JPH1185205A - Method and device for generating artificial two-input polygonal function - Google Patents

Method and device for generating artificial two-input polygonal function

Info

Publication number
JPH1185205A
JPH1185205A JP26485497A JP26485497A JPH1185205A JP H1185205 A JPH1185205 A JP H1185205A JP 26485497 A JP26485497 A JP 26485497A JP 26485497 A JP26485497 A JP 26485497A JP H1185205 A JPH1185205 A JP H1185205A
Authority
JP
Japan
Prior art keywords
input
output
linear function
function
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26485497A
Other languages
Japanese (ja)
Other versions
JP3905611B2 (en
Inventor
Tatsuya Akashi
達哉 赤司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26485497A priority Critical patent/JP3905611B2/en
Publication of JPH1185205A publication Critical patent/JPH1185205A/en
Application granted granted Critical
Publication of JP3905611B2 publication Critical patent/JP3905611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control By Computers (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily generate an artificial two-input polygonal function only by the function that a normal controller has by preparing one-input polygonal functions of a 1st and a 2nd input variable, multiplying output values obtained by substituting respective input variables in corresponding one-input polygonal functions by arbitrary values, and adding multiplication values in order. SOLUTION: For example, when this method and device are applied to a supermotor steam output temperature controller of a coal fired power generation unit, one-input polygonal function generators FX (FX-1 to FX3) 11 to 13 use coal property indexes X different with kinds of coal as input variables and one-input polygonal function generators FY (FY-1 to FY3) 21 to 23 use the variable load index Y of the fired power generation unit as input variables. Multipliers 31 to 33 multiply the outputs of the polygonal function generators FX11 to FX13 and FY21 to FY23 and adders 41 and 42 are add the outputs of the multipliers 31 to 33 in order. The subtracter 51 of an arithmetic circuit finds deviation of spray valve exit temperature from set temperature and a PI controller 52 calculates a correction value to control the opening extent of a spray valve 50 through an adder 53.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は擬似的二入力折線関
数作成方法及びその装置に係り、特にプラントにおける
制御装置、運転支援装置、監視装置等に使用される二入
力一出力折線関数を通常の制御装置が有する折線関数
器、乗算器、加算器を用いて一入力の折線関数で実現す
る擬似的二入力折線関数作成方法及びその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for generating a pseudo two-input linear function, and more particularly, to a two-input one-output linear function used for a control device, an operation support device, a monitoring device and the like in a plant. The present invention relates to a method for creating a pseudo two-input linear function, which is realized by a one-input linear function using a linear function unit, a multiplier, and an adder included in a control device, and an apparatus therefor.

【0002】[0002]

【発明が解決しようとする課題】従来より例えば温度を
検知入力信号として弁開度出力を設定する等の一入力一
出力の折線関数発生器は、例えばプラントにおける制御
装置、運転支援装置、監視装置等に広く使用されている
要素である。一方、温度と圧力のように2つ検知入力信
号により一つの弁開度出力を設定する技術、又多炭種石
炭焚火力発電ユニットのSH出口温度制御を行なうため
に、各炭種の石炭性状指標と負荷指標の二つの入力信号
に基づいてスプレー弁先行開度信号を設定する技術の場
合、二入力一出力の折線関数発生回路を用いて前記夫々
の出力信号を得るような演算装置が、実際のプラント制
御で多く用いられている。
Conventionally, a one-input, one-output broken-line function generator for setting a valve opening output, for example, using temperature as a detection input signal, is a control device, an operation support device, a monitoring device in a plant, for example. It is a widely used element. On the other hand, the technology to set one valve opening output by two detection input signals such as temperature and pressure, and to control the SH outlet temperature of a multi-coal coal-fired power generation unit, In the case of the technique of setting the spray valve advance opening signal based on the two input signals of the index and the load index, an arithmetic device that obtains the respective output signals using a two-input one-output linear function generating circuit, It is often used in actual plant control.

【0003】そしてこれらのプラント制御装置等で二入
力一出力の折線関数を実現するために、図1に示すよう
に二入力(X,Y)及び一出力(Z)の三軸座標からなる三
次元座標マップを生成するための二入力一出力折線関数
を用意する必要があり、その作成に多数の手間と複雑な
解析回路を必要としていた。
In order to realize a two-input, one-output linear function in these plant controllers and the like, as shown in FIG. 1, a cubic function consisting of three-axis coordinates of two inputs (X, Y) and one output (Z) is used. It was necessary to prepare a two-input one-output linear function for generating the original coordinate map, and the production thereof required a lot of trouble and a complicated analysis circuit.

【0004】かかる従来技術の課題を図1に従って説明
するに、図1のグラフ図は、前記二入力変数一出力の
内、一の入力変数(Y)と出力(Z)とによりY−Z軸二次
元座標を、又の他の入力変数(X)と出力(Z)とによりX
−Z軸二次元座標を夫々形成し、これらの座標によりX
−Y−Z軸の三次元座標を形成して対応する座標上の出
力(Z)を求めている。
The problem of the prior art will be described with reference to FIG. 1. FIG. 1 is a graph showing YZ based on one input variable (Y) and output (Z) out of the two input variables and one output. The two-dimensional coordinate of the axis is calculated by using another input variable (X) and output (Z).
-Two-dimensional Z-axis coordinates are formed, and the X-axis
-The three-dimensional coordinates of the YZ axes are formed, and the output (Z) on the corresponding coordinates is obtained.

【0005】即ち、図1では例示としてX=X1 におけ
るY−Z軸座標の一入力折線関数をFY-1、X=X2 にお
けるY−Z軸座標の折線関数をFY-2、X=X3 における
Y−Z軸座標の折線関数をFY-3の太折線で夫々形成す
る。そして図1において、X=X1 におけるFY-1の折線
関数で形成される切断面は、(A)部分で表現されるハッ
チング部分となり、又X=X2 におけるFY-2の折線関数
で形成される切断面は、(B)部分で表現されるハッチン
グ部分となり、これらのハッチング部分の多数の組合わ
せにより2つの入力(X,Y)と出力(Z)とからなるX−
Y−Z軸の三次元座標マップが形成されることとなる。
That is, in FIG. 1, as an example, the one-input linear function of the YZ axis at X = X 1 is FY-1, the linear function of the YZ axis at X = X 2 is FY-2, and X = X 2. the polygonal line function of Y-Z axis coordinate respectively formed by a thick fold line of FY-3 in X 3. In FIG. 1, the cut surface formed by the broken line function of FY-1 at X = X 1 is a hatched portion represented by the portion (A), and is formed by the broken line function of FY-2 at X = X 2 . The cut surface to be formed is a hatched portion represented by a portion (B), and an X- line composed of two inputs (X, Y) and an output (Z) is formed by many combinations of these hatched portions.
A three-dimensional coordinate map of the YZ axes is formed.

【0006】従って二入力一出力の折線関数を実現する
には、従来技術では図1に示すように二入力(X,Y)及
び一出力(Z)の三軸座標からなる三次元座標マップを形
成した後、出力Zp を求めている。しかしながら前記三
次元座標マップより出力Zp を求めることは、前記した
ようにマップ作成に多数の手間と複雑な解析回路を必要
としていた。
Therefore, in order to realize a two-input one-output polygonal function, in the prior art, a three-dimensional coordinate map consisting of two-input (X, Y) and one-output (Z) three-axis coordinates as shown in FIG. After formation, the output Zp is determined. However, obtaining the output Zp from the three-dimensional coordinate map requires a lot of trouble and a complicated analysis circuit to create the map as described above.

【0007】本発明はかかる技術的課題に鑑み、通常の
制御装置が持っている機能(一入力一出力の折線関数)の
みで簡単に擬似的二入力折線関数作成方法及びその装置
を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above technical problems, the present invention provides a method for easily creating a pseudo two-input linear function using only the functions (a linear function of one input and one output) possessed by a normal control device. With the goal.

【0008】[0008]

【課題を解決するための手段】そこで請求項1記載の発
明は、2つの入力変数より一の出力を得る擬似的二入力
折線関数作成方法において、第一の入力変数の一入力折
線関数と第二の入力変数の一入力折線関数とを用意し、
前記夫々の入力変数を任意の値毎に対応する前記一入力
折線関数に投入して得た第一の及び第二の出力値を乗算
しての任意の値毎の乗算値を得た後、該任意の値毎の乗
算値を順次加算して一の出力を得ることを特徴とする擬
似的二入力折線関数作成方法を提案する。
Therefore, the present invention provides a method for creating a pseudo two-input linear function that obtains one output from two input variables. Prepare one input linear function with two input variables,
After obtaining a multiplied value for each arbitrary value by multiplying the first and second output values obtained by inputting the respective input variables to the one-input linear function corresponding to each arbitrary value, A pseudo two-input linear function creation method is proposed in which a multiplied value for each arbitrary value is sequentially added to obtain one output.

【0009】請求項2記載の発明は、2つの入力変数よ
り一の出力を得る擬似的二入力折線関数作成装置におい
て、第一の入力変数の一入力折線関数発生器と第二の入
力変数の一入力折線関数発生器と、前記夫々の入力変数
を任意の値毎に対応する前記一入力折線関数に投入して
得た第一の及び第二の出力値を乗算しての任意の値毎の
乗算値を得る乗算器と、前記任意の値毎の乗算値を順次
加算して一の出力を得る加算器とを具えてなることを特
徴とする擬似的二入力折線関数作成装置を提案する。
According to a second aspect of the present invention, there is provided a pseudo two-input linear function generator for obtaining one output from two input variables, wherein the one-input linear function generator for the first input variable and the second input variable A one-input linear function generator, and for each arbitrary value obtained by multiplying the first and second output values obtained by inputting the respective input variables to the one-input linear function corresponding to each arbitrary value, And an adder for sequentially adding the multiplied values for each of the arbitrary values to obtain one output. .

【0010】以下本発明を図1及び図2に従って説明す
る。図1において、関数FY-1からFY-2間の三次元面(A)
は、図2(D)の(A)部分で表現されるハッチング部分
と同等である。又、関数FYー2からFYー3間の三次元面(B)
は、図2(D)の(B)部分で表現されるハッチング部分
と同等である。
Hereinafter, the present invention will be described with reference to FIGS. In FIG. 1, a three-dimensional surface (A) between functions FY-1 and FY-2
Is equivalent to the hatched portion represented by the portion (A) in FIG. Also, a three-dimensional surface (B) between the functions FY-2 and FY-3
Is equivalent to the hatched portion represented by the portion (B) in FIG.

【0011】即ち、より具体的に説明するに、第1の入
力変数X=X1 における出力Z1 の値は、FY-1の折線関
数線上に位置し、従って第2の入力変数Y=Yp が定ま
れば、出力Z1 はFY-1(Yp )として決定される。又第1
の入力変数X=X2 と第2の入力変数Y=Yp における
出力Z2 の値は、同様にFY-2(Yp )として決定される。
従って例えば、第2の入力変数Y=Yp における図1に
示す点ア、イはそれぞれ ア:{X1,Yp,Z1}={X1,Yp,FY-1(Yp)}…1) イ:{X2,Yp,Z2}={X2,Yp,FY-2(Yp)}…2) となり、既知の入力変数と折線関数FYで出力Zの3次
元座標位置を決定できることが理解できる。
That is, to explain more specifically, the value of the output Z 1 at the first input variable X = X 1 is located on the broken-line function line of FY-1 and therefore the second input variable Y = Yp if is determined, the output Z 1 is determined as FY-1 (Yp). Also the first
The value of the output Z 2 and the input variable X = X 2 of the second input variable Y = Yp of is determined similarly as FY-2 (Yp).
Thus, for example, A point shown in FIG. 1 in the second input variable Y = Yp, respectively b is A: {X 1, Yp, Z 1} = {X 1, Yp, FY-1 (Yp)} ... 1) A: {X 2 , Yp, Z 2 } = {X 2 , Yp, FY-2 (Yp)}... 2), and the three-dimensional coordinate position of the output Z can be determined by the known input variables and the broken line function FY. It can be understood.

【0012】さらに、図1及び図2(D)で示すよう
に、点アと点イとを結ぶ線分上の任意の点ウの座標位置
は、第1の入力変数X=Xp と第2の入力変数Y=Yp
とともに出力Zp により決定されるが、前記出力Zp は
出力Z1 と出力Z2 を通る、入力点(Yp )上におけるX
−Z軸と平行な切断面である折線関数FX-1(Xp )上に位
置する事が理解できる。従って出力Zp は、入力点(Xp
)上におけるY−Z軸と平行な切断面である折線関数F
Yp と、入力点(Yp )上におけるX−Z軸と平行な切断
面である折線関数FXp の交点にあり、従って折線関数
FYとともに折線関数FXを用いて出力Zを表現するこ
とが可能となる。
Further, as shown in FIGS. 1 and 2 (D), the coordinate position of an arbitrary point c on the line segment connecting the points a and a is determined by a first input variable X = Xp and a second input variable X = Xp. Input variable Y = Yp
Is determined by the output Zp together, the output Zp passes through the output Z 1 and the output Z 2, X in the input point (Yp)
-It can be understood that it is located on the broken line function FX-1 (Xp) which is a cutting plane parallel to the Z axis. Therefore, the output Zp is equal to the input point (Xp
) Is a section line parallel to the YZ axis
It is located at the intersection of Yp and the polygonal line function FXp which is a cutting plane parallel to the XZ axis on the input point (Yp). Therefore, it is possible to express the output Z using the polygonal line function FX together with the polygonal line function FY. .

【0013】即ち、前記出力Zp は Zp={FX-1(Xp)}×{FY-1(Yp)}+{FX-2(Xp)}×{FY-2(Yp)}…3) と表現される。以上の様にして、二入力折線関数を一入
力一出力の折線関数の組み合わせで表現することが可能
となる。又、図1及び図2(D)で示す、第2の入力変
数Y=Yp'である点イと点エとを結ぶ線分上の任意の点
オの座標位置に位置する出力Zp'は、前記3)式から明
らかなように、 Zp'={FX-2(Xp')}×{FY-2(Yp')}+{FX-3(Xp')} ×{FY-3(Yp')}…4)となる。
That is, the output Zp is Zp = {FX-1 (Xp)} × {FY-1 (Yp)} + {FX-2 (Xp)} × {FY-2 (Yp)}... Is expressed. As described above, the two-input linear function can be expressed by a combination of the one-input one-output linear function. An output Zp 'located at a coordinate position of an arbitrary point o on a line segment connecting the points a and e with the second input variable Y = Yp' shown in FIGS. As is clear from the above equation (3), Zp ′ = {FX-2 (Xp ′)} × {FY-2 (Yp ′)} + {FX-3 (Xp ′)} ×× FY-3 (Yp ')} ... 4).

【0014】これらの演算結果より明らかなように、前
記3)と4)式を合成して、点ア、イ、エとを結ぶ線分
上の任意の点エ若しくはオの座標位置に位置する出力Z
q は、 Zq={FX-1(Xq)}×{FY-1(Yq)}+{FX-2(Xq)}×{FY-2(Yq)} +{FX-3(Xq)}×{FY-3(Yq)}…5)となる。
As is clear from the results of these calculations, the above equations 3) and 4) are combined and located at the coordinate position of an arbitrary point E or E on the line segment connecting points A, A and E. Output Z
q is as follows: Zq = {FX-1 (Xq)} × {FY-1 (Yq)} + {FX-2 (Xq)} × {FY-2 (Yq)} + {FX-3 (Xq)} × {FY-3 (Yq)}... 5).

【0015】従って前記5)式より第一の入力変数の一
入力折線関数{FX-1〜FX-n}と第二の入力変数の一入力
折線関数{FY-1〜FY-n}とを用意し、前記夫々の入力変
数を任意の値毎に対応する前記一入力折線関数に投入し
て得た第一の及び第二の出力値を乗算しての任意の値毎
の乗算値{FX-1(Xq)}×{FY-1(Yq)}…を得た後、該
任意の値毎の乗算値{FX-1(Xq)}×{FY-1(Yq)}…を
順次加算して一の出力Zq を得ることが理解できる。
Therefore, from equation (5), the one-input linear function {FX-1 to FX-n} of the first input variable and the one-input linear function {FY-1 to FY-n} of the second input variable are obtained. Prepared and multiplied by the first and second output values obtained by inputting the respective input variables to the one-input linear function corresponding to each arbitrary value, multiplied value for each arbitrary value {FX -1 (Xq)} × {FY-1 (Yq)}..., And then sequentially adds the multiplication value of each arbitrary value {FX-1 (Xq)} × {FY-1 (Yq)}. Thus, it can be understood that one output Zq is obtained.

【0016】又同様に図4に示すようにかかる発明
は、、第一の入力変数の一入力折線関数発生器{FX-1〜
FX-n}11〜13と第二の入力変数の一入力折線関数発
生器{FY-1〜FY-n}21〜23と、前記夫々の入力変数
を任意の値毎に対応する前記一入力折線関数に投入して
得た第一の及び第二の出力値を乗算しての任意の値毎の
乗算値を得る乗算器31〜33と、前記任意の値毎の乗
算値を順次加算して一の出力を得る加算器41〜42と
を具えてなることを特徴とする擬似的二入力折線関数作
成装置により達成出来ることも理解できる。
Similarly, as shown in FIG. 4, the present invention provides a one-input linear function generator {FX-1〜
FX-n} 11-13 and a one-input linear function generator {FY-1〜FY-n} 21-23 of a second input variable, and the one input corresponding to each of the input variables for each arbitrary value Multipliers 31 to 33 for obtaining a multiplied value for each arbitrary value by multiplying the first and second output values obtained by inputting the linear function and sequentially multiplying the multiplied values for the arbitrary value It can also be understood that the present invention can be achieved by a pseudo two-input broken-line function creating apparatus, which is provided with adders 41 to 42 for obtaining one output.

【0017】[0017]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部品の寸法、材質、形状、そ
の相対的配置等は特に特定的な記載がないかぎりは、こ
の発明の範囲をそれに限定する趣旨ではなく、単なる説
明例にすぎない。図4は本発明を、石炭焚火力発電ユニ
ットのスーパーモータ蒸気出口温度制御装置に適用した
実施形態を示すブロック回路図である。本実施形態は二
つの入力変数として、燃料に使用する石炭の種類によっ
て異なる石炭性状指標(X)と、火力発電ユニットの変動
負荷指標(Y)を用い、その火力発電ユニットのスプレー
弁先行信号を出力変数(Z)とする。同図において、F
X(FX-1,FX-2,FX-3)11,12,13は石炭性状指標
(X)を入力変数とした一入力折線関数発生器、FY(FY-
1,FY-2,FY-3)21,22,23はユニット変動負荷指
標(Y)を入力変数とした一入力折線関数発生器、31,
32,33は折線関数発生器FX(FX-1,FX-2,FX-3)1
1,12,13とFY(FY-1,FY-2,FY-3)21,22,2
3との夫々の出力を乗算する乗算器、41,42は乗算
器31,32,33の出力値を順次加算する加算器で、
これらの演算要素はCPU内に組込まれている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only. FIG. 4 is a block circuit diagram showing an embodiment in which the present invention is applied to a super motor steam outlet temperature control device of a coal-fired power generation unit. The present embodiment uses, as two input variables, a coal property index (X) that differs depending on the type of coal used for fuel and a variable load index (Y) of the thermal power generation unit, and a spray valve advance signal of the thermal power generation unit. Let it be an output variable (Z). In FIG.
X (FX-1, FX-2, FX-3) 11, 12, and 13 are coal property indicators
One-input linear function generator with (X) as input variable, FY (FY-
1, FY-2, FY-3) 21, 22, 23 are one-input linear function generators using the unit variable load index (Y) as an input variable, 31,
32 and 33 are linear function generators FX (FX-1, FX-2, FX-3) 1
1,12,13 and FY (FY-1, FY-2, FY-3) 21,22,2
3 are multipliers for multiplying respective outputs of the multipliers 3, 41 and 42 are adders for sequentially adding output values of the multipliers 31, 32 and 33,
These calculation elements are incorporated in the CPU.

【0018】一方スプレー弁50側の演算回路は、減算
器51、PI制御器52、加算器53からなり、前記減
算器51よりスプール弁出口温度と設定温度との偏差
(差分)を求め、該偏差量をPI制御器52に入力し、
補正値を演算する。前記補正値は、前記CPU内の終端
側加算器41よりの出力信号、即ちスプレー弁先行出力
信号と、前記加算器53で加算され、該加算器53より
の出力信号に基づいてスプレー弁50が開度制御され
る。
On the other hand, the arithmetic circuit on the side of the spray valve 50 comprises a subtractor 51, a PI controller 52, and an adder 53. The subtractor 51 obtains a difference (difference) between the spool valve outlet temperature and the set temperature. The deviation amount is input to the PI controller 52,
Calculate the correction value. The correction value is added to the output signal from the terminal side adder 41 in the CPU, that is, the spray valve advance output signal, by the adder 53, and the spray valve 50 is controlled based on the output signal from the adder 53. The opening is controlled.

【0019】次に前記実施形態の動作を説明する。図3
(A)に示す折線関数(FX-1)は、第1の炭種の性状指
標(X−1)を入力変数とした一入力折線関数発生器
(FX-1)11の関数グラフが設定されており、従って第
1の炭種の入力変数Xが、 X≦X1のとき FX1-1=1.0 X1<X≦X2のとき FX1-1=1-(X-X1)/(X2-X1) X2<Xのとき FX1-1=0.0 の出力値が生成され、その出力値が乗算器31に入力さ
れる。
Next, the operation of the above embodiment will be described. FIG.
The function graph of the one-input linear function generator (FX-1) 11 using the property index (X-1) of the first coal type as an input variable is set for the linear function (FX-1) shown in (A). Therefore, when the input variable X of the first coal type is X ≦ X 1 , FX 1 −1 = 1.0 when X 1 <X ≦ X 2 FX 1 −1 = 1− (XX 1 ) / (X 2 −X 1 ) When X 2 <X, an output value of FX 1 −1 = 0.0 is generated, and the output value is input to the multiplier 31.

【0020】図3(B)に示す折線関数(FX-2)は第2
の炭種の性状指標(X−2)を入力変数とした一入力折
線関数発生器(FX-2)12の関数グラフが設定されてお
り、従って第2の炭種の入力変数Xが、 X≦X1のとき FX1-2=0.0 X1<X≦X2のとき FX1-2=(X-X1)/(X2-X1) X2<X≦X3のとき FX1-2=1-(X-X2)/(X3-X2) X3<Xのとき FX1-2=0.0 の出力値が生成され、その出力値が乗算器32に入力さ
れる。
The broken line function (FX-2) shown in FIG.
The function graph of the one-input linear function generator (FX-2) 12 using the property index (X-2) of the coal type is set as an input variable. Therefore, the input variable X of the second coal type is X ≦ X FX 1 -2 = 0.0 X 1 when 1 <FX 1 when X ≦ X 2 -2 = (XX 1) / (X 2 -X 1) X 2 < when X ≦ X 3 FX 1 -2 = 1− (XX 2 ) / (X 3 −X 2 ) When X 3 <X, an output value of FX 1 −2 = 0.0 is generated, and the output value is input to the multiplier 32.

【0021】図3(C)に示す折線関数(FX-3)は第3
の炭種の性状指標(X−3)を入力変数とした一入力折
線関数発生器(FX-3)13の関数グラフが設定されてお
り、従って第2の炭種の入力変数Xが、 X≦X2のとき FX1-3=0.0 X2<X≦X3のとき FX1-3=(X-X2)/(X3-X2) X3<Xのとき FX1-3=1.0 の出力値が生成され、その出力値が乗算器33に入力さ
れる。
The broken line function (FX-3) shown in FIG.
The function graph of the one-input linear function generator (FX-3) 13 using the coal type property index (X-3) as an input variable is set. Therefore, the input variable X of the second coal type is X ≦ X FX 1 -3 = 0.0 X 2 when 2 <FX 1 when X ≦ X 3 -3 = (XX 2) / (X 3 -X 2) X 3 < when X FX 1 -3 = 1.0 of An output value is generated, and the output value is input to the multiplier 33.

【0022】次に前記技術手段の5)式で説明したよう
に、第1の入力変数X=Xq と第2の入力変数Y=Yq
から出力Zq 、即ちスプレー弁先行出力信号を求める式
は5)式に開示してあるが、本式より明らかなように、
スプレー弁先行出力信号Zqは、{FX-3(Xq)}×{FY-3
(Yq)}の出力値(演算値)Aと{FX-2(Xq)}×{FY-2
(Yq)}の出力値(演算値)Bと{FX-1(Xq)}×{FY-1
(Yq)}の出力値(演算値)Cとを加算した値となる。
Next, as explained in the above-mentioned technical means, expression 5), the first input variable X = Xq and the second input variable Y = Yq
The equation for obtaining the output Zq, that is, the spray valve advance output signal, is disclosed in Equation 5).
The spray valve preceding output signal Zq is {FX-3 (Xq)} ×} FY-3
(Yq)} output value (computed value) A and {FX-2 (Xq)} × {FY-2
(Yq)} output value (computed value) B and {FX-1 (Xq)} × {FY-1
(Yq)} is the value obtained by adding the output value (calculated value) C of}.

【0023】そこで乗算器33により{FX-3}関数発生
器13と{FY-3}関数発生器23との出力を乗算して
{FX-3(Xq)}×{FY-3(Yq)}の出力値Aを得る。次に
乗算器32により{FX-2}関数発生器12と{FY-3}関
数発生器22との出力を乗算して{FX-2(Xq)}×{FY-
2(Yq)}の出力値Bを得る。更に乗算器31により{FX
-1}関数発生器11と{FY-1}関数発生器21との出力
を乗算して{FX-1(Xq)}×{FY-1(Yq)}の出力値Cを
得る。次に加算器42及び41により前記出力値A、
B、Cが加算されて前記5)式に示すスプレー弁先行出
力信号 Zq(A+B+C)を得ることが出来る。
Therefore, the output of the {FX-3} function generator 13 and the output of the {FY-3} function generator 23 are multiplied by the multiplier 33 to obtain {FX-3 (Xq)} × {FY-3 (Yq). The output value A of} is obtained. Next, the output of the {FX-2} function generator 12 and the output of the {FY-3} function generator 22 are multiplied by a multiplier 32 to obtain {FX-2 (Xq)} × {FY-
An output value B of 2 (Yq)} is obtained. Further, the multiplier 31
An output value C of {FX-1 (Xq)} × {FY-1 (Yq)} is obtained by multiplying the output of the {-1} function generator 11 and the output of the {FY-1} function generator 21. Next, the output values A,
By adding B and C, a spray valve advance output signal Zq (A + B + C) shown in the above equation (5) can be obtained.

【0024】そして前記スプレー弁先行出力信号 Zq
(A+B+C)と、スプレー弁50側の演算回路内で、
PI制御器52よりの補正値とを、加算器53により加
算してその加算信号に基づいてスプレー弁50の開度制
御を行なうことが出来る。尚、本実施形態では本発明の
手法を多炭種を用いるプラント(石炭焚火力発電ユニッ
ト)のSH出口温度制御に適用した制御装置として記述
しているが、二入力折線関数を一入力一出力の折線関数
で制御するものであれば他の機種にも適用可能であるこ
とは容易に理解できる。
The spray valve advance output signal Zq
(A + B + C) and in the arithmetic circuit on the spray valve 50 side,
The correction value from the PI controller 52 is added by the adder 53, and the opening of the spray valve 50 can be controlled based on the added signal. In the present embodiment, the method of the present invention is described as a control device that is applied to SH outlet temperature control of a plant (coal-fired power generation unit) using a high coal type. It can be easily understood that the present invention can be applied to other models as long as it is controlled by the broken line function.

【0025】[0025]

【発明の効果】以上記載のごとく本発明によれば、二入
力折線関数を別装置に組み込む、又は専用の演算要素を
使用する等の方法を用いることなく、二入力折線関数を
一入力一出力の折線関数で表現することが可能となる。
又本発明によれば、特別に二入力関数を組み込まなくて
も、一入力一出力の折線関数で二入力折線関数を実現で
きる。また、一入力一出力の折線関数のパラメータを自
動的に変更可能な機能と組み合わせることで、経年変化
を有するプロセス量にも柔軟に対応可能となる。等の種
々の著効を有す。
As described above, according to the present invention, a two-input linear function is converted into one input and one output without using a method such as incorporating a two-input linear function into another device or using a dedicated arithmetic element. Can be expressed by the broken line function of
Further, according to the present invention, a two-input linear function can be realized by a one-input one-output linear function without specially incorporating a two-input function. Further, by combining the function of the linear function with one input and one output with a function that can be automatically changed, it is possible to flexibly cope with a process amount having aging. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】前記二入力変数一出力の内、一の入力変数(Y)
と出力(Z)とによりY−Z軸二次元座標を、又の他の入
力変数(X)と出力(Z)とによりX−Z軸二次元座標を夫
々形成し、これらの座標によりX−Y−Z軸の三次元座
標を形成して対応する座標上の出力(Z)を求めている三
次元座標グラフ図である。
FIG. 1 shows one input variable (Y) of the two input variables and one output.
And the output (Z) to form two-dimensional coordinates on the YZ axis, and the other input variables (X) and the output (Z) to form two-dimensional coordinates on the XZ axis. It is a three-dimensional coordinate graph figure which forms the three-dimensional coordinate of YZ axis | shaft, and calculates | requires output (Z) on the corresponding coordinate.

【図2】石炭性状指数の入力変数Xが任意値X1、X2
3 においての出力Zと負荷指数の入力変数Yの関係を
折線関数FY-1(A)、FY-2(B)、FY-3(C)及びこれ
らを加算して目的とする出力Zを表すグラフ図(D)を
夫々示す。
[Fig. 2] Input variables X of the coal property index are arbitrary values X 1 , X 2 ,
Polygonal line function FY-1 the relationship between the input variable Y output Z and the load index in X 3 (A), FY- 2 (B), the output Z of the FY-3 (C) and object by adding these The respective graphs (D) are shown.

【図3】石炭性状指数の入力変数Xが任意値X1、X2
3 においての関係を折線関数FX-1(A)、FX-2
(B)、FX-3(C)で表すグラフ図を夫々示す。
[Figure 3] The input variable X of the coal property index is an arbitrary value X 1 , X 2 ,
Polygonal line a relationship in X 3 function FX-1 (A), FX -2
(B) and a graph diagram represented by FX-3 (C) are shown, respectively.

【図4】本発明を、石炭焚火力発電ユニットのスーパー
ヒータ蒸気出口温度制御装置に適用した実施形態を示す
ブロック回路図である。
FIG. 4 is a block circuit diagram showing an embodiment in which the present invention is applied to a superheater steam outlet temperature control device of a coal-fired power generation unit.

【符号の説明】[Explanation of symbols]

X 石炭性状指数 Y 負荷指標 Z スプレー弁先行信号 11,12,13 石炭性状指標(X)を入力変数とした
一入力折線関数発生器 21,22,23 ユニット変動負荷指標(Y)を入力変
数とした一入力折線関数発生器 31,32,33 乗算器 41,42 加算器 50 スプレー弁 51 減算器 52 PI制御器 53 加算器
X Coal property index Y Load index Z Spray valve advance signal 11,12,13 One-input linear function generator 21,22,23 with coal property index (X) as input variable Unit variable load index (Y) as input variable One-input linear function generator 31, 32, 33 Multiplier 41, 42 Adder 50 Spray valve 51 Subtractor 52 PI controller 53 Adder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2つの入力変数より一の出力を得る擬似
的二入力折線関数作成方法において、 第一の入力変数の一入力折線関数と第二の入力変数の一
入力折線関数とを用意し、 前記夫々の入力変数を任意の値毎に対応する前記一入力
折線関数に投入して得た第一の及び第二の出力値を乗算
しての任意の値毎の乗算値を得た後、該任意の値毎の乗
算値を順次加算して一の出力を得ることを特徴とする擬
似的二入力折線関数作成方法。
1. A method for creating a pseudo two-input linear function that obtains one output from two input variables, comprising: providing a one-input linear function for a first input variable and a one-input linear function for a second input variable. After multiplying the first and second output values obtained by inputting each of the input variables to the one-input linear function corresponding to each arbitrary value to obtain a multiplied value for each arbitrary value , A pseudo two-input linear function creation method characterized by sequentially adding the multiplied values for each arbitrary value to obtain one output.
【請求項2】 2つの入力変数より一の出力を得る擬似
的二入力折線関数作成装置において、 第一の入力変数の一入力折線関数発生器と第二の入力変
数の一入力折線関数発生器と、 前記夫々の入力変数を任意の値毎に対応する前記一入力
折線関数に投入して得た第一の及び第二の出力値を乗算
しての任意の値毎の乗算値を得る乗算器と、 前記任意の値毎の乗算値を順次加算して一の出力を得る
加算器とを具えてなることを特徴とする擬似的二入力折
線関数作成装置。
2. A pseudo two-input linear function generator for obtaining one output from two input variables, comprising: a one-input linear function generator for a first input variable and a one-input linear function generator for a second input variable. Multiplying a first and second output value obtained by inputting each of the input variables to the one-input linear function corresponding to each arbitrary value to obtain a multiplied value for each arbitrary value A pseudo two-input linear function creation device, characterized by comprising: an adder; and an adder for sequentially adding the multiplied values for each arbitrary value to obtain one output.
JP26485497A 1997-09-11 1997-09-11 Method and apparatus for creating pseudo two-input polygonal line function Expired - Lifetime JP3905611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26485497A JP3905611B2 (en) 1997-09-11 1997-09-11 Method and apparatus for creating pseudo two-input polygonal line function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26485497A JP3905611B2 (en) 1997-09-11 1997-09-11 Method and apparatus for creating pseudo two-input polygonal line function

Publications (2)

Publication Number Publication Date
JPH1185205A true JPH1185205A (en) 1999-03-30
JP3905611B2 JP3905611B2 (en) 2007-04-18

Family

ID=17409150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26485497A Expired - Lifetime JP3905611B2 (en) 1997-09-11 1997-09-11 Method and apparatus for creating pseudo two-input polygonal line function

Country Status (1)

Country Link
JP (1) JP3905611B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743573A (en) * 2013-12-23 2014-04-23 金华市金翎科技服务有限公司 Method for boiler real-time on-line monitoring-based measurement of optimum work efficiency of generator set

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743573A (en) * 2013-12-23 2014-04-23 金华市金翎科技服务有限公司 Method for boiler real-time on-line monitoring-based measurement of optimum work efficiency of generator set

Also Published As

Publication number Publication date
JP3905611B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
Erkorkmaz et al. Quintic spline interpolation with minimal feed fluctuation
Chang et al. LMI approach to digital redesign of linear time-invariant systems
Cois et al. Non integer model from modal decomposition for time domain system identification
Gilsinn Estimating critical Hopf bifurcation parameters for a second-order delay differential equation with application to machine tool chatter
EP0407590B1 (en) Servo control apparatus
US4132482A (en) Feedback system for a ring laser gyro
JPH1185205A (en) Method and device for generating artificial two-input polygonal function
US5920679A (en) Apparatus and method for computer-aided low-harmonic trajectory planning for computer-controlled machinery
US5381361A (en) Method and apparatus for real-time constraint solution
JPH01217562A (en) System for generating computing grid
JPS62106505A (en) Preparing device for numerical control data for working of 3-dimensional form
Leidinger et al. Explicit isogeometric b-rep analysis on trimmed nurbs-based multi-patch cad models in ls-dyna
Butler et al. Optimal control of infinite-order smart composite structural systems using distributed sensors
Rabbath et al. A methodology for the potential improvement of gas-turbine engine digital control systems
Tipei et al. A solution of the thermohydrodynamic problem for exponential lubricating films
JP3571952B2 (en) 2-DOF control device
JP2001067391A (en) Three-dimenisonal form processing method and recording medium recording program for executing the processing method
JPS581205A (en) Pid controller
Bajaj et al. Rational spline approximations of real algebraic curves and surfaces
US20030055577A1 (en) Method and system for approximating properties of laser interaction with materials
Hosseini et al. Direct Model Reference Takagi–Sugeno Fuzzy Control of SISO Nonlinear Systems Design by Membership Function
JP2864918B2 (en) Loop gain measurement method
US20040243363A1 (en) Method for simulating a technical system and simulator
SU801005A1 (en) Device for solving systems of homogeneous differential equations
JPH0488405A (en) Tool track generation system by numerical controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term