suitable. As the substituent of the silane derivative used in this reaction, a bulky one is preferable, and specific examples thereof include tertiary butyl phenyl chlorosilane, and tertiary phenyl phenyl chlorosilane.

【0017】さらに続いて、用いられる塩化亜鉛あるい
は塩化亜鉛の錯体としては、塩化亜鉛の固体を直接用い
るか、塩化亜鉛のエーテル溶液を使用するか、もしくは
塩化亜鉛のテトラメチルエチレンシ゛アミン錯体を使用するかなどの方
法があり、これらの塩化亜鉛類は、十分に乾燥している
ことが好ましく、水分が多いと目的物が得られ難くな
る。この一連の反応は、不活性気流中で行うことが好ま
しく、一般に、アルコ゛ンカ゛スが使われる。
Furthermore, as the zinc chloride or the complex of zinc chloride to be used, a solid of zinc chloride is used directly, an ether solution of zinc chloride is used, or a tetramethylethylenediamine complex of zinc chloride is used. It is preferable that these zinc chlorides are sufficiently dried, and it is difficult to obtain an intended product if the amount of water is large. This series of reactions is preferably performed in an inert gas stream, and generally, alcohol gas is used.

【0018】反応性シラシクロペンタジエン誘導体から
ハロゲン化物を反応させる際の触媒としては、テトラキストリフ
ェニルフォスフィンハ゜ラシ゛ウム、シ゛クロロヒ゛ストリフェニルフォスフィンハ゜ラシ゛ウムなど
のパラジウム触媒が挙げられる。一連の反応の各段階に
おいて、反応温度に特に制限はないが、アルカリ金属錯
体、シラン誘導体及び塩化亜鉛などを加え攪拌する際に
は、室温以下が好ましく、通常0℃以下で行われる。ハ
ロゲン化物を加えた後の反応温度は、室温以上が好まし
く、通常、溶媒にテトラヒドロフランを用いた場合には
還流下で行われる。 反応時間においても特に制限はな
く、アルカリ金属錯体、シラン誘導体及び塩化亜鉛など
を加え攪拌する際には、数分から数時間の間が望まし
い。ハロゲン化物を加えた後の反応は、NMRもしくは
クロマトグラフィーなどの一般的な分析手段により反応
を追跡し、反応の終点を決定すればよい。
Examples of a catalyst for reacting a halide with a reactive silacyclopentadiene derivative include palladium catalysts such as tetrakistriphenylphosphine varium and dichlorobistriphenylphosphine varium. In each stage of the series of reactions, the reaction temperature is not particularly limited. However, when the alkali metal complex, the silane derivative, zinc chloride and the like are added and stirred, the reaction is preferably performed at room temperature or lower, usually at 0 ° C. or lower. The reaction temperature after the addition of the halide is preferably room temperature or higher. In general, when tetrahydrofuran is used as a solvent, the reaction is carried out under reflux. There is no particular limitation on the reaction time, and when adding the alkali metal complex, the silane derivative, zinc chloride, and the like and stirring the mixture, it is desirable that the reaction time be between several minutes and several hours. The reaction after the addition of the halide may be followed by a general analytical means such as NMR or chromatography to determine the end point of the reaction.

【0019】このようにして得られた、本発明で用いる
シラシクロペンタジエン誘導体のケイ素上に付く置換基
としては、メチル基、エチル基、ノルマルプロピル基、
イソプロピル基、シクロペンチル基、もしくはターシャ
リーブチル基などのようなアルキル基、ビニル基、アリ
ル基、ブテニルもしくはスチリル基などのようなアルケ
ニル基、エチニル基、プロパギル基もしくはフェニルア
セチニル基などのようなアルキニル基、メトキシ基、エ
トキシ基、イソプロポキシ基もしくはターシャリーブト
キシ基などのようなアルコキシ基、ビニルオキシ基もし
くはアリルオキシ基のようなアルケニルオキシ基、エチ
ニルオキシ基もしくはフェニルアセチルオキシ基などの
ようなアルキニルオキシ基、フェニル基、ナフチル基、
アントラセニル基、ビフェニル基、トルイル基、ピレニ
ル基、ペリレニル基、アニシル基、ターフェニル基もし
くはフェナンスレニル基などのアリール基、ヒドロフリ
ル基、ヒドロピレニル基、ジオキサニル基、チエニル
基、フリル基、オキサゾリル基、オキサジアゾリル基、
チアゾリル基、チアジアゾリル基、アクリジニル基、キ
ノリル基、キノキサロイル基、フェナンスロリル基、ベ
ンゾチエニル基、ベンゾチアゾリル基、インドリル基、
シラシクロペンタジエニル基もしくはピリジル基などの
ヘテロ環などが挙げられる。また、これらの置換基がお
互いに任意の場所で結合してスピロ環を形成していても
良い。
Substituents on the silicon of the thus obtained silacyclopentadiene derivative used in the present invention include a methyl group, an ethyl group, a normal propyl group,
Alkyl groups such as isopropyl group, cyclopentyl group or tertiary butyl group, alkynyl groups such as vinyl group, allyl group, butenyl or styryl group, alkynyl groups such as ethynyl group, propargyl group and phenylacetylinyl group; An alkoxy group such as a methoxy group, an ethoxy group, an isopropoxy group or a tertiary butoxy group; an alkenyloxy group such as a vinyloxy group or an allyloxy group; an alkynyloxy group such as an ethynyloxy group or a phenylacetyloxy group. , Phenyl group, naphthyl group,
Aryl groups such as anthracenyl group, biphenyl group, toluyl group, pyrenyl group, perylenyl group, anisyl group, terphenyl group or phenanthrenyl group, hydrofuryl group, hydropyrenyl group, dioxanyl group, thienyl group, furyl group, oxazolyl group, oxadiazolyl group,
Thiazolyl group, thiadiazolyl group, acridinyl group, quinolyl group, quinoxaloyl group, phenanthrolyl group, benzothienyl group, benzothiazolyl group, indolyl group,
Heterocycles such as a silacyclopentadienyl group and a pyridyl group are exemplified. Further, these substituents may be bonded to each other at an arbitrary position to form a spiro ring.

【0020】本発明のシラシクロペンタジエン環の3位
及び4位に付く置換基としては、それぞれ独立に、水
素、メチル基、エチル基、ノルマルプロピル基、イソプ
ロピル基、シクロペンチル基、ターシャリーブチル基の
ようなアルキル基、フェニル基、ビフェニル基、ターフ
ェニル基、ナフチル基、アントラセニル基、ピレニル
基、トルイル基、アニシル基、フルオロフェニル基、ジ
フェニルアミノフェニル基、ジメチルアミノフェニル
基、ジエチルアミノフェニル基、フェナンスレニル基の
ようなアリール基、チエニル基、フリル基、シラシクロ
ペンタジエニル基、オキサゾリル基、オキサジアゾリル
基、チアゾリル基、チアジアゾリル基、アクリジニル
基、キノリル基、キノキサロイル基、フェナンスロリル
基、ベンゾチエニル基、ベンゾチアゾリル基、インドリ
ル基、カルバゾリル基、ピリジル基、ピロリル基、ベン
ゾオキサゾリル基、ピリミジル基、イミダゾリル基など
のようなヘテロ環などが挙げられる。また、これらの置
換基がお互いに任意の場所で結合して環を形成していて
もよい。
The substituents attached to the 3- and 4-positions of the silacyclopentadiene ring of the present invention each independently represent a hydrogen, a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a cyclopentyl group or a tertiary butyl group. Such alkyl group, phenyl group, biphenyl group, terphenyl group, naphthyl group, anthracenyl group, pyrenyl group, toluyl group, anisyl group, fluorophenyl group, diphenylaminophenyl group, dimethylaminophenyl group, diethylaminophenyl group, phenanthrenyl group Aryl group, thienyl group, furyl group, silacyclopentadienyl group, oxazolyl group, oxadiazolyl group, thiazolyl group, thiadiazolyl group, acridinyl group, quinolyl group, quinoxaloyl group, phenanthrolyl group, benzothienyl group, benzothienyl group Zochiazoriru group, an indolyl group, a carbazolyl group, a pyridyl group, a pyrrolyl group, a benzoxazolyl group, a pyrimidyl group, a hetero ring such as imidazolyl groups. Further, these substituents may be bonded to each other at an arbitrary position to form a ring.

【0021】シラシクロペンタジエン環の2位及び5位
に付く置換基としては、それぞれ独立に、トリフェニル
アミノ基、ジフェニルアミノナフチル基、ナフチルフェ
ニルアミノフェニル基、フェニルトルイルアミノナフチ
ル基などが挙げられる。これらの置換基の導入方法は、
シラシクロペンタジエン環の形成前に導入しても良い
し、シラシクロペンタジエン環形成後に導入してもよ
い。
The substituents attached to the 2- and 5-positions of the silacyclopentadiene ring each independently include a triphenylamino group, a diphenylaminonaphthyl group, a naphthylphenylaminophenyl group and a phenyltoluylaminonaphthyl group. The method of introducing these substituents is as follows:
It may be introduced before the formation of the silacyclopentadiene ring, or may be introduced after the formation of the silacyclopentadiene ring.

【0022】本発明において、有機EL素子に用いられ
るシラシクロペンタジエン誘導体は正孔輸送材料として
有効であることを見出した。シラシクロペンタジエン環
の2位及び5位に正孔輸送能力を有する部位が付いてい
ることに加え、シラシクロペンタジエン環の電子的な特
性も正孔輸送性に効果を与えていることが考えられる。
In the present invention, it has been found that a silacyclopentadiene derivative used for an organic EL device is effective as a hole transport material. It is considered that, in addition to the sites having a hole transporting ability at the 2nd and 5th positions of the silacyclopentadiene ring, the electronic properties of the silacyclopentadiene ring also have an effect on the hole transporting property. .

【0023】また、本発明のシラシクロペンタジエン誘
導体は、それ自身強い蛍光を示すので有機EL素子の発
光色素としても有用である。例えば、TPASは黄色に
発光する。さらに、シラシクロペンタジエン環は、それ
自身で電子輸送性を示すので、本発明で使用されるシラ
シクロペンタジエン誘導体は両電荷輸送性を示す。その
ため、本発明のシラシクロペンタジエン誘導体を用いた
有機EL素子は、単層においても効率が高い。
The silacyclopentadiene derivative of the present invention exhibits strong fluorescence by itself, and is therefore useful as a luminescent dye for an organic EL device. For example, TPAS emits yellow light. Furthermore, since the silacyclopentadiene ring exhibits an electron transporting property by itself, the silacyclopentadiene derivative used in the present invention exhibits both charge transporting properties. Therefore, the organic EL device using the silacyclopentadiene derivative of the present invention has high efficiency even in a single layer.

【0024】本発明の有機EL素子の構成は、各種の態
様があるが、基本的には一対の電極(陽極と陰極)間
に、前記シラシクロペンタジエン誘導体を挟持した構成
とし、これに必要に応じて、正孔輸送材料、発光色素及
び電子輸送材料を加えるか、別の層として積層すればよ
い。具体例としては、陽極/本発明のシラシクロペンタ
ジエン誘導体層/陰極、陽極/正孔注入層/本発明のシ
ラシクロペンタジエン誘導体層/陰極、陽極/本発明の
シラシクロペンタジエン誘導体層/正孔輸送層/有機発
光層/電子輸送層/陰極、陽極/(発光色素+本発明の
シラシクロペンタジエン誘導体層)/陰極などが挙げら
れる。
The configuration of the organic EL device of the present invention has various aspects. Basically, the configuration is such that the silacyclopentadiene derivative is sandwiched between a pair of electrodes (anode and cathode). Accordingly, a hole transporting material, a luminescent dye, and an electron transporting material may be added or may be stacked as separate layers. Specific examples are: anode / silacyclopentadiene derivative layer of the present invention / cathode, anode / hole injection layer / silacyclopentadiene derivative layer of the present invention / cathode, anode / silacyclopentadiene derivative layer of the present invention / hole transport Layer / organic light emitting layer / electron transporting layer / cathode, anode / (luminescent dye + silacyclopentadiene derivative layer of the present invention) / cathode.

【0025】本発明の有機EL素子は、いずれも基板に
支持されていることが好ましく、支持する基板は特に制
限されず、従来の電界発光素子に慣用されているもの、
例えばガラス、透明プラスチック、導電性高分子もしく
は石英などから成るものを用いることができる。本発明
の有機EL素子に使用される各層は、例えば蒸着法、塗
布法などの公知の方法によって、薄膜化する事により形
成することができる。このようにして形成された各層の
薄膜の厚みについては特に制限はなく、適宜状況に応じ
て選ぶことができるが、通常2nmないし5000nm
の範囲で選定される。
The organic EL device of the present invention is preferably supported on a substrate, and the substrate to be supported is not particularly limited.
For example, glass, transparent plastic, conductive polymer, quartz, or the like can be used. Each layer used in the organic EL device of the present invention can be formed by thinning by a known method such as an evaporation method and a coating method. The thickness of the thin film of each layer formed in this manner is not particularly limited and can be appropriately selected depending on the situation, but is usually 2 nm to 5000 nm.
Is selected in the range.

【0026】本発明の有機EL素子における陽極として
は、仕事関数の大きい(4eV以上)金属、合金、電気
伝導性化合物、もしくはこれらの混合物を電極物質とす
るものが好ましく用いられる。このような電極物質の具
体例としては、Auなどの金属、CuI、インジウムチ
ンオキサイド(以後、ITOと略する)、SnO2、Z
nOなどの誘電性透明材料が挙げられる。該陽極は、こ
れらの電極物質を蒸着やスパッタリングなどの方法によ
り、薄膜を形成させることにより作製することができ
る。この電極より発光を取り出す場合には、透過率を1
0%より大きくすることが望ましく、また、電極として
のシート抵抗は数百Ω/square以下が好ましい。さらに
膜厚は材料にもよるが、通常10nmないし1μm、好
ましくは10〜200nmの範囲で選ばれる。
As the anode in the organic EL device of the present invention, a metal, an alloy, an electrically conductive compound having a high work function (4 eV or more), or a mixture thereof is preferably used as an electrode material. Specific examples of such an electrode material include metals such as Au, CuI, indium tin oxide (hereinafter abbreviated as ITO), SnO 2 , Z
A dielectric transparent material such as nO is used. The anode can be produced by forming a thin film from these electrode substances by a method such as vapor deposition or sputtering. When light is extracted from this electrode, the transmittance is set to 1
It is desirable to make it larger than 0%, and the sheet resistance as an electrode is preferably several hundred Ω / square or less. Further, the film thickness depends on the material, but is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.

【0027】一方、陰極としては、仕事関数の小さい
(4.3eV以下)金属、合金、電気伝導性化合物及び
これらの混合物を電極物質とするものが用いられる。こ
のような電極物質の具体例としては、カルシウム、マグ
ネシウム、リチウム、アルミニウム、マグネシウム合
金、リチウム合金、アルミニウム合金、アルミニウム/
リチウム混合物、マグネシウム/銀混合物、インジウム
などが挙げられる。該陰極は、これらの電極物質を蒸着
やスパッタリングなどの方法により、薄膜を形成させる
ことにより、作製することができる。また、電極として
のシート抵抗は数百Ω/square以下が好ましく、膜厚は
通常10nmないし1μm、好ましくは50〜200n
mの範囲で選ばれる。
On the other hand, as the cathode, a metal, an alloy, an electrically conductive compound or a mixture thereof having a low work function (4.3 eV or less) is used as an electrode material. Specific examples of such electrode materials include calcium, magnesium, lithium, aluminum, magnesium alloy, lithium alloy, aluminum alloy, aluminum /
Lithium mixtures, magnesium / silver mixtures, indium and the like. The cathode can be manufactured by forming a thin film of these electrode substances by a method such as vapor deposition or sputtering. The sheet resistance as an electrode is preferably several hundred Ω / square or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 n.
m.

【0028】本発明の有機EL素子の構成は、前述した
ように各種の態様があるが、正孔輸送層を設けると発光
効率が向上する。正孔輸送層に用いられる正孔輸送材料
としては、電界を与えられた2個の電極間に配置されて
陽極から正孔が注入された場合、該正孔を適切に発光層
へ伝達しうる化合物であって、例えば、104〜106
/cmの電界印加時に、少なくとも10-6cm2/V・
秒以上の正孔移動度をもつものが好適である。このよう
な正孔輸送材料については、前記の好ましい性質を有す
る物であれば特に制限はなく、複数の正孔輸送材料を使
用する場合は、該シラシクロペンタジエン誘導体ばかり
でなく、従来、光導電材料において、正孔の電荷輸送材
として慣用されているものや有機EL素子の正孔輸送層
に使用される公知のものの中から任意のものを選択して
用いることができる。
Although the configuration of the organic EL device of the present invention has various modes as described above, the luminous efficiency is improved by providing a hole transport layer. As a hole transporting material used for the hole transporting layer, when a hole is injected from an anode placed between two electrodes to which an electric field is applied, the hole can be appropriately transmitted to the light emitting layer. A compound, for example, 10 4 to 10 6 V
/ Cm when applying an electric field of at least 10 −6 cm 2 / V ·
Those having a hole mobility of seconds or more are preferred. Such a hole transport material is not particularly limited as long as it has the above-mentioned preferable properties. When a plurality of hole transport materials are used, not only the silacyclopentadiene derivative but also a conventional photoconductive material is used. As the material, any material can be selected from those commonly used as a hole charge transport material and known materials used for a hole transport layer of an organic EL device.

【0029】該正孔輸送材料としては、例えば、N-フェニル
カルハ゛ソ゛ール、ホ゜リヒ゛ニルカルハ゛ソ゛ールなどのカルバゾール誘導
体、TPD、芳香族第3級アミンを主鎖もしくは側鎖に
持つポリマー、1,1-ヒ゛ス(4-シ゛-p-トリルアミノフェニル)シクロヘキサン、
N,N'-シ゛フェニル-N,N'-シ゛ナフチル-4,4'-シ゛アミノヒ゛フェニルなどのトリ
アリールアミン誘導体、無金属、銅フタロシアニンなど
のフタロシアニン誘導体、ポリシランなどが挙げられ
る。
Examples of the hole transport material include carbazole derivatives such as N-phenylcarbazole and polyphenylcarbazol, TPD, polymers having an aromatic tertiary amine in the main chain or side chain, and 1,1-bis (4 -C-p-tolylaminophenyl) cyclohexane,
Examples include triarylamine derivatives such as N, N'-diphenyl-N, N'-dianaphthyl-4,4'-diaminodiphenyl, metal-free, phthalocyanine derivatives such as copper phthalocyanine, and polysilane.

【0030】本発明の有機EL素子における電子を輸送
する層において使用される電子輸送材料については、特
に制限はなく、従来公知の化合物の中から任意のものを
選択して用いることができる。該電子輸送材料の好まし
い例としては、電子写真学会誌、30巻3ページ1991年な
どに記載のジフェニルキノン誘導体、もしくはジャーナ
ル オブ ジ アプライド フィジックス(Jpn.J.App
l.Phys.),27,269,(1988)などに記載の化合物や、PB
Dなどのオキサジアゾール誘導体(ジャパニーズジャー
ナル オブ ジ アプライド フィジックス(Jpn.J.Ap
pl.Phys.),27,L713(1988)、アプライド フィジックス
レター(Appl.Phys.Lett.),55,1489(1989)などに記載
のもの)、チオフェン誘導体(特開平4-212286号公報な
どに記載のもの)、トリアゾール誘導体(Jpn.J.Appl.P
hys.,32,L917(1993)などに記載のもの)、チアジアゾー
ル誘導体(第43回高分子学会予稿集、(III)P1a007な
どに記載のもの)、オキシン誘導体の金属錯体(電子情
報通信学会技術研究報告、92(311),43(1992)などに記載
のもの)、キノキサリン誘導体のポリマー(Jpn.J.App
l.Phys.,33,L250(1994)などに記載のもの)、フェナン
トロリン誘導体(第43回高分子討論会予稿集、14J07な
どに記載のもの)などを挙げることができる。
The electron transporting material used in the electron transporting layer in the organic EL device of the present invention is not particularly limited, and any one of conventionally known compounds can be used. Preferred examples of the electron transporting material include diphenylquinone derivatives described in Journal of the Electrographic Society of Japan, Vol. 30, p. 3, 1991, or Journal of the Applied Physics (Jpn. J. App.
l.Phys.), 27, 269, (1988), and PB
D and other oxadiazole derivatives (Japanese Journal of the Applied Physics (Jpn.J.Ap.
pl.Phys.), 27, L713 (1988), Applied Physics Letter (Appl. Phys. Lett.), 55, 1489 (1989), etc., and thiophene derivatives (Japanese Unexamined Patent Publication No. 4-212286). Described), triazole derivatives (Jpn.J.Appl.P
hys., 32, L917 (1993), etc.), thiadiazole derivatives (43th Preprints of the Society of Polymer Science, (III) P1a007, etc.), metal complexes of oxine derivatives (IEICE technical report) Research reports, 92 (311), 43 (1992) etc.), polymers of quinoxaline derivatives (Jpn. J. App.
l. Phys., 33, L250 (1994), etc.) and phenanthroline derivatives (described in the 43rd Polymer Symposium Proceedings, 14J07).

【0031】本発明の有機EL素子に用いられる発光材
料には、本発明のシラシクロペンタジエン誘導体ばかり
でなく、高分子学会編 高分子機能材料シリーズ”光機
能材料”、共立出版(1991)、P236 に記載されているよ
うな昼光蛍光材料、蛍光増白剤、レーザー色素、有機シ
ンチレータ、各種の蛍光分析試薬などの公知の発光材料
を含めて用いることができるが、具体的には、アントラ
セン、フェナントレン、ピレン、クリセン、ペリレン、
コロネン、ルブレン、キナクリドンなどの多環縮合化合
物、クオーターフェニルなどのオリゴフェニレン系化合
物、1,4-ヒ゛ス(2-メチルスチリル)ヘ゛ンセ゛ン、1,4-ヒ゛ス(4-メチルスチリル)ヘ゛
ンセ゛ン、1,4-ヒ゛ス(4-メチル-5-フェニル-2-オキサ゛ソ゛リル)ヘ゛ンセ゛ン、1,4-
ヒ゛ス(5-フェニル-2-オキサソ゛リル)ヘ゛ンセ゛ン、2,5-ヒ゛ス(5-タシャリー-フ゛チル-
2-ヘ゛ンス゛オキサソ゛リル)チオフェン、1,4-シ゛フェニル-1,3-フ゛タシ゛エン、1,6-
シ゛フェニル-1,3,5-ヘキサトリエン、1,1,4,4-テトラフェニル-1,3,-フ゛タシ゛エン
などの液体シンチレーション用シンチレータ、特開昭63
−264692号公報記載のオキシン誘導体の金属錯体、クマ
リン染料、ジシアノメチレンピラン染料、ジシアノメチ
レンチオピラン染料、ポリメチン染料、オキソベンズア
ントラセン染料、キサンテン染料、カルボスチリル染料
およびペリレン染料、独国特許2534713 公報に記載の
オキサジン系化合物、第40回応用物理学関係連合講演会
講演予稿集、1146(1993)に記載のスチルベン誘導体、特
開平4-363891号公報記載のオキサジアゾール系化合物、
及び特開平9-194487号公報記載のシラシクロペンタジエ
ン誘導体が好ましい。
The light emitting material used in the organic EL device of the present invention includes not only the silacyclopentadiene derivative of the present invention, but also a polymer functional material series “optical functional material” edited by the Society of Polymer Science, Kyoritsu Shuppan (1991), P236. Can be used including known light-emitting materials such as daylight fluorescent materials, fluorescent brighteners, laser dyes, organic scintillators, and various fluorescent analysis reagents as described in, for example, anthracene, Phenanthrene, pyrene, chrysene, perylene,
Polycyclic condensed compounds such as coronene, rubrene, quinacridone, oligophenylene compounds such as quarter phenyl, 1,4-bis (2-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, 1,4 -Phase (4-methyl-5-phenyl-2-oxazolyl) benzene, 1,4-
Bis (5-phenyl-2-oxasoryl) benzene, 2,5-bis (5-tert-butyl-
2-phenoxoxazolyl) thiophene, 1,4-diphenyl-1,3-phthalaciene, 1,6-
Scintillators for liquid scintillation such as diphenyl-1,3,5-hexatriene, 1,1,4,4-tetraphenyl-1,3, -phthalicene;
No. 264692, metal complexes of oxine derivatives, coumarin dyes, dicyanomethylenepyran dyes, dicyanomethylenethiopyran dyes, polymethine dyes, oxobenzanthracene dyes, xanthene dyes, carbostyril dyes and perylene dyes, German Patent 2534713 Oxazine-based compound described, 40th Applied Physics-related Union Lecture Meeting Preprints, stilbene derivatives described in 1146 (1993), oxadiazole-based compound described in JP-A-4-363891
And a silacyclopentadiene derivative described in JP-A-9-94487.

【0032】本発明の有機EL素子を作製する好適な方
法の例を次の構成の素子について説明する。陽極/本発
明のシラシクロペンタジエン誘導体層/陰極からなるE
L素子の作製法について説明すると、まず適当な基板上
に、所望の電極物質、例えば陽極用物質からなる薄膜
を、1μm以下、好ましくは10〜200nmの範囲の
膜厚になるように、蒸着やスパッタリングなどの方法に
より形成させ、陽極を作製したのち、この上にシラシク
ロペンタジエン誘導体の薄膜を形成させる。薄膜化の方
法としては、例えば、浸漬塗工法、スピンコート法、キ
ャスト法、蒸着法などがあるが、均質な膜が得られやす
く、不純物が混ざり難くかつピンホールが生成しにくい
などの点から蒸着法が好ましい。
An example of a preferred method for producing the organic EL device of the present invention will be described for a device having the following structure. E comprising anode / silacyclopentadiene derivative layer of the present invention / cathode
The method of manufacturing the L element will be described. First, a thin film made of a desired electrode material, for example, a material for an anode is deposited on an appropriate substrate so as to have a thickness of 1 μm or less, preferably 10 to 200 nm. After the anode is formed by a method such as sputtering and the like, a thin film of a silacyclopentadiene derivative is formed thereon. Examples of the method for thinning include, for example, dip coating, spin coating, casting, and vapor deposition.However, from the viewpoint that a uniform film is easily obtained, impurities are hardly mixed, and pinholes are hardly generated. Evaporation is preferred.

【0033】次に、このシラシクロペンタジエン誘導体
層の形成後、その上に陰極用物質からなる薄膜を、1μ
m以下、例えば蒸着やスパッタリング等の方法により形
成させ、陰極を設けることにより、所望のEL素子が得
られる。なお、このEL素子の作製においては、作製順
序を逆にして、陰極、該シラシクロペンタジエン誘導体
層、陽極の順に作製することも可能である。このように
して得られたEL素子に、直流電圧を印加する場合に
は、電圧3〜40V程度を印加すると、発光が透明また
は半透明の電極側より観測できる。さらに、交流電圧を
印加することによっても発光する。なお印加する交流の
波形は任意でよい。
Next, after this silacyclopentadiene derivative layer is formed, a thin film made of a cathode material is deposited thereon for 1 μm.
m or less, for example, by a method such as vapor deposition or sputtering and providing a cathode, a desired EL element can be obtained. In the production of this EL device, the production order can be reversed, and the cathode, the silacyclopentadiene derivative layer, and the anode can be produced in this order. When a DC voltage is applied to the EL device obtained in this manner, when a voltage of about 3 to 40 V is applied, light emission can be observed from the transparent or translucent electrode side. Furthermore, light is emitted by applying an AC voltage. The waveform of the applied alternating current may be arbitrary.

【0034】[0034]

【実施例】以下に実施例にて本発明を具体的に説明する
が、本発明は下記の実施例に限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

【0035】実施例1 25mm×75mm×1.1mmのガラス基板上にIT
Oを蒸着法にて50nmの厚さで製膜したもの(東京三
容真空(株)製)を透明支持基板とした。この透明支持
基板を市販の蒸着装置(真空機工(株)製)の基板ホル
ダーに固定し、石英製のるつぼにTPASをいれて真空
槽を1×10-4Paまで減圧した。TPAS入りのるつ
ぼを加熱し、膜厚100nmになるようにTPASを蒸
着した。蒸着速度は0.1〜0.2nm/秒であった。
その後真空槽を2×10-4Paまで減圧してから、グラ
ファイト性のるつぼから、マグネシウムを1.2〜2.
4nm/秒の蒸着速度で、同時にもう一方のるつぼから
銀を0.1〜0.2nm/秒の蒸着速度で蒸着した。上
記条件でマグネシウムと銀の混合金属電極を発光層の上
に200nm積層蒸着して対向電極とし、素子を形成し
た。ITO電極を陽極、マグネシウムと銀の混合電極を
陰極として、得られた素子に、直流電圧6.5Vを印加
すると約30mA/cm2の電流が流れ、200cd/
2の黄色の発光を得た。発光波長は545nmであっ
た。
Example 1 An IT was placed on a glass substrate of 25 mm × 75 mm × 1.1 mm.
A film obtained by forming O to a thickness of 50 nm by a vapor deposition method (manufactured by Tokyo Sanyo Vacuum Co., Ltd.) was used as a transparent support substrate. This transparent support substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), TPAS was placed in a crucible made of quartz, and the pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa. The crucible containing TPAS was heated and TPAS was deposited to a thickness of 100 nm. The deposition rate was 0.1-0.2 nm / sec.
Thereafter, the pressure in the vacuum chamber was reduced to 2 × 10 −4 Pa, and then magnesium was added to the graphite crucible in an amount of 1.2 to 2.
Silver was deposited from the other crucible at a deposition rate of 4 nm / sec and simultaneously at a deposition rate of 0.1-0.2 nm / sec. Under the above conditions, a mixed metal electrode of magnesium and silver was stacked on the light emitting layer to a thickness of 200 nm to form a counter electrode, thereby forming an element. When a DC voltage of 6.5 V is applied to the obtained device using an ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, a current of about 30 mA / cm 2 flows and 200 cd / cm 2
A yellow emission of m 2 was obtained. The emission wavelength was 545 nm.

【0036】実施例2 実施例1で用いた透明支持基板を蒸着装置の基板ホルダ
ーに固定し、石英製のるつぼにTPAS、他のるつぼに
TPD、さらに他のるつぼに1,1-シ゛メチル-3,4-シ゛フェニル-2,5
-シ゛ヒ゜リシ゛ルシロール(以後、PYSと略する)をいれて真空槽
を1×10-4Paまで減圧した。TPD入りのるつぼを
加熱し膜厚50nmになるように蒸着し、ついでTPA
S入りのるつぼを加熱し膜厚15nmになるようにTP
ASを蒸着し、ついでPYS入りのるつぼを加熱し膜厚
35nmになるようにPYSを蒸着した。蒸着速度は
0.1〜0.2nm/秒であった。その後真空槽を2×
10-4Paまで減圧してから、グラファイト性のるつぼ
から、マグネシウムを1.2〜2.4nm/秒の蒸着速
度で、同時にもう一方のるつぼから銀を0.1〜0.2
nm/秒の蒸着速度で蒸着した。上記条件でマグネシウ
ムと銀の混合金属電極を発光層の上に200nm積層蒸
着して対向電極とし、素子を形成した。ITO電極を陽
極、マグネシウムと銀の混合電極を陰極として、得られ
た素子に、直流電圧4.5Vを印加すると約10mA/
cm2の電流が流れ、約100cd/m2の黄色の発光を
得た。発光波長は545nmであった。
Example 2 The transparent support substrate used in Example 1 was fixed to a substrate holder of a vapor deposition apparatus, and TPAS was placed in a quartz crucible, TPD was placed in another crucible, and 1,1-dimethyl-3 was placed in another crucible. , 4-diphenyl-2,5
The pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa with the addition of shiny polysillucole (hereinafter abbreviated as PYS). The crucible containing TPD is heated and vapor-deposited to a thickness of 50 nm.
The crucible containing S is heated to a thickness of 15 nm by TP.
AS was deposited, and then the crucible containing PYS was heated to deposit PYS to a thickness of 35 nm. The deposition rate was 0.1-0.2 nm / sec. After that, the vacuum chamber is 2 ×
After reducing the pressure to 10 -4 Pa, magnesium was deposited from the graphite crucible at a deposition rate of 1.2 to 2.4 nm / sec.
The deposition was performed at a deposition rate of nm / sec. Under the above conditions, a mixed metal electrode of magnesium and silver was stacked on the light emitting layer to a thickness of 200 nm to form a counter electrode, thereby forming an element. When a direct current voltage of 4.5 V is applied to the obtained device using the ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, about 10 mA /
A current of cm 2 flowed and yellow light emission of about 100 cd / m 2 was obtained. The emission wavelength was 545 nm.

【0037】実施例3 実施例1で用いた透明支持基板を蒸着装置の基板ホルダ
ーに固定し、石英製のるつぼにTPAS、他のるつぼに
PYSをいれて真空槽を1×10-4Paまで減圧した。
TPAS入りのるつぼを加熱し膜厚50nmになるよう
にTPASを蒸着し、ついでPYS入りのるつぼを加熱
し膜厚50nmになるようにPYSを蒸着した。蒸着速
度は0.1〜0.2nm/秒であった。その後真空槽を
2×10-4Paまで減圧してから、グラファイト性のる
つぼから、マグネシウムを1.2〜2.4nm/秒の蒸
着速度で、同時にもう一方のるつぼから銀を0.1〜
0.2nm/秒の蒸着速度で蒸着した。上記条件でマグ
ネシウムと銀の混合金属電極を発光層の上に200nm
積層蒸着して対向電極とし、素子を形成した。ITO電
極を陽極、マグネシウムと銀の混合電極を陰極として、
得られた素子に、直流電圧5Vを印加すると約10mA
/cm2の電流が流れ、約300cd/m2の黄色の発光
を得た。発光波長は545nmであった。
Example 3 The transparent support substrate used in Example 1 was fixed to a substrate holder of a vapor deposition apparatus, and TPAS was placed in a crucible made of quartz and PYS was placed in another crucible, and the vacuum chamber was filled to 1 × 10 -4 Pa. The pressure was reduced.
The crucible containing TPAS was heated to deposit TPAS to a thickness of 50 nm, and then the crucible containing PYS was heated to deposit PYS to a thickness of 50 nm. The deposition rate was 0.1-0.2 nm / sec. Then, the pressure in the vacuum chamber was reduced to 2 × 10 −4 Pa, and then magnesium was deposited from the graphite crucible at a deposition rate of 1.2 to 2.4 nm / sec.
The deposition was performed at a deposition rate of 0.2 nm / sec. Under the above conditions, a mixed metal electrode of magnesium and silver was placed on the light emitting layer by 200 nm.
An element was formed by stacking and vapor deposition to form a counter electrode. Using the ITO electrode as the anode and the mixed electrode of magnesium and silver as the cathode,
When a DC voltage of 5 V is applied to the obtained device, about 10 mA
/ Cm 2 and a yellow light emission of about 300 cd / m 2 was obtained. The emission wavelength was 545 nm.

【0038】実施例4 実施例1で用いた透明支持基板を蒸着装置の基板ホルダ
ーに固定し、石英製のるつぼにTPAS、他のるつぼに
TPDをいれて真空槽を1×10-4Paまで減圧した。
TPD入りのるつぼを加熱し膜厚50nmになるように
蒸着し、ついでTPAS入りのるつぼを加熱し膜厚50
nmになるようにTPASを蒸着した。蒸着速度は0.
1〜0.2nm/秒であった。その後真空槽を2×10
-4Paまで減圧してから、グラファイト性のるつぼか
ら、マグネシウムを1.2〜2.4nm/秒の蒸着速度
で、同時にもう一方のるつぼから銀を0.1〜0.2n
m/秒の蒸着速度で蒸着した。上記条件でマグネシウム
と銀の混合金属電極を発光層の上に200nm積層蒸着
して対向電極とし、素子を形成した。ITO電極を陽
極、マグネシウムと銀の混合電極を陰極として、得られ
た素子に、直流電圧5.5Vを印加すると約4mA/c
2の電流が流れ、約100cd/m2の黄色の発光を得
た。発光波長は545nmであった。
Example 4 The transparent support substrate used in Example 1 was fixed to a substrate holder of a vapor deposition apparatus, TPAS was placed in a quartz crucible, and TPD was placed in another crucible, and the vacuum chamber was filled to 1 × 10 -4 Pa. The pressure was reduced.
The crucible containing TPD is heated and vapor-deposited to a thickness of 50 nm, and then the crucible containing TPAS is heated to a thickness of 50 nm.
TPAS was deposited to a thickness of nm. The deposition rate is 0.
1 to 0.2 nm / sec. After that, the vacuum chamber is
After reducing the pressure to -4 Pa, magnesium was deposited from the graphite crucible at a deposition rate of 1.2 to 2.4 nm / sec.
Deposition was performed at a deposition rate of m / sec. Under the above conditions, a mixed metal electrode of magnesium and silver was stacked on the light emitting layer to a thickness of 200 nm to form a counter electrode, thereby forming an element. When a DC voltage of 5.5 V is applied to the obtained device using an ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, about 4 mA / c is obtained.
A current of m 2 passed and yellow light emission of about 100 cd / m 2 was obtained. The emission wavelength was 545 nm.

【0039】実施例5 実施例1で用いた透明支持基板を蒸着装置の基板ホルダ
ーに固定し、石英製のるつぼにTPAS、他のるつぼに
TPD、さらに他のるつぼに、トリス(8-ヒト゛ロキシノリン)アルミニウム
(以後、Alqと略する)をいれて真空槽を1×10-4
Paまで減圧した。TPAS入りのるつぼを加熱し膜厚
35nmになるように蒸着し、ついでTPD入りのるつ
ぼを加熱し膜厚15nmになるようにTPDを蒸着し、
ついでAlq入りのるつぼを加熱し膜厚50nmになる
ようにAlqを蒸着した。蒸着速度は0.1〜0.2n
m/秒であった。その後真空槽を2×10-4Paまで減
圧してから、グラファイト性のるつぼから、マグネシウ
ムを1.2〜2.4nm/秒の蒸着速度で、同時にもう
一方のるつぼから銀を0.1〜0.2nm/秒の蒸着速
度で蒸着した。上記条件でマグネシウムと銀の混合金属
電極を発光層の上に200nm積層蒸着して対向電極と
し、素子を形成した。ITO電極を陽極、マグネシウム
と銀の混合電極を陰極として、得られた素子に、直流電
圧4.5Vを印加すると約10mA/cm2の電流が流
れ、100cd/m2の緑色の発光を得た。発光波長は
520nmであった。
Example 5 The transparent support substrate used in Example 1 was fixed to a substrate holder of a vapor deposition apparatus, and TPAS was placed in a quartz crucible, TPD was placed in another crucible, and tris (8-human peroxynoline was placed in another crucible). ) Aluminum (hereinafter abbreviated as Alq) is placed in the vacuum chamber at 1 × 10 -4.
The pressure was reduced to Pa. The crucible containing TPAS is heated and vapor-deposited to a thickness of 35 nm, and then the crucible containing TPD is heated to vapor-deposit TPD to a thickness of 15 nm.
Next, the crucible containing Alq was heated to deposit Alq to a thickness of 50 nm. Deposition rate is 0.1-0.2n
m / sec. Then, the pressure in the vacuum chamber was reduced to 2 × 10 −4 Pa, and then magnesium was deposited from the graphite crucible at a deposition rate of 1.2 to 2.4 nm / sec. The deposition was performed at a deposition rate of 0.2 nm / sec. Under the above conditions, a mixed metal electrode of magnesium and silver was stacked on the light emitting layer to a thickness of 200 nm to form a counter electrode, thereby forming an element. When a DC voltage of 4.5 V was applied to the obtained device using an ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, a current of about 10 mA / cm 2 flowed, and green light emission of 100 cd / m 2 was obtained. . The emission wavelength was 520 nm.

【0040】実施例6 実施例1で用いたTPASを1,1-シ゛メチル-2,5-ヒ゛ス(N-ナフチル
-N-フェニルアニリノ)-3,4-シ゛フェニルシラシクロヘ゜ンタシ゛エンに代えた以外
は、実施例1に準じた方法で素子を作成した。この素子
に、直流電圧を印加すると約10mA/cm2の電流が
流れ、黄色の発光が得られた。
Example 6 The TPAS used in Example 1 was replaced with 1,1-dimethyl-2,5-bis (N-naphthyl)
(N-phenylanilino) -3,4-diphenylsilacyclopentandiene was used to produce a device in the same manner as in Example 1. When a DC voltage was applied to this device, a current of about 10 mA / cm 2 flowed, and yellow light emission was obtained.

【0041】実施例7 実施例1で用いたTPASを1,1-シ゛メチル-2,5-ヒ゛ス(N-フェニル
-N-ヒ゜リシ゛ルアニリノ)-3,4-シ゛フェニルシラシクロヘ゜ンタシ゛エンに代えた以外
は、実施例1に準じた方法で素子を作成した。この素子
に、直流電圧を印加すると約10mA/cm2の電流が
流れ、黄色の発光が得られた。
Example 7 The TPAS used in Example 1 was replaced with 1,1-dimethyl-2,5-bis (N-phenyl).
A device was prepared in the same manner as in Example 1 except that -N-poly (anilino) -3,4-diphenylsilacyclopentandiene was used instead. When a DC voltage was applied to this device, a current of about 10 mA / cm 2 flowed, and yellow light emission was obtained.

【0042】比較例1 実施例1で用いたTPASを1,1-シ゛メチル-2,5-ヒ゛ス(5-ターシャ
リーフ゛チルシ゛フェニルシリルチエノ)-3,4-シ゛フェニルシラシクロヘ゜ンタシ゛エンに代え
た以外は、実施例1に準じた方法で素子を作成した。こ
の素子に、直流電圧を印加すると約6mA/cm2の電
流が流れ、約10cd/m2の黄色の発光が得られた。
Comparative Example 1 The procedure of Example 1 was repeated except that the TPAS used in Example 1 was replaced with 1,1-dimethyl-2,5-bis (5-tert-cyclobutylphenylsilylthieno) -3,4-diphenylsilacyclopentane. An element was prepared in the same manner as in Example 1. When a DC voltage was applied to this device, a current of about 6 mA / cm 2 flowed, and yellow light emission of about 10 cd / m 2 was obtained.

【0043】比較例2 実施例1で用いたTPASをTPDに代えた以外は、実
施例1に準じた方法で素子を作成した。この素子に、直
流電圧を印加すると電流は流れるが、検知できる発光を
得ることはできなかった。
Comparative Example 2 An element was prepared in the same manner as in Example 1 except that TPD used in Example 1 was changed to TPD. When a DC voltage was applied to this element, a current flowed, but no detectable light emission was obtained.

【0044】[0044]

【発明の効果】本発明の化合物は、正孔輸送性に優れて
いるので、電子写真もしくは有機EL素子の正孔輸送材
料としての実用的価値が高い。本発明の正孔輸送材料
を、有機EL素子に用いることにより、フルカラーの高
輝度なフラットパネルディスプレーなどが作成できる。
The compound of the present invention has excellent hole transporting properties, and therefore has a high practical value as a hole transporting material for electrophotography or organic EL devices. By using the hole transport material of the present invention for an organic EL device, a full-color high-luminance flat panel display or the like can be produced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 茂弘 京都府宇治市五ヶ庄京大職員宿舎744 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shigehiro Yamaguchi Kyoto University Gokasho Kyoto University Staff Dormitory 744

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記化1で表されるシラシクロペンタジ
エン誘導体を用いる正孔輸送材料。 【化1】 [式中、X及びYは、それぞれ独立に飽和もしくは不飽
和の炭化水素基、アルコキシ基、アルケニルオキシ基、
アルキニルオキシ基、ヒドロキシ基、置換もしくは無置
換のアリール基、置換もしくは無置換のヘテロ環、又は
XとYが結合して飽和もしくは不飽和の環を形成した構
造であり、Z1及びZ2は、それぞれ独立に少なくとも1
個以上の窒素原子、及び少くとも3個の芳香環を有する
基であり、R1及びR2は、それぞれ独立に水素、置換も
しくは無置換のアルキル基、アリール基、ヘテロ環基、
又は置換もしくは無置換の環が縮合した構造を示す]
1. A hole transport material using a silacyclopentadiene derivative represented by the following formula 1. Embedded image [Wherein, X and Y each independently represent a saturated or unsaturated hydrocarbon group, an alkoxy group, an alkenyloxy group,
An alkynyloxy group, a hydroxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocycle, or a structure in which X and Y are combined to form a saturated or unsaturated ring, and Z 1 and Z 2 are , Each independently at least one
R 1 and R 2 are each independently a hydrogen, a substituted or unsubstituted alkyl group, an aryl group, a heterocyclic group,
Or a structure in which a substituted or unsubstituted ring is fused]
【請求項2】 請求項1記載の正孔輸送材料が含まれて
いることを特徴とする有機電界発光素子。
2. An organic electroluminescent device comprising the hole transport material according to claim 1.
【請求項3】 正孔輸送層を有し、この正孔輸送層中に
請求項1記載の正孔輸送材料が含まれていることを特徴
とする有機電界発光素子。
3. An organic electroluminescent device having a hole transport layer, wherein the hole transport material according to claim 1 is contained in the hole transport layer.
JP25773097A 1997-09-05 1997-09-05 Hole transport material having silacyclopentadiene ring Expired - Fee Related JP3834954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25773097A JP3834954B2 (en) 1997-09-05 1997-09-05 Hole transport material having silacyclopentadiene ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25773097A JP3834954B2 (en) 1997-09-05 1997-09-05 Hole transport material having silacyclopentadiene ring

Publications (2)

Publication Number Publication Date
JPH1187067A true JPH1187067A (en) 1999-03-30
JP3834954B2 JP3834954B2 (en) 2006-10-18

Family

ID=17310307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25773097A Expired - Fee Related JP3834954B2 (en) 1997-09-05 1997-09-05 Hole transport material having silacyclopentadiene ring

Country Status (1)

Country Link
JP (1) JP3834954B2 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047518A (en) * 2005-08-11 2007-02-22 Ricoh Co Ltd Electrophotographic photoreceptor, image forming method using the same, image forming apparatus and process cartridge for image forming apparatus
US9181474B2 (en) 2012-02-07 2015-11-10 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting diode including the same
US9391280B2 (en) 2013-01-30 2016-07-12 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9397300B2 (en) 2013-02-14 2016-07-19 Samsung Display Co., Ltd. Compound and organic light-emitting diode including the same
US9425407B2 (en) 2013-09-27 2016-08-23 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9537104B2 (en) 2012-09-17 2017-01-03 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting diode including the condensed-cyclic compound
US9559310B2 (en) 2012-07-11 2017-01-31 Samsung Display Co., Ltd. Compound with electron injection and/or electron transport capabilities and organic light-emitting device including the same
US9564596B2 (en) 2013-10-02 2017-02-07 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device comprising same
US9583715B2 (en) 2013-08-09 2017-02-28 Samsung Display Co., Ltd. Anthracene-based compounds and organic light-emitting device including the same
US9601699B2 (en) 2013-10-31 2017-03-21 Samsung Display Co., Ltd. Chrysene-based compound and organic light-emitting device including the same
US9627634B2 (en) 2013-08-09 2017-04-18 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting diode including the same
US9680106B2 (en) 2013-10-01 2017-06-13 Samsung Display Co., Ltd. Pyrene-based compound and organic light-emitting device including the same
US9705093B2 (en) 2013-06-07 2017-07-11 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9705088B2 (en) 2013-12-13 2017-07-11 Samsung Display Co., Ltd. Triazine-based compounds and organic light-emitting devices including triazine-based compounds
US9716234B2 (en) 2013-08-28 2017-07-25 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US9722187B2 (en) 2014-10-22 2017-08-01 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US9755153B2 (en) 2014-07-24 2017-09-05 Samsung Display Co., Ltd. Organic compound and organic light emitting diode device including the same
US9825231B2 (en) 2013-09-06 2017-11-21 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US9825236B2 (en) 2014-07-17 2017-11-21 Samsung Display Co., Ltd. Organic light emitting device and display device including the same
US9831443B2 (en) 2014-03-19 2017-11-28 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device comprising the same
US9837614B2 (en) 2013-09-06 2017-12-05 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting device comprising the same
US9847492B2 (en) 2014-07-10 2017-12-19 Samsung Display Co., Ltd. Organic compound and organic light emitting diode device including the same
US9871208B2 (en) 2014-02-26 2018-01-16 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US9876179B2 (en) 2015-02-23 2018-01-23 Samsung Display Co., Ltd. Organic light emitting device
US9882143B2 (en) 2012-02-07 2018-01-30 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting diode including the same
US9899611B2 (en) 2014-09-05 2018-02-20 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US9905781B2 (en) 2015-10-08 2018-02-27 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US9929349B2 (en) 2014-12-08 2018-03-27 Samsung Display Co., Ltd. Organic light emitting device and display device including the same
US9997713B2 (en) 2013-01-28 2018-06-12 Samsung Display Co., Ltd. Organic light-emitting device
US9997722B2 (en) 2015-09-08 2018-06-12 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
JP2018121079A (en) * 2011-12-23 2018-08-02 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, lighting device, and electronic apparatus
US10069083B2 (en) 2014-06-02 2018-09-04 Samsung Display Co., Ltd. Condensed cyclic compounds and organic light-emitting devices including the same
US10069085B2 (en) 2016-07-18 2018-09-04 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10074811B2 (en) 2015-11-04 2018-09-11 Samsung Display Co., Ltd. Compound and organic light emitting device comprising same
US10193072B2 (en) 2013-02-25 2019-01-29 Samsung Display Co., Ltd. Pyrene-based compound and organic light-emitting diode comprising the same
US10205102B2 (en) 2015-06-17 2019-02-12 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device including the same
US10211407B2 (en) 2015-03-16 2019-02-19 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10236452B2 (en) 2015-08-04 2019-03-19 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10305046B2 (en) 2016-05-19 2019-05-28 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10319919B2 (en) 2015-10-15 2019-06-11 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10367150B2 (en) 2015-02-05 2019-07-30 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10418566B2 (en) 2015-03-23 2019-09-17 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device comprising the same
US10461262B2 (en) 2015-12-22 2019-10-29 Samsung Display Co., Ltd. Condensed cyclic compound and an organic light-emitting device including the same
US10553799B2 (en) 2016-06-20 2020-02-04 Samsung Display Co., Ltd. Condensed cyclic compound and an organic light-emitting device including the same
US10566545B2 (en) 2016-09-30 2020-02-18 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10580994B2 (en) 2015-09-16 2020-03-03 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10593887B2 (en) 2016-06-20 2020-03-17 Samsung Display Co., Ltd. Condensed cyclic compound and an organic light-emitting device including the same
JP2020077863A (en) * 2011-03-23 2020-05-21 株式会社半導体エネルギー研究所 Material and light emitting device
US10693079B2 (en) 2015-06-17 2020-06-23 Samsung Display Co., Ltd. Mono amine derivatives and organic electroluminescent device including the same
US10693083B2 (en) 2016-12-09 2020-06-23 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10714695B2 (en) 2015-10-08 2020-07-14 Samsung Display Co., Ltd. Organic light-emitting device
US10720585B2 (en) 2015-12-29 2020-07-21 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10818851B2 (en) 2015-07-31 2020-10-27 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10854823B2 (en) 2017-01-06 2020-12-01 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10897014B2 (en) 2016-07-13 2021-01-19 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10903432B2 (en) 2017-08-08 2021-01-26 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10991891B2 (en) 2017-10-30 2021-04-27 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10998503B2 (en) 2017-10-27 2021-05-04 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US11078210B2 (en) 2018-02-09 2021-08-03 Samsung Display Co., Ltd. Heterocyclic compound and organic light emitting device including the same
US11133473B2 (en) 2017-05-23 2021-09-28 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US11251376B2 (en) 2017-10-31 2022-02-15 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US11563183B2 (en) 2017-06-21 2023-01-24 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US11588111B2 (en) 2017-08-04 2023-02-21 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting device including the same

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047518A (en) * 2005-08-11 2007-02-22 Ricoh Co Ltd Electrophotographic photoreceptor, image forming method using the same, image forming apparatus and process cartridge for image forming apparatus
JP2020077863A (en) * 2011-03-23 2020-05-21 株式会社半導体エネルギー研究所 Material and light emitting device
US11871592B2 (en) 2011-03-23 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP2020074469A (en) * 2011-12-23 2020-05-14 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, lighting device, and electronic apparatus
JP2018121079A (en) * 2011-12-23 2018-08-02 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, lighting device, and electronic apparatus
JP2021193678A (en) * 2011-12-23 2021-12-23 株式会社半導体エネルギー研究所 Light emitting device and electronic equipment
US10998509B2 (en) 2011-12-23 2021-05-04 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US10693085B2 (en) 2011-12-23 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9882143B2 (en) 2012-02-07 2018-01-30 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting diode including the same
US9181474B2 (en) 2012-02-07 2015-11-10 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting diode including the same
US9559310B2 (en) 2012-07-11 2017-01-31 Samsung Display Co., Ltd. Compound with electron injection and/or electron transport capabilities and organic light-emitting device including the same
US9537104B2 (en) 2012-09-17 2017-01-03 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting diode including the condensed-cyclic compound
US9997713B2 (en) 2013-01-28 2018-06-12 Samsung Display Co., Ltd. Organic light-emitting device
US9391280B2 (en) 2013-01-30 2016-07-12 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9397300B2 (en) 2013-02-14 2016-07-19 Samsung Display Co., Ltd. Compound and organic light-emitting diode including the same
US10193072B2 (en) 2013-02-25 2019-01-29 Samsung Display Co., Ltd. Pyrene-based compound and organic light-emitting diode comprising the same
US9705093B2 (en) 2013-06-07 2017-07-11 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9627634B2 (en) 2013-08-09 2017-04-18 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting diode including the same
US9583715B2 (en) 2013-08-09 2017-02-28 Samsung Display Co., Ltd. Anthracene-based compounds and organic light-emitting device including the same
US9716234B2 (en) 2013-08-28 2017-07-25 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US9837614B2 (en) 2013-09-06 2017-12-05 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting device comprising the same
US9825231B2 (en) 2013-09-06 2017-11-21 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US9425407B2 (en) 2013-09-27 2016-08-23 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US9680106B2 (en) 2013-10-01 2017-06-13 Samsung Display Co., Ltd. Pyrene-based compound and organic light-emitting device including the same
US9564596B2 (en) 2013-10-02 2017-02-07 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device comprising same
US9601699B2 (en) 2013-10-31 2017-03-21 Samsung Display Co., Ltd. Chrysene-based compound and organic light-emitting device including the same
US9705088B2 (en) 2013-12-13 2017-07-11 Samsung Display Co., Ltd. Triazine-based compounds and organic light-emitting devices including triazine-based compounds
US9871208B2 (en) 2014-02-26 2018-01-16 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US9831443B2 (en) 2014-03-19 2017-11-28 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device comprising the same
US10069083B2 (en) 2014-06-02 2018-09-04 Samsung Display Co., Ltd. Condensed cyclic compounds and organic light-emitting devices including the same
US10608189B2 (en) 2014-06-02 2020-03-31 Samsung Display Co., Ltd. Condensed cyclic compounds and organic light-emitting devices including the same
US9847492B2 (en) 2014-07-10 2017-12-19 Samsung Display Co., Ltd. Organic compound and organic light emitting diode device including the same
US9825236B2 (en) 2014-07-17 2017-11-21 Samsung Display Co., Ltd. Organic light emitting device and display device including the same
US9755153B2 (en) 2014-07-24 2017-09-05 Samsung Display Co., Ltd. Organic compound and organic light emitting diode device including the same
US9899611B2 (en) 2014-09-05 2018-02-20 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US9722187B2 (en) 2014-10-22 2017-08-01 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US9929349B2 (en) 2014-12-08 2018-03-27 Samsung Display Co., Ltd. Organic light emitting device and display device including the same
US10367150B2 (en) 2015-02-05 2019-07-30 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US9876179B2 (en) 2015-02-23 2018-01-23 Samsung Display Co., Ltd. Organic light emitting device
US10211407B2 (en) 2015-03-16 2019-02-19 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10418566B2 (en) 2015-03-23 2019-09-17 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device comprising the same
US10205102B2 (en) 2015-06-17 2019-02-12 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device including the same
US10693079B2 (en) 2015-06-17 2020-06-23 Samsung Display Co., Ltd. Mono amine derivatives and organic electroluminescent device including the same
US10818851B2 (en) 2015-07-31 2020-10-27 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10236452B2 (en) 2015-08-04 2019-03-19 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US9997722B2 (en) 2015-09-08 2018-06-12 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10580994B2 (en) 2015-09-16 2020-03-03 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10714695B2 (en) 2015-10-08 2020-07-14 Samsung Display Co., Ltd. Organic light-emitting device
US9905781B2 (en) 2015-10-08 2018-02-27 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10319919B2 (en) 2015-10-15 2019-06-11 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10074811B2 (en) 2015-11-04 2018-09-11 Samsung Display Co., Ltd. Compound and organic light emitting device comprising same
US10461262B2 (en) 2015-12-22 2019-10-29 Samsung Display Co., Ltd. Condensed cyclic compound and an organic light-emitting device including the same
US10720585B2 (en) 2015-12-29 2020-07-21 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10305046B2 (en) 2016-05-19 2019-05-28 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10593887B2 (en) 2016-06-20 2020-03-17 Samsung Display Co., Ltd. Condensed cyclic compound and an organic light-emitting device including the same
US10553799B2 (en) 2016-06-20 2020-02-04 Samsung Display Co., Ltd. Condensed cyclic compound and an organic light-emitting device including the same
US10897014B2 (en) 2016-07-13 2021-01-19 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10069085B2 (en) 2016-07-18 2018-09-04 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10566545B2 (en) 2016-09-30 2020-02-18 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10693083B2 (en) 2016-12-09 2020-06-23 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10854823B2 (en) 2017-01-06 2020-12-01 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US11133473B2 (en) 2017-05-23 2021-09-28 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US11563183B2 (en) 2017-06-21 2023-01-24 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US11844273B2 (en) 2017-06-21 2023-12-12 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US11588111B2 (en) 2017-08-04 2023-02-21 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light-emitting device including the same
US10903432B2 (en) 2017-08-08 2021-01-26 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US10998503B2 (en) 2017-10-27 2021-05-04 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10991891B2 (en) 2017-10-30 2021-04-27 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US11251376B2 (en) 2017-10-31 2022-02-15 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
US11078210B2 (en) 2018-02-09 2021-08-03 Samsung Display Co., Ltd. Heterocyclic compound and organic light emitting device including the same

Also Published As

Publication number Publication date
JP3834954B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP3834954B2 (en) Hole transport material having silacyclopentadiene ring
US6767654B2 (en) Organic electroluminescent device
JP3755196B2 (en) Electroluminescent device using cyclopentadiene derivative
JP2918150B2 (en) Organic electroluminescent device using silacyclopentadiene derivative
EP1113017B1 (en) Silole derivatives and organic electroluminescent element containing the same
JP3965800B2 (en) Organic electroluminescent device using triarylamine derivative
KR100806059B1 (en) Organic electroluminescent device comprising dipyridylthiophene derivative
JP3985311B2 (en) Amine derivative and organic electroluminescence device using the same
KR100333574B1 (en) Diaminonaphthalene derivative and organic electroluminescent device using the same
JPH11338172A (en) Naphthalene derivative and organic electroluminescent element using same
JP4069505B2 (en) Trinaphthylbenzene derivative and organic electroluminescence device using the same
JP3569993B2 (en) Oxadiazole polymer
JPH08176148A (en) Hetero ring-containing oxadiazole derivative
JP4792687B2 (en) Charge transport material, light-emitting material containing diazapentacene derivative, and organic electroluminescent device using the same
JP3486994B2 (en) Organic electroluminescent device using oxadiazole derivative
JPH1154280A (en) Organic electroluminescent element using naphthylamine derivative
JP3858278B2 (en) Electroluminescent device
JP2002216972A (en) Organic electric field light-emitting element containing boron substituted silane cyclopentadiene derivative
JP2004146110A (en) Organic electroluminescent element containing dihydrophenazine derivative in positive electrode buffer layer
JP3925543B2 (en) Electroluminescent device
JPH05121168A (en) Styril compound and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees