JP3834954B2 - Hole transport material having silacyclopentadiene ring - Google Patents

Hole transport material having silacyclopentadiene ring Download PDF

Info

Publication number
JP3834954B2
JP3834954B2 JP25773097A JP25773097A JP3834954B2 JP 3834954 B2 JP3834954 B2 JP 3834954B2 JP 25773097 A JP25773097 A JP 25773097A JP 25773097 A JP25773097 A JP 25773097A JP 3834954 B2 JP3834954 B2 JP 3834954B2
Authority
JP
Japan
Prior art keywords
group
hole transport
organic
transport material
silacyclopentadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25773097A
Other languages
Japanese (ja)
Other versions
JPH1187067A (en
Inventor
内田  学
勇昇 泉澤
顕治 古川
皓平 玉尾
茂弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP25773097A priority Critical patent/JP3834954B2/en
Publication of JPH1187067A publication Critical patent/JPH1187067A/en
Application granted granted Critical
Publication of JP3834954B2 publication Critical patent/JP3834954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機電界発光素子などに使用できる、シラシクロペンタジエン誘導体を用いた正孔輸送材料及び該正孔材料を用いた正孔電界発光素子に関する。
【0002】
【従来の技術】
近年、これまでにない高輝度な平面ディスプレイの候補として有機電界発光素子(以後、有機EL素子と略する)が注目され、その研究開発が活発化している。有機EL素子の構造は、発光色素を含む有機発光層を2つの電極で挟んでおり、陽極から注入された正孔と陰極から注入された電子とが、該発光層中で再結合して光を発する。有機EL素子に用いられる有機材料には、低分子材料と高分子材料があり、これらを用いた有機EL素子の発光は共に高輝度である。
【0003】
有機EL素子には2つのタイプがある。1つは、タン(C.W.Tang)らによって発表された、蛍光色素を、電子および/もしくは正孔、を輸送する電荷輸送層中に添加して有機発光層としたもの(ジャーナル オブ ジ アプライド フィジックス(J.Appl.Phys.),65,3610(1989))であり、もう1つは、有機発光層に蛍光色素を単独に用いたものである(例えば、ジャパニーズ ジャーナル オブ ジアプライド フィジックス(Jpn.J.Appl.Phys.),27,L269(1988)に記載されている素子)。
有機発光層に蛍光色素を単独に用いた有機EL素子は、さらに3つのタイプに分けられる。1つ目は、有機発光層を電荷の1つである正孔のみを輸送する正孔輸送層及び電子のみを輸送する電子輸送層とで挟んで三層としたもの、2つ目は、正孔輸送層と有機発光層とを積層して二層としたもの、3つ目は、電子輸送層と有機発光層とを積層して二層としたものである。また、有機EL素子は、二層もしくは三層にすることにより、発光効率が向上することが知られている。
【0004】
有機EL素子に使用される正孔輸送材料は、トリフェニルアミン誘導体を中心にして多種多様の材料が知られている。しかしながら、これらの材料は同時に使われる発光色素もしくは電子輸送材料と励起錯体を形成し、素子の効率を低下させる欠点を有していた。例えば、N,N'-ジフェニル-N,N'-ジ(3-メチルフェニル)-4,4'-ジアミノビフェニル(以後、TPDと略する)を、有機EL素子に使用した場合、多くの発光色素及び電子輸送材料と励起錯体を形成し、使用する発光色素及び電子輸送材料が制限されるという問題点があった。このような電子輸送材料の具体例としては、2-(4-ビフェニルイル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(以後、PBDと略する)などが知られている。
有機EL素子に用いられる正孔輸送材料の特性としては、何よりもまず励起錯体を形成し難い必要があり、なおかつ、正孔輸送能に優れている必要がある。
【0005】
一方、シラシクロペンタジエン誘導体の最近の報告例としては、特開平7-179477号公報に示されているように、π電子共役系有機ポリマーへの応用を意図した反応性中間体に関するものに限定されている。また、シラシクロペンタジエンとチオフェンとの共重合体の例は、特開平6-166746号公報及び特開平9-87616号公報に示されているが、これらの化合物は正孔輸送能が低いという欠点を有するため、有機EL素子の正孔輸送材料としては不向きであるという問題点があった。
さらに、DE4442050に示されているアミノ基の付いたシラシクロペンタジエン誘導体は、同時に使われる発光色素、電子輸送材料などとの間に、素子の効率を低下させる原因となる励起錯体を形成しやすく、使用できる発光色素及び電子輸送材料が制限される欠点を有していた。
【0006】
また、シラン誘導体を有機EL素子に利用した例として、特開平5-343184号公報、特開平6-124784号公報、特開平6-234968号公報、特開平6-293778号公報、特開平6-325871号公報、特開平7-11244号公報があるが、これらに示されている有機シラン化合物にはシラシクロペンタジエン環は含まれていない。さらに、これらのシラン化合物についても、実際に使用されている例は、正孔輸送材料もしくは発光層と、陰極との間の密着性向上のための界面層としての使用に限定されていて、正孔輸送材料として使用されることは全く知られていなかった。
すでに、本発明者らは、特開平9-194487号公報開示のように、シラシクロペンタジエン誘導体が、電子輸送材料に優れた性能を持つことを見出していた。
【0007】
【発明が解決しようとする課題】
本発明の目的は、低電圧、高発光効率な有機EL素子の基になる正孔輸送材料を提供することである。
【0008】
【課題を解決するための手段】
そこで、本発明者らは、鋭意検討した結果、シラシクロペンタジエン誘導体を正孔輸送材料に使用した場合、低電圧、高発光効率な有機EL素子を得ることができることを見いだし、本発明を完成した。
すなわち、本発明は、下記(1)から(3)で構成される。
【0009】
(1)下記化2で表される化合物を用いることを特徴とする正孔輸送材料。
【化2】

Figure 0003834954
[式中、X及びYは、それぞれ独立に飽和もしくは不飽和の炭化水素基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、ヒドロキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロ環、又はXとYが結合して飽和もしくは不飽和の環を形成した構造であり、Z1及びZ2は、それぞれ独立に少なくとも1個以上の窒素原子、及び少くとも3個の芳香環を有する基であり、R1及びR2は、それぞれ独立に水素、置換もしくは無置換のアルキル基、アリール基、ヘテロ環基、又は置換もしくは無置換の環が縮合した構造を示す]
(2)上記(1)記載の正孔輸送材料が含まれていることを特徴とする有機電界発光素子。
(3)正孔輸送層を有し、この正孔輸送層に上記(1)記載の正孔輸送材料が含まれていることを特徴とする有機電界発光素子。
【0010】
【発明の実施の形態】
本発明で用いられるシラシクロペンタジエン誘導体の例としては、1,1-ジメチル-2,5-ビス(4-N,N-ジフェニルアニリノ)-3,4-ジフェニルシラシクロペンタジエン(以後、TPASと略する)、1,1-ジメチル-2,5-ビス(3-N,N-ジフェニルアニリノ)-3,4-ジフェニルシラシクロペンタジエン、1,1-ジメチル-2,5-ビス{4-N-(1-ナフチル)-N-フェニルアニリノ}-3,4-ジフェニルシラシクロペンタジエン、1,1-ジメチル-2,5-ビス(2-N,N-ジエチルアニリノ)-3,4-ジフェニルシラシクロペンタジエン、1,1-ジイソプロピル-2,5-ビス{4-N-(3-メチルフェニル)-N-フェニルアニリノ}-3,4-ジフェニルシラシクロペンタジエン、1,1,3,4-テトラフェニル-2,5-ビス{4-N-(3-メチルフェニル)-N-フェニルアニリノ}シラシクロペンタジエン、下記化3で示される化合物などがあげられるが、これらの化合物に限定されるものではない。
【化3】
Figure 0003834954
【0011】
本発明で用いられるシラシクロペンタジエン誘導体は、例えば、以下に示す製造法により得ることができるが、本発明はこれらの製造方法に限定されない。
下記化4で表されるシラペンタジイン誘導体にアルカリ金属錯体を反応させ、ついで、下記化5で表されるシラン誘導体を反応させ、さらに続いて、塩化亜鉛あるいは塩化亜鉛錯体を反応させることによって下記化6で表される反応性シラシクロペンタジエン誘導体が得ることができる。
ついで、該反応性シラシクロペンタジエン誘導体に触媒の存在下、下記化7で表されるハロゲン化物を反応させることによって、本発明で用いられるシラシクロペンタジエン誘導体が得られる。
【0012】
【化4】
Figure 0003834954
[式中、X及びYは、それぞれ独立に炭素数1から6までの飽和もしくは不飽和の炭化水素基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロ環を示すか、又はXとYが結合して飽和もしくは不飽和の環を形成しており、R1及びR2は、それぞれ独立に水素、置換もしくは無置換のアルキル基、アリール基、ヘテロ環基、又は置換もしくは無置換の環が縮合した構造を示す]
【0013】
【化5】
Figure 0003834954
[式中、X、Y及びZは、それぞれ独立に、ターシャリーブチル基もしくはアリール基を示す]
【0014】
【化6】
Figure 0003834954
[式中、X及びYは、それぞれ独立に飽和もしくは不飽和の炭化水素基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、ヒドロキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロ環、又はXとYが結合して飽和もしくは不飽和の環を形成した構造であり、 R1及びR2は、それぞれ独立に水素、置換もしくは無置換のアルキル基、アリール基、ヘテロ環基、又は置換もしくは無置換の環が縮合した構造を示す]
【0015】
【化7】
Figure 0003834954
[式中、Z1は、窒素原子もしくは、少くとも3個の芳香環を有する基であり、Wは、ハロゲン原子を示す]
【0016】
まず始めの原料として用いられるシラペンタジイン誘導体に付く置換基としては、アルカリ金属錯体とシラペンタジインとの反応を阻害しにくいものが好ましく、アルカリ金属錯体に対して不活性なものがさらに好ましい。用いられるアルカリ金属錯体としては、例えば、リチウムナフタレニド、ナトリウムナフタレニド、カリウムナフタレニド、リチウム4,4'-ジターシャリ-ブチル-2,2'-ビフェニリド、リチウム(N、N-ジメチルアミノ)ナフタレニドなどがあげられる。
反応に用いられる溶媒としては、アルカリ金属もしくはアルカリ金属錯体に不活性なものなら特に限定されず、エーテルおよびテトラヒドロフランのようなエーテル系の溶媒が好適である。
この反応で使用されるシラン誘導体の置換基としては、嵩高いものが好ましく、具体的にはターシャリーブチルジフェニルクロロシラン、ジターシャリーブチルフェニルクロロシランなどが挙げられる。
【0017】
さらに続いて、用いられる塩化亜鉛あるいは塩化亜鉛の錯体としては、塩化亜鉛の固体を直接用いるか、塩化亜鉛のエーテル溶液を使用するか、もしくは塩化亜鉛のテトラメチルエチレンジアミン錯体を使用するかなどの方法があり、これらの塩化亜鉛類は、十分に乾燥していることが好ましく、水分が多いと目的物が得られ難くなる。この一連の反応は、不活性気流中で行うことが好ましく、一般に、アルゴンガスが使われる。
【0018】
反応性シラシクロペンタジエン誘導体からハロゲン化物を反応させる際の触媒としては、テトラキストリフェニルフォスフィンパラジウム、ジクロロビストリフェニルフォスフィンパラジウムなどのパラジウム触媒が挙げられる。
一連の反応の各段階において、反応温度に特に制限はないが、アルカリ金属錯体、シラン誘導体及び塩化亜鉛などを加え攪拌する際には、室温以下が好ましく、通常0℃以下で行われる。ハロゲン化物を加えた後の反応温度は、室温以上が好ましく、通常、溶媒にテトラヒドロフランを用いた場合には還流下で行われる。 反応時間においても特に制限はなく、アルカリ金属錯体、シラン誘導体及び塩化亜鉛などを加え攪拌する際には、数分から数時間の間が望ましい。ハロゲン化物を加えた後の反応は、NMRもしくはクロマトグラフィーなどの一般的な分析手段により反応を追跡し、反応の終点を決定すればよい。
【0019】
このようにして得られた、本発明で用いるシラシクロペンタジエン誘導体のケイ素上に付く置換基としては、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、シクロペンチル基、もしくはターシャリーブチル基などのようなアルキル基、ビニル基、アリル基、ブテニルもしくはスチリル基などのようなアルケニル基、エチニル基、プロパギル基もしくはフェニルアセチニル基などのようなアルキニル基、メトキシ基、エトキシ基、イソプロポキシ基もしくはターシャリーブトキシ基などのようなアルコキシ基、ビニルオキシ基もしくはアリルオキシ基のようなアルケニルオキシ基、エチニルオキシ基もしくはフェニルアセチルオキシ基などのようなアルキニルオキシ基、フェニル基、ナフチル基、アントラセニル基、ビフェニル基、トルイル基、ピレニル基、ペリレニル基、アニシル基、ターフェニル基もしくはフェナンスレニル基などのアリール基、ヒドロフリル基、ヒドロピレニル基、ジオキサニル基、チエニル基、フリル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基、アクリジニル基、キノリル基、キノキサロイル基、フェナンスロリル基、ベンゾチエニル基、ベンゾチアゾリル基、インドリル基、シラシクロペンタジエニル基もしくはピリジル基などのヘテロ環などが挙げられる。また、これらの置換基がお互いに任意の場所で結合してスピロ環を形成していても良い。
【0020】
本発明のシラシクロペンタジエン環の3位及び4位に付く置換基としては、それぞれ独立に、水素、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、シクロペンチル基、ターシャリーブチル基のようなアルキル基、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントラセニル基、ピレニル基、トルイル基、アニシル基、フルオロフェニル基、ジフェニルアミノフェニル基、ジメチルアミノフェニル基、ジエチルアミノフェニル基、フェナンスレニル基のようなアリール基、チエニル基、フリル基、シラシクロペンタジエニル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基、アクリジニル基、キノリル基、キノキサロイル基、フェナンスロリル基、ベンゾチエニル基、ベンゾチアゾリル基、インドリル基、カルバゾリル基、ピリジル基、ピロリル基、ベンゾオキサゾリル基、ピリミジル基、イミダゾリル基などのようなヘテロ環などが挙げられる。また、これらの置換基がお互いに任意の場所で結合して環を形成していてもよい。
【0021】
シラシクロペンタジエン環の2位及び5位に付く置換基としては、それぞれ独立に、トリフェニルアミノ基、ジフェニルアミノナフチル基、ナフチルフェニルアミノフェニル基、フェニルトルイルアミノナフチル基などが挙げられる。
これらの置換基の導入方法は、シラシクロペンタジエン環の形成前に導入しても良いし、シラシクロペンタジエン環形成後に導入してもよい。
【0022】
本発明において、有機EL素子に用いられるシラシクロペンタジエン誘導体は正孔輸送材料として有効であることを見出した。シラシクロペンタジエン環の2位及び5位に正孔輸送能力を有する部位が付いていることに加え、シラシクロペンタジエン環の電子的な特性も正孔輸送性に効果を与えていることが考えられる。
【0023】
また、本発明のシラシクロペンタジエン誘導体は、それ自身強い蛍光を示すので有機EL素子の発光色素としても有用である。例えば、TPASは黄色に発光する。
さらに、シラシクロペンタジエン環は、それ自身で電子輸送性を示すので、本発明で使用されるシラシクロペンタジエン誘導体は両電荷輸送性を示す。そのため、本発明のシラシクロペンタジエン誘導体を用いた有機EL素子は、単層においても効率が高い。
【0024】
本発明の有機EL素子の構成は、各種の態様があるが、基本的には一対の電極(陽極と陰極)間に、前記シラシクロペンタジエン誘導体を挟持した構成とし、これに必要に応じて、正孔輸送材料、発光色素及び電子輸送材料を加えるか、別の層として積層すればよい。具体例としては、陽極/本発明のシラシクロペンタジエン誘導体層/陰極、陽極/正孔注入層/本発明のシラシクロペンタジエン誘導体層/陰極、陽極/本発明のシラシクロペンタジエン誘導体層/正孔輸送層/有機発光層/電子輸送層/陰極、陽極/(発光色素+本発明のシラシクロペンタジエン誘導体層)/陰極などが挙げられる。
【0025】
本発明の有機EL素子は、いずれも基板に支持されていることが好ましく、支持する基板は特に制限されず、従来の電界発光素子に慣用されているもの、例えばガラス、透明プラスチック、導電性高分子もしくは石英などから成るものを用いることができる。
本発明の有機EL素子に使用される各層は、例えば蒸着法、塗布法などの公知の方法によって、薄膜化する事により形成することができる。
このようにして形成された各層の薄膜の厚みについては特に制限はなく、適宜状況に応じて選ぶことができるが、通常2nmないし5000nmの範囲で選定される。
【0026】
本発明の有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物、もしくはこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Auなどの金属、CuI、インジウムチンオキサイド(以後、ITOと略する)、SnO2、ZnOなどの誘電性透明材料が挙げられる。該陽極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより作製することができる。この電極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また、電極としてのシート抵抗は数百Ω/square以下が好ましい。
さらに膜厚は材料にもよるが、通常10nmないし1μm、好ましくは10〜200nmの範囲で選ばれる。
【0027】
一方、陰極としては、仕事関数の小さい(4.3eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、カルシウム、マグネシウム、リチウム、アルミニウム、マグネシウム合金、リチウム合金、アルミニウム合金、アルミニウム/リチウム混合物、マグネシウム/銀混合物、インジウムなどが挙げられる。該陰極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより、作製することができる。また、電極としてのシート抵抗は数百Ω/square以下が好ましく、膜厚は通常10nmないし1μm、好ましくは50〜200nmの範囲で選ばれる。
【0028】
本発明の有機EL素子の構成は、前述したように各種の態様があるが、正孔輸送層を設けると発光効率が向上する。
正孔輸送層に用いられる正孔輸送材料としては、電界を与えられた2個の電極間に配置されて陽極から正孔が注入された場合、該正孔を適切に発光層へ伝達しうる化合物であって、例えば、104〜106V/cmの電界印加時に、少なくとも10-6cm2/V・秒以上の正孔移動度をもつものが好適である。このような正孔輸送材料については、前記の好ましい性質を有する物であれば特に制限はなく、複数の正孔輸送材料を使用する場合は、該シラシクロペンタジエン誘導体ばかりでなく、従来、光導電材料において、正孔の電荷輸送材として慣用されているものや有機EL素子の正孔輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
【0029】
該正孔輸送材料としては、例えば、N-フェニルカルバゾール、ポリビニルカルバゾールなどのカルバゾール誘導体、TPD、芳香族第3級アミンを主鎖もしくは側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N'-ジフェニル-N,N'-ジナフチル-4,4'-ジアミノビフェニルなどのトリアリールアミン誘導体、無金属、銅フタロシアニンなどのフタロシアニン誘導体、ポリシランなどが挙げられる。
【0030】
本発明の有機EL素子における電子を輸送する層において使用される電子輸送材料については、特に制限はなく、従来公知の化合物の中から任意のものを選択して用いることができる。該電子輸送材料の好ましい例としては、電子写真学会誌、30巻3ページ1991年などに記載のジフェニルキノン誘導体、もしくはジャーナル オブ ジ アプライド フィジックス(Jpn.J.Appl.Phys.),27,269,(1988)などに記載の化合物や、PBDなどのオキサジアゾール誘導体(ジャパニーズジャーナル オブ ジ アプライド フィジックス(Jpn.J.Appl.Phys.),27,L713(1988)、アプライド フィジックス レター(Appl.Phys.Lett.),55,1489(1989)などに記載のもの)、チオフェン誘導体(特開平4-212286号公報などに記載のもの)、トリアゾール誘導体(Jpn.J.Appl.Phys.,32,L917(1993)などに記載のもの)、チアジアゾール誘導体(第43回高分子学会予稿集、(III)P1a007などに記載のもの)、オキシン誘導体の金属錯体(電子情報通信学会技術研究報告、92(311),43(1992)などに記載のもの)、キノキサリン誘導体のポリマー(Jpn.J.Appl.Phys.,33,L250(1994)などに記載のもの)、フェナントロリン誘導体(第43回高分子討論会予稿集、14J07などに記載のもの)などを挙げることができる。
【0031】
本発明の有機EL素子に用いられる発光材料には、本発明のシラシクロペンタジエン誘導体ばかりでなく、高分子学会編 高分子機能材料シリーズ”光機能材料”、共立出版(1991)、P236 に記載されているような昼光蛍光材料、蛍光増白剤、レーザー色素、有機シンチレータ、各種の蛍光分析試薬などの公知の発光材料を含めて用いることができるが、具体的には、アントラセン、フェナントレン、ピレン、クリセン、ペリレン、コロネン、ルブレン、キナクリドンなどの多環縮合化合物、クオーターフェニルなどのオリゴフェニレン系化合物、1,4-ビス(2-メチルスチリル)ベンゼン、1,4-ビス(4-メチルスチリル)ベンゼン、1,4-ビス(4-メチル-5-フェニル-2-オキザゾリル)ベンゼン、1,4-ビス(5-フェニル-2-オキサゾリル)ベンゼン、2,5-ビス(5-タシャリー-ブチル-2-ベンズオキサゾリル)チオフェン、1,4-ジフェニル-1,3-ブタジエン、1,6-ジフェニル-1,3,5-ヘキサトリエン、1,1,4,4-テトラフェニル-1,3,-ブタジエンなどの液体シンチレーション用シンチレータ、特開昭63−264692号公報記載のオキシン誘導体の金属錯体、クマリン染料、ジシアノメチレンピラン染料、ジシアノメチレンチオピラン染料、ポリメチン染料、オキソベンズアントラセン染料、キサンテン染料、カルボスチリル染料およびペリレン染料、独国特許2534713 公報に記載のオキサジン系化合物、第40回応用物理学関係連合講演会講演予稿集、1146(1993)に記載のスチルベン誘導体、特開平4-363891号公報記載のオキサジアゾール系化合物、及び特開平9-194487号公報記載のシラシクロペンタジエン誘導体が好ましい。
【0032】
本発明の有機EL素子を作製する好適な方法の例を次の構成の素子について説明する。
陽極/本発明のシラシクロペンタジエン誘導体層/陰極からなるEL素子の作製法について説明すると、まず適当な基板上に、所望の電極物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10〜200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させ、陽極を作製したのち、この上にシラシクロペンタジエン誘導体の薄膜を形成させる。薄膜化の方法としては、例えば、浸漬塗工法、スピンコート法、キャスト法、蒸着法などがあるが、均質な膜が得られやすく、不純物が混ざり難くかつピンホールが生成しにくいなどの点から蒸着法が好ましい。
【0033】
次に、このシラシクロペンタジエン誘導体層の形成後、その上に陰極用物質からなる薄膜を、1μm以下、例えば蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより、所望のEL素子が得られる。なお、このEL素子の作製においては、作製順序を逆にして、陰極、該シラシクロペンタジエン誘導体層、陽極の順に作製することも可能である。
このようにして得られたEL素子に、直流電圧を印加する場合には、電圧3〜40V程度を印加すると、発光が透明または半透明の電極側より観測できる。さらに、交流電圧を印加することによっても発光する。なお印加する交流の波形は任意でよい。
【0034】
【実施例】
以下に実施例にて本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。
【0035】
実施例1
25mm×75mm×1.1mmのガラス基板上にITOを蒸着法にて50nmの厚さで製膜したもの(東京三容真空(株)製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(真空機工(株)製)の基板ホルダーに固定し、石英製のるつぼにTPASをいれて真空槽を1×10-4Paまで減圧した。
TPAS入りのるつぼを加熱し、膜厚100nmになるようにTPASを蒸着した。蒸着速度は0.1〜0.2nm/秒であった。
その後真空槽を2×10-4Paまで減圧してから、グラファイト性のるつぼから、マグネシウムを1.2〜2.4nm/秒の蒸着速度で、同時にもう一方のるつぼから銀を0.1〜0.2nm/秒の蒸着速度で蒸着した。上記条件でマグネシウムと銀の混合金属電極を発光層の上に200nm積層蒸着して対向電極とし、素子を形成した。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極として、得られた素子に、直流電圧6.5Vを印加すると約30mA/cm2の電流が流れ、200cd/m2の黄色の発光を得た。発光波長は545nmであった。
【0036】
実施例2
実施例1で用いた透明支持基板を蒸着装置の基板ホルダーに固定し、石英製のるつぼにTPAS、他のるつぼにTPD、さらに他のるつぼに1,1-ジメチル-3,4-ジフェニル-2,5-ジピリジルシロール(以後、PYSと略する)をいれて真空槽を1×10-4Paまで減圧した。
TPD入りのるつぼを加熱し膜厚50nmになるように蒸着し、ついでTPAS入りのるつぼを加熱し膜厚15nmになるようにTPASを蒸着し、ついでPYS入りのるつぼを加熱し膜厚35nmになるようにPYSを蒸着した。蒸着速度は0.1〜0.2nm/秒であった。
その後真空槽を2×10-4Paまで減圧してから、グラファイト性のるつぼから、マグネシウムを1.2〜2.4nm/秒の蒸着速度で、同時にもう一方のるつぼから銀を0.1〜0.2nm/秒の蒸着速度で蒸着した。上記条件でマグネシウムと銀の混合金属電極を発光層の上に200nm積層蒸着して対向電極とし、素子を形成した。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極として、得られた素子に、直流電圧4.5Vを印加すると約10mA/cm2の電流が流れ、約100cd/m2の黄色の発光を得た。発光波長は545nmであった。
【0037】
実施例3
実施例1で用いた透明支持基板を蒸着装置の基板ホルダーに固定し、石英製のるつぼにTPAS、他のるつぼにPYSをいれて真空槽を1×10-4Paまで減圧した。
TPAS入りのるつぼを加熱し膜厚50nmになるようにTPASを蒸着し、ついでPYS入りのるつぼを加熱し膜厚50nmになるようにPYSを蒸着した。蒸着速度は0.1〜0.2nm/秒であった。
その後真空槽を2×10-4Paまで減圧してから、グラファイト性のるつぼから、マグネシウムを1.2〜2.4nm/秒の蒸着速度で、同時にもう一方のるつぼから銀を0.1〜0.2nm/秒の蒸着速度で蒸着した。上記条件でマグネシウムと銀の混合金属電極を発光層の上に200nm積層蒸着して対向電極とし、素子を形成した。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極として、得られた素子に、直流電圧5Vを印加すると約10mA/cm2の電流が流れ、約300cd/m2の黄色の発光を得た。発光波長は545nmであった。
【0038】
実施例4
実施例1で用いた透明支持基板を蒸着装置の基板ホルダーに固定し、石英製のるつぼにTPAS、他のるつぼにTPDをいれて真空槽を1×10-4Paまで減圧した。
TPD入りのるつぼを加熱し膜厚50nmになるように蒸着し、ついでTPAS入りのるつぼを加熱し膜厚50nmになるようにTPASを蒸着した。蒸着速度は0.1〜0.2nm/秒であった。
その後真空槽を2×10-4Paまで減圧してから、グラファイト性のるつぼから、マグネシウムを1.2〜2.4nm/秒の蒸着速度で、同時にもう一方のるつぼから銀を0.1〜0.2nm/秒の蒸着速度で蒸着した。上記条件でマグネシウムと銀の混合金属電極を発光層の上に200nm積層蒸着して対向電極とし、素子を形成した。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極として、得られた素子に、直流電圧5.5Vを印加すると約4mA/cm2の電流が流れ、約100cd/m2の黄色の発光を得た。発光波長は545nmであった。
【0039】
実施例5
実施例1で用いた透明支持基板を蒸着装置の基板ホルダーに固定し、石英製のるつぼにTPAS、他のるつぼにTPD、さらに他のるつぼに、トリス(8-ヒドロキシノリン)アルミニウム(以後、Alqと略する)をいれて真空槽を1×10-4Paまで減圧した。
TPAS入りのるつぼを加熱し膜厚35nmになるように蒸着し、ついでTPD入りのるつぼを加熱し膜厚15nmになるようにTPDを蒸着し、ついでAlq入りのるつぼを加熱し膜厚50nmになるようにAlqを蒸着した。蒸着速度は0.1〜0.2nm/秒であった。
その後真空槽を2×10-4Paまで減圧してから、グラファイト性のるつぼから、マグネシウムを1.2〜2.4nm/秒の蒸着速度で、同時にもう一方のるつぼから銀を0.1〜0.2nm/秒の蒸着速度で蒸着した。上記条件でマグネシウムと銀の混合金属電極を発光層の上に200nm積層蒸着して対向電極とし、素子を形成した。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極として、得られた素子に、直流電圧4.5Vを印加すると約10mA/cm2の電流が流れ、100cd/m2の緑色の発光を得た。発光波長は520nmであった。
【0040】
実施例6
実施例1で用いたTPASを1,1-ジメチル-2,5-ビス(N-ナフチル-N-フェニルアニリノ)-3,4-ジフェニルシラシクロペンタジエンに代えた以外は、実施例1に準じた方法で素子を作成した。この素子に、直流電圧を印加すると約10mA/cm2の電流が流れ、黄色の発光が得られた。
【0041】
実施例7
実施例1で用いたTPASを1,1-ジメチル-2,5-ビス(N-フェニル-N-ピリジルアニリノ)-3,4-ジフェニルシラシクロペンタジエンに代えた以外は、実施例1に準じた方法で素子を作成した。
この素子に、直流電圧を印加すると約10mA/cm2の電流が流れ、黄色の発光が得られた。
【0042】
比較例1
実施例1で用いたTPASを1,1-ジメチル-2,5-ビス(5-ターシャリーブチルジフェニルシリルチエノ)-3,4-ジフェニルシラシクロペンタジエンに代えた以外は、実施例1に準じた方法で素子を作成した。
この素子に、直流電圧を印加すると約6mA/cm2の電流が流れ、約10cd/m2の黄色の発光が得られた。
【0043】
比較例2
実施例1で用いたTPASをTPDに代えた以外は、実施例1に準じた方法で素子を作成した。
この素子に、直流電圧を印加すると電流は流れるが、検知できる発光を得ることはできなかった。
【0044】
【発明の効果】
本発明の化合物は、正孔輸送性に優れているので、電子写真もしくは有機EL素子の正孔輸送材料としての実用的価値が高い。本発明の正孔輸送材料を、有機EL素子に用いることにより、フルカラーの高輝度なフラットパネルディスプレーなどが作成できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hole transport material using a silacyclopentadiene derivative and a hole electroluminescence element using the hole material, which can be used for an organic electroluminescence element and the like.
[0002]
[Prior art]
In recent years, organic electroluminescent elements (hereinafter abbreviated as organic EL elements) have attracted attention as candidates for unprecedented high-brightness flat displays, and their research and development have been activated. The structure of the organic EL element is such that an organic light emitting layer containing a light emitting dye is sandwiched between two electrodes, and holes injected from the anode and electrons injected from the cathode are recombined in the light emitting layer to generate light. To emit. The organic material used for the organic EL element includes a low molecular material and a high molecular material, and the light emission of the organic EL element using these materials has high luminance.
[0003]
There are two types of organic EL elements. One is an organic light emitting layer (Journal of the Applied Physics (J) published by CWTang et al.) By adding a fluorescent dye into a charge transport layer that transports electrons and / or holes. Appl. Phys.), 65, 3610 (1989)), and the other using a fluorescent dye alone in the organic light emitting layer (for example, Japanese Journal of the Physics (Jpn.J. Appl. Phys.), 27, L269 (1988)).
Organic EL elements using a fluorescent dye alone in the organic light emitting layer are further classified into three types. The first is a three-layer structure in which the organic light-emitting layer is sandwiched between a hole transport layer that transports only one hole, which is one of the charges, and an electron transport layer that transports only electrons. The hole transport layer and the organic light emitting layer are laminated to form two layers, and the third is the electron transport layer and the organic light emitting layer that are laminated to form two layers. In addition, it is known that the luminous efficiency of the organic EL element is improved by using two or three layers.
[0004]
A wide variety of materials are known as hole transport materials used in organic EL elements, mainly triphenylamine derivatives. However, these materials have the disadvantage that they form an exciplex with a luminescent dye or an electron transport material used at the same time, thereby reducing the efficiency of the device. For example, when N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diaminobiphenyl (hereinafter abbreviated as TPD) is used in an organic EL device, a large amount of light is emitted. There is a problem in that an exciplex is formed with the dye and the electron transport material, and the light emitting dye and the electron transport material to be used are limited. Specific examples of such an electron transporting material include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (hereinafter abbreviated as PBD) and the like. It has been known.
As a characteristic of the hole transport material used for the organic EL element, it is necessary to form an exciplex first and it is necessary to have excellent hole transport ability.
[0005]
On the other hand, recent reports of silacyclopentadiene derivatives are limited to those related to reactive intermediates intended for application to π-electron conjugated organic polymers, as disclosed in JP-A-7-179477. ing. Examples of copolymers of silacyclopentadiene and thiophene are shown in JP-A Nos. 6-166746 and 9-87616, but these compounds have a drawback of low hole transport ability. Therefore, there is a problem that it is not suitable as a hole transport material for organic EL elements.
Furthermore, the silacyclopentadiene derivative with an amino group shown in DE4442050 is easy to form an exciplex that causes a decrease in the efficiency of the device between the luminescent dye and the electron transport material used at the same time, The light emitting dyes and electron transport materials that can be used have the disadvantage of being limited.
[0006]
Examples of using silane derivatives in organic EL devices include JP-A-5-343184, JP-A-6-124784, JP-A-6-234968, JP-A-6-2937878, and JP-A-6- No. 325871 and JP-A-7-11244, but the organosilane compounds shown therein do not contain a silacyclopentadiene ring. Further, examples of these silane compounds that are actually used are limited to use as an interface layer for improving adhesion between a hole transport material or a light emitting layer and a cathode. It has never been known to be used as a hole transport material.
The present inventors have already found that a silacyclopentadiene derivative has excellent performance as an electron transporting material as disclosed in JP-A-9-194487.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a hole transport material which is a base of an organic EL device having a low voltage and high luminous efficiency.
[0008]
[Means for Solving the Problems]
Thus, as a result of intensive studies, the present inventors have found that when a silacyclopentadiene derivative is used as a hole transport material, an organic EL device having a low voltage and high luminous efficiency can be obtained, and the present invention has been completed. .
That is, the present invention includes the following (1) to (3).
[0009]
(1) A hole transport material using a compound represented by the following chemical formula 2.
[Chemical 2]
Figure 0003834954
[Wherein, X and Y are each independently a saturated or unsaturated hydrocarbon group, alkoxy group, alkenyloxy group, alkynyloxy group, hydroxy group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocycle Or a structure in which X and Y are combined to form a saturated or unsaturated ring, and Z 1 And Z 2 Are each independently a group having at least one nitrogen atom and at least three aromatic rings, R 1 And R 2 Each independently represents a structure in which hydrogen, a substituted or unsubstituted alkyl group, an aryl group, a heterocyclic group, or a substituted or unsubstituted ring is condensed]
(2) An organic electroluminescent device comprising the hole transport material described in (1) above.
(3) An organic electroluminescence device comprising a hole transport layer, wherein the hole transport layer contains the hole transport material described in (1) above.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Examples of silacyclopentadiene derivatives used in the present invention include 1,1-dimethyl-2,5-bis (4-N, N-diphenylanilino) -3,4-diphenylsilacyclopentadiene (hereinafter referred to as TPAS). Abbreviation), 1,1-dimethyl-2,5-bis (3-N, N-diphenylanilino) -3,4-diphenylsilacyclopentadiene, 1,1-dimethyl-2,5-bis {4- N- (1-naphthyl) -N-phenylanilino} -3,4-diphenylsilacyclopentadiene, 1,1-dimethyl-2,5-bis (2-N, N-diethylanilino) -3,4 -Diphenylsilacyclopentadiene, 1,1-diisopropyl-2,5-bis {4-N- (3-methylphenyl) -N-phenylanilino} -3,4-diphenylsilacyclopentadiene, 1,1,3 , 4-Tetraphenyl-2,5-bis {4-N- (3-methylphenyl) -N-phenylanilino} silacyclopentadiene, compounds represented by the following chemical formula 3 and the like. Limited Not to.
[Chemical 3]
Figure 0003834954
[0011]
The silacyclopentadiene derivative used in the present invention can be obtained, for example, by the following production method, but the present invention is not limited to these production methods.
An alkali metal complex is reacted with a silapentadiyne derivative represented by the following chemical formula 4, followed by a reaction with a silane derivative represented by the chemical formula 5 below, followed by reaction with zinc chloride or a zinc chloride complex. The reactive silacyclopentadiene derivative represented by these can be obtained.
Subsequently, the silacyclopentadiene derivative used in the present invention is obtained by reacting the reactive silacyclopentadiene derivative with a halide represented by the following chemical formula 7 in the presence of a catalyst.
[0012]
[Formula 4]
Figure 0003834954
[Wherein, X and Y are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a substituted or unsubstituted aryl group, substituted or unsubstituted Represents a substituted heterocyclic ring, or X and Y are bonded to form a saturated or unsaturated ring, and R 1 And R 2 Each independently represents a structure in which hydrogen, a substituted or unsubstituted alkyl group, an aryl group, a heterocyclic group, or a substituted or unsubstituted ring is condensed]
[0013]
[Chemical formula 5]
Figure 0003834954
[Wherein, X, Y and Z each independently represent a tertiary butyl group or an aryl group]
[0014]
[Chemical 6]
Figure 0003834954
[Wherein, X and Y are each independently a saturated or unsaturated hydrocarbon group, alkoxy group, alkenyloxy group, alkynyloxy group, hydroxy group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocycle Or a structure in which X and Y are combined to form a saturated or unsaturated ring, and R 1 And R 2 Each independently represents a structure in which hydrogen, a substituted or unsubstituted alkyl group, an aryl group, a heterocyclic group, or a substituted or unsubstituted ring is condensed]
[0015]
[Chemical 7]
Figure 0003834954
[Where Z 1 Is a nitrogen atom or a group having at least 3 aromatic rings, and W represents a halogen atom.
[0016]
The substituent attached to the silapentadiyne derivative used as the first raw material is preferably one that hardly inhibits the reaction between the alkali metal complex and the silapentadiyne, and more preferably inert to the alkali metal complex. Examples of the alkali metal complex used include lithium naphthalenide, sodium naphthalenide, potassium naphthalenide, lithium 4,4′-ditertiary-butyl-2,2′-biphenylide, lithium (N, N-dimethylamino). ) Naphthalenide.
The solvent used in the reaction is not particularly limited as long as it is inert to an alkali metal or an alkali metal complex, and ether solvents such as ether and tetrahydrofuran are preferable.
As the substituent of the silane derivative used in this reaction, a bulky one is preferable, and specific examples include tertiary butyl diphenylchlorosilane and ditertiary butylphenylchlorosilane.
[0017]
Furthermore, as the zinc chloride or zinc chloride complex to be used, a method such as using a solid zinc chloride directly, using an ether solution of zinc chloride, or using a tetramethylethylenediamine complex of zinc chloride, etc. These zinc chlorides are preferably sufficiently dried, and if the water content is high, it is difficult to obtain the target product. This series of reactions is preferably performed in an inert gas stream, and generally argon gas is used.
[0018]
Examples of the catalyst for reacting a halide with a reactive silacyclopentadiene derivative include palladium catalysts such as tetrakistriphenylphosphine palladium and dichlorobistriphenylphosphine palladium.
In each stage of the series of reactions, the reaction temperature is not particularly limited. However, when an alkali metal complex, a silane derivative, zinc chloride, or the like is added and stirred, the temperature is preferably room temperature or lower, and is usually 0 ° C or lower. The reaction temperature after adding the halide is preferably room temperature or higher, and is usually carried out under reflux when tetrahydrofuran is used as a solvent. There is no restriction | limiting in particular also in reaction time, When adding an alkali metal complex, a silane derivative, zinc chloride, etc. and stirring, it is desirable for several minutes to several hours. The reaction after adding the halide may be followed by a general analytical means such as NMR or chromatography to determine the end point of the reaction.
[0019]
Substituents on the silicon of the silacyclopentadiene derivative used in the present invention thus obtained include methyl group, ethyl group, normal propyl group, isopropyl group, cyclopentyl group, and tertiary butyl group. Alkenyl groups such as alkyl groups, vinyl groups, allyl groups, butenyl or styryl groups, alkynyl groups such as ethynyl groups, propargyl groups or phenylacetinyl groups, methoxy groups, ethoxy groups, isopropoxy groups or tertiary Alkoxy groups such as butoxy groups, alkenyloxy groups such as vinyloxy groups or allyloxy groups, alkynyloxy groups such as ethynyloxy groups or phenylacetyloxy groups, phenyl groups, naphthyl groups, anthracenyl groups, biphenyls Aryl group such as toluyl group, pyrenyl group, perylenyl group, anisyl group, terphenyl group or phenanthrenyl group, hydrofuryl group, hydropyrenyl group, dioxanyl group, thienyl group, furyl group, oxazolyl group, oxadiazolyl group, thiazolyl group, thiadiazolyl group And a heterocyclic ring such as acridinyl group, quinolyl group, quinoxaloyl group, phenanthrolyl group, benzothienyl group, benzothiazolyl group, indolyl group, silacyclopentadienyl group or pyridyl group. Further, these substituents may be bonded to each other at an arbitrary position to form a spiro ring.
[0020]
Substituents attached to the 3-position and 4-position of the silacyclopentadiene ring of the present invention are each independently alkyl such as hydrogen, methyl group, ethyl group, normal propyl group, isopropyl group, cyclopentyl group, and tertiary butyl group. Group, phenyl group, biphenyl group, terphenyl group, naphthyl group, anthracenyl group, pyrenyl group, toluyl group, anisyl group, fluorophenyl group, diphenylaminophenyl group, dimethylaminophenyl group, diethylaminophenyl group, phenanthrenyl group, etc. Aryl, thienyl, furyl, silacyclopentadienyl, oxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, acridinyl, quinolyl, quinoxaloyl, phenanthrol, benzothienyl, benzothiazolyl Group, indolyl group, carbazolyl group, a pyridyl group, a pyrrolyl group, a benzoxazolyl group, pyrimidyl group, and a hetero ring such as imidazolyl group. Further, these substituents may be bonded to each other at an arbitrary position to form a ring.
[0021]
Examples of the substituents attached to the 2-position and 5-position of the silacyclopentadiene ring include a triphenylamino group, a diphenylaminonaphthyl group, a naphthylphenylaminophenyl group, and a phenyltoluylaminonaphthyl group.
These substituents may be introduced before the formation of the silacyclopentadiene ring or after the silacyclopentadiene ring is formed.
[0022]
In this invention, it discovered that the silacyclopentadiene derivative used for an organic EL element was effective as a hole-transport material. In addition to the presence of sites with hole transport capability at the 2- and 5-positions of the silacyclopentadiene ring, the electronic properties of the silacyclopentadiene ring are thought to have an effect on hole transportability. .
[0023]
Moreover, since the silacyclopentadiene derivative of the present invention exhibits strong fluorescence per se, it is also useful as a luminescent dye for organic EL devices. For example, TPAS emits yellow light.
Furthermore, since the silacyclopentadiene ring itself exhibits an electron transport property, the silacyclopentadiene derivative used in the present invention exhibits both charge transport properties. Therefore, the organic EL device using the silacyclopentadiene derivative of the present invention has high efficiency even in a single layer.
[0024]
The configuration of the organic EL element of the present invention has various aspects, but basically, the silacyclopentadiene derivative is sandwiched between a pair of electrodes (anode and cathode), and if necessary, A hole transport material, a luminescent dye, and an electron transport material may be added or stacked as separate layers. Specific examples include: anode / silacyclopentadiene derivative layer of the present invention / cathode, anode / hole injection layer / silacyclopentadiene derivative layer of the present invention / cathode, anode / silacyclopentadiene derivative layer of the present invention / hole transport. Layer / organic light emitting layer / electron transport layer / cathode, anode / (luminescent dye + silacyclopentadiene derivative layer of the present invention) / cathode, and the like.
[0025]
Any of the organic EL elements of the present invention is preferably supported by a substrate, and the substrate to be supported is not particularly limited, and those conventionally used in conventional electroluminescent elements, such as glass, transparent plastic, and conductive high Those made of molecules or quartz can be used.
Each layer used in the organic EL device of the present invention can be formed by thinning it by a known method such as a vapor deposition method or a coating method.
The thickness of the thin film of each layer formed in this way is not particularly limited and can be appropriately selected according to the situation, but is usually selected in the range of 2 nm to 5000 nm.
[0026]
As the anode in the organic EL device of the present invention, an electrode having a work function (4 eV or more) metal, alloy, electrically conductive compound, or a mixture thereof is preferably used. Specific examples of such electrode materials include metals such as Au, CuI, indium tin oxide (hereinafter abbreviated as ITO), SnO. 2 And dielectric transparent materials such as ZnO. The anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emission is extracted from this electrode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the electrode is preferably several hundred Ω / square or less.
Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1 μm, preferably 10 to 200 nm.
[0027]
On the other hand, as a cathode, what uses a metal, an alloy, an electroconductive compound, and a mixture thereof with a small work function (4.3 eV or less) as an electrode material is used. Specific examples of such electrode materials include calcium, magnesium, lithium, aluminum, magnesium alloy, lithium alloy, aluminum alloy, aluminum / lithium mixture, magnesium / silver mixture, indium and the like. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Further, the sheet resistance as an electrode is preferably several hundred Ω / square or less, and the film thickness is usually selected in the range of 10 nm to 1 μm, preferably 50 to 200 nm.
[0028]
The configuration of the organic EL device of the present invention has various modes as described above, but if a hole transport layer is provided, the light emission efficiency is improved.
The hole transport material used for the hole transport layer can be appropriately transferred to the light emitting layer when holes are injected from the anode placed between two electrodes to which an electric field is applied. A compound, for example 10 Four -10 6 When an electric field of V / cm is applied, at least 10 -6 cm 2 Those having a hole mobility of / V · sec or more are preferable. Such a hole transport material is not particularly limited as long as it has the above-mentioned preferable properties. When a plurality of hole transport materials are used, not only the silacyclopentadiene derivative but also a conventional photoconductive material is used. As the material, any of materials commonly used as hole charge transport materials and known materials used for hole transport layers of organic EL devices can be selected and used.
[0029]
Examples of the hole transporting material include carbazole derivatives such as N-phenylcarbazole and polyvinylcarbazole, TPD, polymers having an aromatic tertiary amine in the main chain or side chain, 1,1-bis (4-di- p-Tolylaminophenyl) cyclohexane, N, N'-diphenyl-N, N'-dinaphthyl-4,4'-diaminobiphenyl and other triarylamine derivatives, metal free, phthalocyanine derivatives such as copper phthalocyanine, and polysilanes It is done.
[0030]
There is no restriction | limiting in particular about the electron transport material used in the layer which conveys the electron in the organic EL element of this invention, Arbitrary things can be selected and used from a conventionally well-known compound. Preferable examples of the electron transport material include diphenylquinone derivatives described in Journal of Electrophotographic Society, Vol. 30, page 3, 1991, etc., or Journal of the Applied Physics (Jpn. J. Appl. Phys.), 27, 269, (1988). ) And oxadiazole derivatives such as PBD (Japanese Journal of the Applied Physics (Jpn. J. Appl. Phys.), 27, L713 (1988), Applied Physics Letter (Appl. Phys. Lett. ), 55, 1489 (1989)), thiophene derivatives (described in JP-A-4-212286, etc.), triazole derivatives (Jpn. J. Appl. Phys., 32, L917 (1993) ), Thiadiazole derivatives (the 43rd Annual Meeting of the Society of Polymer Science, (III) P1a007, etc.), metal complexes of oxine derivatives (IEICE Technical Report, 92 (311), 43 (As described in (1992)), mushroom Polymers of phosphorus derivatives (described in Jpn.J.Appl.Phys., 33, L250 (1994), etc.), phenanthroline derivatives (described in the 43rd Annual Meeting of the Polymer Sciences, 14J07, etc.) be able to.
[0031]
The light-emitting material used in the organic EL device of the present invention is described not only in the silacyclopentadiene derivative of the present invention, but also in the polymer functional material series “Optical Functional Materials” edited by the Society of Polymer Science, Kyoritsu Shuppan (1991), P236. Can be used including known luminescent materials such as daylight fluorescent materials, fluorescent brighteners, laser dyes, organic scintillators, various fluorescent analysis reagents, etc., specifically, anthracene, phenanthrene, pyrene , Polycyclic condensed compounds such as chrysene, perylene, coronene, rubrene and quinacridone, oligophenylene compounds such as quarterphenyl, 1,4-bis (2-methylstyryl) benzene, 1,4-bis (4-methylstyryl) Benzene, 1,4-bis (4-methyl-5-phenyl-2-oxazolyl) benzene, 1,4-bis (5-phenyl-2-oxazolyl) benzene, 2,5-bis (5-tert-butyl) (Lu-2-benzoxazolyl) thiophene, 1,4-diphenyl-1,3-butadiene, 1,6-diphenyl-1,3,5-hexatriene, 1,1,4,4-tetraphenyl-1 Scintillators for liquid scintillation such as 1,3-butadiene, metal complexes of oxine derivatives described in JP-A-63-264692, coumarin dyes, dicyanomethylenepyran dyes, dicyanomethylenethiopyran dyes, polymethine dyes, oxobenzanthracene dyes, Xanthene dyes, carbostyryl dyes and perylene dyes, oxazine compounds described in German Patent 2534713, Proceedings of the 40th Joint Conference on Applied Physics, Stilbene Derivatives described in 1146 (1993), An oxadiazole-based compound described in JP 363891 and a silacyclopentadiene derivative described in JP-A-9-194487 are preferable.
[0032]
An example of a suitable method for producing the organic EL element of the present invention will be described for an element having the following configuration.
The production method of an EL device comprising an anode / silacyclopentadiene derivative layer / cathode of the present invention will be described. First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate at 1 μm or less, preferably 10 After forming the anode by a method such as vapor deposition or sputtering so that the film thickness is in the range of ˜200 nm, a thin film of a silacyclopentadiene derivative is formed thereon. Examples of thinning methods include dip coating, spin coating, casting, and vapor deposition, but it is easy to obtain a uniform film, and it is difficult to mix impurities and pinholes are not easily generated. Vapor deposition is preferred.
[0033]
Next, after the formation of this silacyclopentadiene derivative layer, a thin film made of a cathode material is formed thereon by a method of 1 μm or less, for example, by vapor deposition or sputtering, and a cathode is provided to obtain a desired EL device. It is done. In manufacturing the EL element, the manufacturing order can be reversed, and the cathode, the silacyclopentadiene derivative layer, and the anode can be manufactured in this order.
When a DC voltage is applied to the EL element thus obtained, light emission can be observed from the transparent or translucent electrode side when a voltage of about 3 to 40 V is applied. Furthermore, it emits light when an AC voltage is applied. The applied AC waveform may be arbitrary.
[0034]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
[0035]
Example 1
A transparent support substrate was formed by depositing ITO with a thickness of 50 nm on a glass substrate of 25 mm × 75 mm × 1.1 mm by a vapor deposition method (manufactured by Tokyo Sanyo Vacuum Co., Ltd.). This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), TPAS is put into a quartz crucible, and the vacuum chamber is set to 1 × 10. -Four The pressure was reduced to Pa.
The crucible containing TPAS was heated to deposit TPAS so as to have a film thickness of 100 nm. The deposition rate was 0.1 to 0.2 nm / second.
Then vacuum the tank 2 × 10 -Four After reducing the pressure to Pa, from a graphite crucible, magnesium is deposited at a deposition rate of 1.2 to 2.4 nm / second, and at the same time, silver is deposited from the other crucible at a deposition rate of 0.1 to 0.2 nm / second. Vapor deposited. Under the above conditions, a mixed metal electrode of magnesium and silver was deposited on the light emitting layer to a thickness of 200 nm to form a counter electrode, thereby forming an element.
When a direct current voltage of 6.5 V is applied to the obtained element using an ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, the current is about 30 mA / cm. 2 Current of 200 cd / m 2 Of yellow luminescence was obtained. The emission wavelength was 545 nm.
[0036]
Example 2
The transparent support substrate used in Example 1 is fixed to the substrate holder of the vapor deposition apparatus, TPAS is used in the quartz crucible, TPD is used in the other crucible, and 1,1-dimethyl-3,4-diphenyl-2 is used in the other crucible. , 5-dipyridylsilole (hereinafter abbreviated as PYS) and set the vacuum chamber to 1 × 10 -Four The pressure was reduced to Pa.
The crucible containing TPD is heated and evaporated to a film thickness of 50 nm, then the crucible containing TPAS is heated to deposit TPAS to a film thickness of 15 nm, and then the crucible containing PYS is heated to a film thickness of 35 nm. PYS was deposited as follows. The deposition rate was 0.1 to 0.2 nm / second.
Then vacuum the tank 2 × 10 -Four After reducing the pressure to Pa, from a graphite crucible, magnesium is deposited at a deposition rate of 1.2 to 2.4 nm / second, and at the same time, silver is deposited from the other crucible at a deposition rate of 0.1 to 0.2 nm / second. Vapor deposited. Under the above conditions, a mixed metal electrode of magnesium and silver was deposited on the light emitting layer to a thickness of 200 nm to form a counter electrode, thereby forming an element.
When a direct current voltage of 4.5 V is applied to the resulting device using an ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, a current of about 10 mA / cm 2 Current of about 100 cd / m 2 Of yellow luminescence was obtained. The emission wavelength was 545 nm.
[0037]
Example 3
The transparent support substrate used in Example 1 is fixed to the substrate holder of the vapor deposition apparatus, TPAS is put in a quartz crucible, PYS is put in another crucible, and the vacuum chamber is set to 1 × 10. -Four The pressure was reduced to Pa.
The crucible containing TPAS was heated to deposit TPAS to a film thickness of 50 nm, and then the crucible containing PYS was heated to deposit PYS to a film thickness of 50 nm. The deposition rate was 0.1 to 0.2 nm / second.
Then vacuum the tank 2 × 10 -Four After reducing the pressure to Pa, from a graphite crucible, magnesium is deposited at a deposition rate of 1.2 to 2.4 nm / second, and at the same time, silver is deposited from the other crucible at a deposition rate of 0.1 to 0.2 nm / second. Vapor deposited. Under the above conditions, a mixed metal electrode of magnesium and silver was deposited on the light emitting layer to a thickness of 200 nm to form a counter electrode, thereby forming an element.
When a direct current voltage of 5 V is applied to the resulting device using an ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, a current of about 10 mA / cm 2 Current of about 300 cd / m 2 Of yellow luminescence was obtained. The emission wavelength was 545 nm.
[0038]
Example 4
The transparent support substrate used in Example 1 is fixed to the substrate holder of the vapor deposition apparatus, TPAS is put in a quartz crucible, TPD is put in another crucible, and the vacuum chamber is set to 1 × 10. -Four The pressure was reduced to Pa.
The crucible containing TPD was heated and evaporated to a film thickness of 50 nm, and then the crucible containing TPAS was heated to deposit TPAS to a film thickness of 50 nm. The deposition rate was 0.1 to 0.2 nm / second.
Then vacuum the tank 2 × 10 -Four After reducing the pressure to Pa, from a graphite crucible, magnesium is deposited at a deposition rate of 1.2 to 2.4 nm / second, and at the same time, silver is deposited from the other crucible at a deposition rate of 0.1 to 0.2 nm / second. Vapor deposited. Under the above conditions, a mixed metal electrode of magnesium and silver was deposited on the light emitting layer to a thickness of 200 nm to form a counter electrode, thereby forming an element.
When a direct current voltage of 5.5 V is applied to the resulting device using an ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, the current is about 4 mA / cm. 2 Current of about 100 cd / m 2 Of yellow luminescence was obtained. The emission wavelength was 545 nm.
[0039]
Example 5
The transparent support substrate used in Example 1 was fixed to the substrate holder of the vapor deposition apparatus, TPAS was used for the quartz crucible, TPD was used for the other crucible, and tris (8-hydroxynoline) aluminum (hereinafter referred to as Alq) was used for the other crucible. The vacuum chamber is 1 × 10 -Four The pressure was reduced to Pa.
The crucible containing TPAS is heated and evaporated to a film thickness of 35 nm, and then the crucible containing TPD is heated to deposit the TPD to a film thickness of 15 nm, and then the crucible containing Alq is heated to a film thickness of 50 nm. Alq was deposited as follows. The deposition rate was 0.1 to 0.2 nm / second.
Then vacuum the tank 2 × 10 -Four After reducing the pressure to Pa, from a graphite crucible, magnesium is deposited at a deposition rate of 1.2 to 2.4 nm / second, and at the same time, silver is deposited from the other crucible at a deposition rate of 0.1 to 0.2 nm / second. Vapor deposited. Under the above conditions, a mixed metal electrode of magnesium and silver was deposited on the light emitting layer to a thickness of 200 nm to form a counter electrode, thereby forming an element.
When a direct current voltage of 4.5 V is applied to the resulting device using an ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, a current of about 10 mA / cm 2 Current of 100 cd / m 2 Of green light emission. The emission wavelength was 520 nm.
[0040]
Example 6
According to Example 1, except that TPAS used in Example 1 was replaced with 1,1-dimethyl-2,5-bis (N-naphthyl-N-phenylanilino) -3,4-diphenylsilacyclopentadiene An element was prepared by the method described above. When a DC voltage is applied to this element, it is about 10 mA / cm. 2 Current flowed, and yellow light emission was obtained.
[0041]
Example 7
A method according to Example 1 except that TPAS used in Example 1 was replaced with 1,1-dimethyl-2,5-bis (N-phenyl-N-pyridylanilino) -3,4-diphenylsilacyclopentadiene An element was created.
When a DC voltage is applied to this element, it is about 10 mA / cm. 2 Current flowed, and yellow light emission was obtained.
[0042]
Comparative Example 1
Except for replacing TPAS used in Example 1 with 1,1-dimethyl-2,5-bis (5-tertiarybutyldiphenylsilylthieno) -3,4-diphenylsilacyclopentadiene, the same as in Example 1 The element was created by the method.
When a DC voltage is applied to this element, it is about 6 mA / cm. 2 Current of about 10 cd / m 2 A yellow luminescence was obtained.
[0043]
Comparative Example 2
A device was produced by the method according to Example 1 except that TPAS used in Example 1 was replaced with TPD.
When a direct current voltage was applied to this element, a current flowed, but no detectable light emission could be obtained.
[0044]
【The invention's effect】
Since the compound of the present invention is excellent in hole transport properties, it has high practical value as a hole transport material for electrophotography or organic EL devices. By using the hole transport material of the present invention for an organic EL device, a full-color high-brightness flat panel display or the like can be produced.

Claims (3)

下記化1で表されるシラシクロペンタジエン誘導体を用いる正孔輸送材料。
Figure 0003834954
[式中、X及びYは、それぞれ独立に飽和もしくは不飽和の炭化水素基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、ヒドロキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロ環、又はXとYが結合して飽和もしくは不飽和の環を形成した構造であり、Z1及びZ2は、それぞれ独立に少なくとも1個以上の窒素原子、及び少くとも3個の芳香環を有する基であり、R1及びR2は、それぞれ独立に水素、置換もしくは無置換のアルキル基、アリール基、ヘテロ環基、又は置換もしくは無置換の環が縮合した構造を示す]
A hole transport material using a silacyclopentadiene derivative represented by the following chemical formula 1.
Figure 0003834954
[Wherein, X and Y are each independently a saturated or unsaturated hydrocarbon group, alkoxy group, alkenyloxy group, alkynyloxy group, hydroxy group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocycle Or a structure in which X and Y are combined to form a saturated or unsaturated ring, and Z 1 and Z 2 each independently have at least one nitrogen atom and at least three aromatic rings R 1 and R 2 each independently represent a structure in which hydrogen, a substituted or unsubstituted alkyl group, an aryl group, a heterocyclic group, or a substituted or unsubstituted ring is condensed]
請求項1記載の正孔輸送材料が含まれていることを特徴とする有機電界発光素子。An organic electroluminescent device comprising the hole transport material according to claim 1. 正孔輸送層を有し、この正孔輸送層中に請求項1記載の正孔輸送材料が含まれていることを特徴とする有機電界発光素子。An organic electroluminescence device comprising a hole transport layer, wherein the hole transport material according to claim 1 is contained in the hole transport layer.
JP25773097A 1997-09-05 1997-09-05 Hole transport material having silacyclopentadiene ring Expired - Fee Related JP3834954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25773097A JP3834954B2 (en) 1997-09-05 1997-09-05 Hole transport material having silacyclopentadiene ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25773097A JP3834954B2 (en) 1997-09-05 1997-09-05 Hole transport material having silacyclopentadiene ring

Publications (2)

Publication Number Publication Date
JPH1187067A JPH1187067A (en) 1999-03-30
JP3834954B2 true JP3834954B2 (en) 2006-10-18

Family

ID=17310307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25773097A Expired - Fee Related JP3834954B2 (en) 1997-09-05 1997-09-05 Hole transport material having silacyclopentadiene ring

Country Status (1)

Country Link
JP (1) JP3834954B2 (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546896B2 (en) * 2005-08-11 2010-09-22 株式会社リコー Electrophotographic photosensitive member, image forming method using the same, image forming apparatus, and process cartridge for image forming apparatus
CN105789468B (en) 2011-03-23 2018-06-08 株式会社半导体能源研究所 Light-emitting component, light-emitting device, lighting device and electronic equipment
TWI523845B (en) * 2011-12-23 2016-03-01 半導體能源研究所股份有限公司 Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
US9181474B2 (en) 2012-02-07 2015-11-10 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting diode including the same
US9882143B2 (en) 2012-02-07 2018-01-30 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting diode including the same
US9559310B2 (en) 2012-07-11 2017-01-31 Samsung Display Co., Ltd. Compound with electron injection and/or electron transport capabilities and organic light-emitting device including the same
KR102024117B1 (en) 2012-09-17 2019-09-24 삼성디스플레이 주식회사 Condensed compound and organic light emitting diode comprising the same
KR102090702B1 (en) 2013-01-28 2020-05-28 삼성디스플레이 주식회사 Organic light emitting device
KR102232690B1 (en) 2013-01-30 2021-03-29 삼성디스플레이 주식회사 Novel heterocyclic compound and organic light emitting device comprising the same
KR102059939B1 (en) 2013-02-14 2019-12-30 삼성디스플레이 주식회사 Compound and organic light emitting device comprising the same
KR102090707B1 (en) 2013-02-25 2020-03-19 삼성디스플레이 주식회사 Pyrene-based compound and organic light emitting diode comprising the same
KR102059941B1 (en) 2013-06-07 2019-12-30 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising same
KR102184674B1 (en) 2013-08-09 2020-12-01 삼성디스플레이 주식회사 Anthracene-based compounds and Organic light emitting device comprising the same
KR102159148B1 (en) 2013-08-09 2020-09-24 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising same
KR102181234B1 (en) 2013-08-28 2020-11-23 삼성디스플레이 주식회사 Compound and organic light emitting device comprising the same
KR102167042B1 (en) 2013-09-06 2020-10-19 삼성디스플레이 주식회사 Condensed compound and organic light emitting diode comprising the same
KR102191991B1 (en) 2013-09-06 2020-12-17 삼성디스플레이 주식회사 Condensed compound and organic light emitting diode comprising the same
KR102191996B1 (en) 2013-09-27 2020-12-17 삼성디스플레이 주식회사 Herocyclic compound and organic light emitting device comprising same
KR102167043B1 (en) 2013-10-01 2020-10-19 삼성디스플레이 주식회사 Pyrene-based compounds and organic light emitting device comprising the same
KR102191994B1 (en) 2013-10-02 2020-12-17 삼성디스플레이 주식회사 Compound and organic light emitting device comprising same
KR102167044B1 (en) 2013-10-31 2020-10-19 삼성디스플레이 주식회사 Chrysene-based compounds and organic light emitting device comprising the same
KR102145888B1 (en) 2013-12-13 2020-08-20 삼성디스플레이 주식회사 Triazine-based compounds and organic light-emitting devices comprising the same
US9871208B2 (en) 2014-02-26 2018-01-16 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
KR102184675B1 (en) 2014-03-19 2020-12-01 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting diode comprising the same
KR101808677B1 (en) 2014-06-02 2017-12-14 삼성디스플레이 주식회사 Condensed compounds and organic light-emitting devices including the same
KR102319999B1 (en) 2014-07-10 2021-11-01 삼성디스플레이 주식회사 Organic compound and organic light emitting diode device including the same
KR102270304B1 (en) 2014-07-17 2021-07-01 삼성디스플레이 주식회사 Organic light emitting device and display having the same
KR102302109B1 (en) 2014-07-24 2021-09-14 삼성디스플레이 주식회사 Organic compound and organic light emitting diode device including the same
KR102270082B1 (en) 2014-09-05 2021-06-29 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting diode comprising the same
KR102285381B1 (en) 2014-10-22 2021-08-04 삼성디스플레이 주식회사 Compound and organic light emitting device comprising same
US9929349B2 (en) 2014-12-08 2018-03-27 Samsung Display Co., Ltd. Organic light emitting device and display device including the same
KR102332593B1 (en) 2015-02-05 2021-11-30 삼성디스플레이 주식회사 Compound and Organic light emitting device comprising same
KR102321381B1 (en) 2015-02-23 2021-11-04 삼성디스플레이 주식회사 Organic light emitting device
KR102373435B1 (en) 2015-03-16 2022-03-14 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting device comprising the same
KR102364221B1 (en) 2015-03-23 2022-02-18 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting device comprising the same
KR102560940B1 (en) 2015-06-17 2023-08-01 삼성디스플레이 주식회사 Mono amine derivatives and organic electroluminescent device including the same
JP6600495B2 (en) 2015-06-17 2019-10-30 三星ディスプレイ株式會社 Material for organic electroluminescence device and organic electroluminescence device using the same
KR102491872B1 (en) 2015-07-31 2023-01-27 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light-emitting device comprising the same
KR102399573B1 (en) 2015-08-04 2022-05-19 삼성디스플레이 주식회사 Compound and Organic light emitting device comprising same
KR102421581B1 (en) 2015-09-08 2022-07-18 삼성디스플레이 주식회사 Compound and Organic light emitting device comprising same
KR102500272B1 (en) 2015-09-16 2023-02-16 삼성디스플레이 주식회사 Compound and Organic light emitting device comprising same
KR102458684B1 (en) 2015-10-08 2022-10-26 삼성디스플레이 주식회사 Organic light emitting device
KR102552274B1 (en) 2015-10-08 2023-07-07 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting device comprising the same
KR102456075B1 (en) 2015-10-15 2022-10-19 삼성디스플레이 주식회사 Compound and Organic light emitting device comprising same
KR102541452B1 (en) 2015-11-04 2023-06-09 삼성디스플레이 주식회사 Compound and Organic light emitting device comprising same
US10461262B2 (en) 2015-12-22 2019-10-29 Samsung Display Co., Ltd. Condensed cyclic compound and an organic light-emitting device including the same
US10720585B2 (en) 2015-12-29 2020-07-21 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
KR102572721B1 (en) 2016-05-19 2023-09-01 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising the same
KR102639569B1 (en) 2016-06-20 2024-02-23 삼성디스플레이 주식회사 Condensed compound and organic light emitting device comprising the same
KR102603868B1 (en) 2016-06-20 2023-11-21 삼성디스플레이 주식회사 Condensed compound and organic light emitting diode comprising the same
US10897014B2 (en) 2016-07-13 2021-01-19 Samsung Display Co., Ltd. Heterocyclic compound and organic light-emitting device including the same
KR102597025B1 (en) 2016-07-18 2023-11-02 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising the same
KR102616577B1 (en) 2016-09-30 2023-12-22 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting-device comprising the same
KR102658368B1 (en) 2016-12-09 2024-04-18 삼성디스플레이 주식회사 Condensed compound and organic light emitting device comprising the same
KR20180081661A (en) 2017-01-06 2018-07-17 삼성디스플레이 주식회사 Heterocyclic compound and organic light-emitting device comprising the same
KR102504130B1 (en) 2017-05-23 2023-02-28 삼성디스플레이 주식회사 Condensed compound and organic light emitting device comprising the same
KR102536248B1 (en) 2017-06-21 2023-05-25 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising the same
KR102415376B1 (en) 2017-08-04 2022-07-01 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting device comprising the same
KR102414108B1 (en) 2017-08-08 2022-06-29 삼성디스플레이 주식회사 Heterocyclic compound and organic light-emitting device comprising the same
KR102552271B1 (en) 2017-10-27 2023-07-07 삼성디스플레이 주식회사 Condensed compound and organic light emitting device comprising the same
KR20190049958A (en) 2017-10-30 2019-05-10 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting device comprising the same
KR102571084B1 (en) 2017-10-31 2023-08-28 삼성디스플레이 주식회사 Heterocyclic compound and organic light-emitting device comprising the same
KR102630642B1 (en) 2018-02-09 2024-01-30 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising the same

Also Published As

Publication number Publication date
JPH1187067A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
JP3834954B2 (en) Hole transport material having silacyclopentadiene ring
US6767654B2 (en) Organic electroluminescent device
JP3755196B2 (en) Electroluminescent device using cyclopentadiene derivative
KR100625505B1 (en) Silole derivatives and organic electroluminescent element containing the same
JP2918150B2 (en) Organic electroluminescent device using silacyclopentadiene derivative
JP3965800B2 (en) Organic electroluminescent device using triarylamine derivative
KR100806059B1 (en) Organic electroluminescent device comprising dipyridylthiophene derivative
JP3985311B2 (en) Amine derivative and organic electroluminescence device using the same
KR100333574B1 (en) Diaminonaphthalene derivative and organic electroluminescent device using the same
JP3579730B2 (en) Organic electroluminescent device using quinoxaline derivative
JPH11338172A (en) Naphthalene derivative and organic electroluminescent element using same
JP4069505B2 (en) Trinaphthylbenzene derivative and organic electroluminescence device using the same
JP4310867B2 (en) Electroluminescent device using silole copolymer
JPH08176148A (en) Hetero ring-containing oxadiazole derivative
JP3569993B2 (en) Oxadiazole polymer
JP3726316B2 (en) Electroluminescent device
JP4792687B2 (en) Charge transport material, light-emitting material containing diazapentacene derivative, and organic electroluminescent device using the same
JP3555271B2 (en) Blue light emitting element
JP3486994B2 (en) Organic electroluminescent device using oxadiazole derivative
US6617053B2 (en) Organic electroluminescent device containing dithiafulvene derivative
JP3858278B2 (en) Electroluminescent device
JP3925543B2 (en) Electroluminescent device
JP2004146110A (en) Organic electroluminescent element containing dihydrophenazine derivative in positive electrode buffer layer
JP2002216972A (en) Organic electric field light-emitting element containing boron substituted silane cyclopentadiene derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees