JPH1183170A - Hot water supply unit having single storage water heater body and two water channels - Google Patents

Hot water supply unit having single storage water heater body and two water channels

Info

Publication number
JPH1183170A
JPH1183170A JP9270503A JP27050397A JPH1183170A JP H1183170 A JPH1183170 A JP H1183170A JP 9270503 A JP9270503 A JP 9270503A JP 27050397 A JP27050397 A JP 27050397A JP H1183170 A JPH1183170 A JP H1183170A
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat exchanger
combustion
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9270503A
Other languages
Japanese (ja)
Other versions
JP3848756B2 (en
Inventor
Yukinobu Noguchi
幸伸 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP27050397A priority Critical patent/JP3848756B2/en
Publication of JPH1183170A publication Critical patent/JPH1183170A/en
Application granted granted Critical
Publication of JP3848756B2 publication Critical patent/JP3848756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control For Baths (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water supply unit having a signal storage water heater body and two water channels in which boiling up of bath water is prevented from being delayed at the time of simultaneous combustion. SOLUTION: A bypass 25 communicating between a water supply path 11 and a hot water supply path 12 while bypassing a hot water supply heat exchanger 10 is provided with means 26 for controlling the quantity of water passing through the bypass 25 variably by varying the valve opening. The quantity of combustion heat of a burner 3 is increased at the time of simultaneous combustion as compared with single operation of hot water supply. Consequently, the water passing through an additional burning heat exchanger 14 receives more heat and boiling up of bath water is prevented from being delayed. Although the temperature of hot water delivered from the hot water supply heat exchanger 10 increases, it can be lowered by increasing the valve opening of the bypass flow rate control means 26 and supplying water from the bypass 25.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、給湯熱交換器と非
給湯側熱交換器とが一体化され、これら給湯熱交換器と
非給湯側熱交換器とを共通に燃焼加熱するバーナが設け
られている一缶二水路タイプの給湯器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water supply heat exchanger and a non-hot water supply side heat exchanger integrated with each other, and a burner for burning and heating the hot water supply heat exchanger and the non-hot water supply side heat exchanger in common. The present invention relates to a one-can, two-channel water heater.

【0002】[0002]

【従来の技術】図5には一缶二水路給湯器(器具)のシ
ステム構成のモデル例が実線により示されており、この
器具は、給湯機能と、非給湯側の機能である風呂の湯張
りや追い焚き等の風呂機能とを備えたものである。この
器具は、器具ケース1内にバーナ3が設けられ、このバ
ーナ3には該バーナ3へ燃料ガスを導くためのガス供給
通路4が接続され、このガス供給通路4には通路の開閉
を行う電磁弁5,6と、弁開度によって燃料ガスの供給
量を制御する比例弁8とが介設されている。
2. Description of the Related Art FIG. 5 shows a model example of a system configuration of a one-can, two-channel water heater (apparatus) by a solid line. This apparatus has a hot water supply function and a bath water function that is a non-hot water supply side function. It is equipped with a bath function such as upholstery and reheating. In this appliance, a burner 3 is provided in an appliance case 1, and a gas supply passage 4 for guiding fuel gas to the burner 3 is connected to the burner 3, and the gas supply passage 4 opens and closes the passage. Solenoid valves 5 and 6 and a proportional valve 8 that controls the supply amount of fuel gas based on the valve opening are provided.

【0003】上記バーナ3の上方には給湯熱交換器10
が設けられ、この給湯熱交換器10の入側には給水通路
11の一端側が接続され、給水通路11の他端側は外部
配管を介して水供給源に接続されている。給湯熱交換器
10の出側には給湯通路12の一端側が接続され、給湯
通路12の他端側は外部配管を介して台所やシャワー等
の給湯場所に連通されている。
[0003] Above the burner 3, a hot water supply heat exchanger 10 is provided.
Is provided, one end of a water supply passage 11 is connected to the inlet side of the hot water supply heat exchanger 10, and the other end of the water supply passage 11 is connected to a water supply source via an external pipe. One end of a hot water supply passage 12 is connected to the outlet side of the hot water supply heat exchanger 10, and the other end of the hot water supply passage 12 is connected to a hot water supply place such as a kitchen or a shower through an external pipe.

【0004】上記給湯熱交換器10の上側には非給湯側
熱交換器としての追い焚き熱交換器14が給湯熱交換器
10と一体的に設けられ、この追い焚き熱交換器14の
入側には戻り管15の一端側が接続され、この戻り管1
5の他端側は外部配管を介して浴槽17に連通されてお
り、追い焚き熱交換器14の出側には通路16の一端側
が接続され、通路16の他端側は循環ポンプ18の吸入
口に接続されている。循環ポンプ18の吐出口には往管
20の一端側が接続され、往管20の他端側は外部配管
を介して浴槽17に連通されている。上記戻り管15と
追い焚き熱交換器14と通路16と循環ポンプ18と往
管20とにより熱媒体としての浴槽17の浴槽湯水を追
い焚き循環させるための非給湯側循環通路である追い焚
き循環通路21が構成されている。
[0004] Above the hot water supply heat exchanger 10, a reheating heat exchanger 14 is provided integrally with the hot water supply heat exchanger 10 as a non-hot water supply side heat exchanger. Is connected to one end of a return pipe 15.
The other end of 5 is connected to a bathtub 17 via an external pipe, one end of a passage 16 is connected to the exit side of the reheater 14, and the other end of the passage 16 is suctioned by a circulation pump 18. Connected to the mouth. One end of an outgoing pipe 20 is connected to the discharge port of the circulation pump 18, and the other end of the outgoing pipe 20 is connected to the bathtub 17 via an external pipe. The recirculation passage, which is a non-hot water supply side circulation passage for recirculating the hot water in the bathtub 17 as a heat medium by the return pipe 15, the reheating heat exchanger 14, the passage 16, the circulation pump 18, and the outflow pipe 20. A passage 21 is formed.

【0005】上記給湯通路12と追い焚き循環通路21
を連通接続する湯張り通路22が設けられており、この
湯張り通路22には通路の開閉を行う注湯制御弁24が
介設されている。
The hot water supply passage 12 and the additional heating circulation passage 21
Is provided, and a pouring control valve 24 for opening and closing the passage is interposed in the hot water passage 22.

【0006】なお、図5に示す28は給水通路11を流
れる通水流量を検出する水量センサを表し、30は給水
通路11の湯水温度を検出する入水サーミスタを表し、
31は給湯される湯水温度を検出する給湯サーミスタを
表し、32は浴槽水位を水圧により検出する水位センサ
を表し、33は追い焚き循環通路21の湯水温度を風呂
温度として検出する風呂温度センサを表している。
In FIG. 5, reference numeral 28 denotes a water flow sensor for detecting the flow rate of water flowing through the water supply passage 11, reference numeral 30 denotes a water input thermistor for detecting the temperature of hot water in the water supply passage 11,
Reference numeral 31 denotes a hot water supply thermistor that detects the temperature of hot water to be supplied, 32 denotes a water level sensor that detects a bathtub water level by water pressure, and 33 denotes a bath temperature sensor that detects the temperature of hot water in the reheating circulation passage 21 as a bath temperature. ing.

【0007】この一缶二水路給湯器には給湯や、湯張り
や、追い焚きや、保温等の器具運転を制御する制御装置
35が設けられ、この制御装置35にはリモコン36が
信号接続されている。リモコン36には給湯温度を設定
する給湯温度設定手段や、風呂の温度を設定する風呂温
度設定手段や、風呂の水位を設定する水位設定手段等が
設けられている。
[0007] The one-can two-channel water heater is provided with a control device 35 for controlling equipment operation such as hot water supply, hot water filling, reheating, and heat retention. A remote control 36 is connected to the control device 35 by a signal. ing. The remote controller 36 is provided with hot water supply temperature setting means for setting hot water supply temperature, bath temperature setting means for setting bath temperature, water level setting means for setting bath water level, and the like.

【0008】上記制御装置35は給湯運転を次のように
制御する。例えば、給湯通路12の台所やシャワー等の
給湯栓(図示せず)が開栓され、水量センサ28が予め
定めた給湯運転作動流量以上の通水流量を検知すると、
電磁弁5,6を開けてバーナ3に燃料ガスを供給し、バ
ーナ3の燃焼を開始させ、給湯される湯の温度がリモコ
ン36に設定されている給湯設定温度となるように比例
弁8の弁開度を制御して(つまり、バーナ3への供給燃
料ガス量を制御して)バーナ3の燃焼熱量制御を行い、
給水通路11から供給された水を給湯熱交換器10がバ
ーナ3の燃焼火炎の熱により加熱して湯を作り出し、そ
の湯を給湯通路12を介して給湯する。そして、給湯栓
が閉められ、水量センサ28が通水停止を検知したとき
に、電磁弁5,6を閉弁してバーナ3の燃焼を停止し、
給湯運転を終了する。
The control device 35 controls the hot water supply operation as follows. For example, when a hot water tap (not shown) such as a kitchen or a shower in the hot water supply passage 12 is opened and the water amount sensor 28 detects a water flow rate equal to or higher than a predetermined hot water supply operation operating flow rate,
The solenoid valves 5 and 6 are opened to supply fuel gas to the burner 3 to start the combustion of the burner 3 and to control the proportional valve 8 so that the temperature of the hot water becomes the hot water set temperature set in the remote controller 36. Controlling the valve opening (that is, controlling the amount of fuel gas supplied to the burner 3) to control the amount of combustion heat of the burner 3;
The hot water supply heat exchanger 10 heats the water supplied from the water supply passage 11 by the heat of the combustion flame of the burner 3 to produce hot water, and supplies the hot water through the hot water supply passage 12. Then, when the hot water tap is closed and the water amount sensor 28 detects the stoppage of water supply, the solenoid valves 5 and 6 are closed to stop the combustion of the burner 3, and
The hot water supply operation ends.

【0009】また、湯張り運転を行うときには、注湯制
御弁24を開弁し、給湯熱交換器10で上記同様に湯を
作り出し、その湯を給湯通路12と湯張り通路22と追
い焚き循環通路21とを順に介して浴槽17に注湯す
る。そして、水位センサ32により検出される浴槽水位
がリモコン36に設定されている設定水位に達したとき
に、注湯制御弁24を閉弁しバーナ3の燃焼を停止して
湯張り運転を終了する。
When performing the hot water filling operation, the pouring control valve 24 is opened, hot water is produced by the hot water supply heat exchanger 10 in the same manner as described above, and the hot water is recirculated to the hot water supply passage 12 and the hot water filling passage 22 for recirculation. The hot water is poured into the bathtub 17 through the passage 21 in order. Then, when the bathtub water level detected by the water level sensor 32 reaches the set water level set in the remote controller 36, the pouring control valve 24 is closed to stop the combustion of the burner 3 and end the filling operation. .

【0010】さらに、追い焚き運転を行うときには、循
環ポンプ18を駆動し、浴槽17から戻り管15と追い
焚き熱交換器14と通路16と循環ポンプ18と往管2
0とを順に介して浴槽17に戻る追い焚き循環経路で浴
槽湯水を循環させると共に、バーナ3を燃焼させ該バー
ナ3の燃焼火炎の熱によって追い焚き熱交換器14で浴
槽湯水の追い焚きを行い、風呂温度センサ33により検
出される風呂温度がリモコン36に設定されている風呂
設定温度に達したときにバーナ3の燃焼を停止し、ま
た、循環ポンプ18を停止して追い焚き運転を終了す
る。この追い焚き運転時には、通常、できるだけ早く風
呂を沸き上げることができるように、バーナ3の燃焼熱
量を予め定められた最大燃焼熱量近傍に制御してバーナ
3の燃焼を行う。
Further, when performing the reheating operation, the circulation pump 18 is driven, and the return pipe 15, the reheating heat exchanger 14, the passage 16, the circulation pump 18, and the outgoing pipe 2 are returned from the bathtub 17.
In addition to circulating the bath water in the reheating circuit, which returns to the bath 17 in order through 0, burns the burner 3 and reheats the bath water in the reheat heat exchanger 14 by the heat of the combustion flame of the burner 3. When the bath temperature detected by the bath temperature sensor 33 reaches the bath set temperature set in the remote controller 36, the combustion of the burner 3 is stopped, and the circulation pump 18 is stopped to end the reheating operation. . During the reheating operation, the burner 3 is normally burned by controlling the heat of combustion of the burner 3 to be close to a predetermined maximum heat of combustion so that the bath can be heated as soon as possible.

【0011】さらに、保温機能が備えられている場合に
は、例えば、上記追い焚き運転の終了後、予め定めた時
間間隔(例えば、30分間隔)毎に循環ポンプ18を駆
動し、風呂温度センサ33により風呂の温度を検出し、
この検出した風呂の温度が風呂設定温度から予め定めた
許容温度を越えて低いときには、バーナ3を燃焼させ、
浴槽湯水の追い焚きを行って風呂の湯温を設定温度に高
めて風呂の保温を行う。
Further, when a warming function is provided, the circulation pump 18 is driven at predetermined time intervals (for example, every 30 minutes) after the reheating operation, and the bath temperature sensor is operated. 33 detects the temperature of the bath,
When the detected bath temperature is lower than the bath set temperature and exceeds a predetermined allowable temperature, the burner 3 is burned,
The reheating of the bathtub is used to raise the temperature of the bath to the set temperature to keep the bath warm.

【0012】[0012]

【発明が解決しようとする課題】ところで、給湯運転と
追い焚き運転が共に行われる同時燃焼時には、給湯湯温
が予め定められた給湯設定温度となるように給湯運転を
優先してバーナ3の燃焼熱量の制御が行われる。一缶二
水路給湯器では、上記の如く給湯熱交換器10と追い焚
き熱交換器14が一体的になっており、バーナ3の燃焼
火炎の熱により給湯熱交換器10と追い焚き熱交換器1
4が共に加熱される構成となっていることから、給湯設
定温度が低く設定された場合のように予め定められた最
小燃焼熱量近傍の燃焼熱量でバーナ3の燃焼制御が為さ
れると、必然的に、追い焚き熱交換器14の通水が受け
取る熱量が非常に少なくなって風呂を沸き上げるまでに
多くの時間を要した。
In the case of simultaneous combustion in which both the hot water supply operation and the reheating operation are performed, the combustion of the burner 3 is performed with priority given to the hot water supply operation so that the hot water supply temperature becomes a predetermined hot water supply set temperature. Control of the amount of heat is performed. In the one-can two-channel water heater, as described above, the hot water supply heat exchanger 10 and the reheating heat exchanger 14 are integrated, and the heat of the combustion flame of the burner 3 causes the hot water supply heat exchanger 10 and the reheating heat exchanger to be integrated. 1
4 are heated together, it is inevitable that the combustion control of the burner 3 is performed with a combustion heat amount near a predetermined minimum combustion heat amount, such as when the hot water supply set temperature is set low. In particular, the amount of heat received by the water flowing through the reheating heat exchanger 14 was so small that it took a long time for the bath to be heated.

【0013】この発明は上記課題を解決するためになさ
れたものであり、その目的は、同時燃焼が行われている
ときに、給湯設定温度の湯を給湯しながら、風呂を沸き
上げるのに要する時間が長くなるのを抑制することがで
きる一缶二水路給湯器を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to boil a bath while supplying hot water at a set hot water supply temperature during simultaneous combustion. An object of the present invention is to provide a one-can-two-channel water heater that can suppress an increase in time.

【0014】[0014]

【課題を解決するための手段】上記目的を達成させるた
めにこの発明は次のような構成をもって前記課題を解決
する手段としている。すなわち、第1の発明は、給水通
路から供給された水を加熱し湯を作り出し該湯を給湯通
路に送出する給湯熱交換器と、非給湯側循環通路を通し
て供給された熱媒体を加熱する非給湯側熱交換器と、上
記給湯熱交換器と非給湯側熱交換器は一体化され、一体
化された給湯熱交換器と非給湯側熱交換器を共通に燃焼
加熱するバーナが設けられており、給湯熱交換器により
作られた湯を給湯する給湯運転と、非給湯側熱交換器に
より熱媒体の加熱を行う非給湯側運転とを行うことがで
きる一缶二水路給湯器において、給水通路と給湯通路間
を給湯熱交換器を迂回して連通接続するバイパス通路
と;該バイパス通路の通水流量を弁開度で可変制御する
ことができるバイパス流量制御手段と;給湯運転と非給
湯側運転が共に行われる同時燃焼時にはバーナの燃焼熱
量を給湯単独運転時の燃焼熱量よりも増加してバーナの
燃焼制御を行う同時燃焼時燃焼熱量増加制御部と;該同
時燃焼時燃焼熱量増加制御部によりバーナ燃焼熱量が増
加制御されているときには、バイパス流量制御手段の弁
開度を開方向に制御して上記同時燃焼時燃焼熱量増加制
御部の燃焼熱量増加制御による燃焼熱量増加量に対応し
た給湯熱交換器の出側の湯水温度の上昇分をバイパス通
路から給湯通路に流れ出る水によって低下補正する給湯
湯温低下補正制御部と;を設けた構成をもって前記課題
を解決する手段としている。
In order to achieve the above object, the present invention has the following structure to solve the above-mentioned problems. That is, the first aspect of the present invention provides a hot water supply heat exchanger that heats water supplied from a water supply passage to produce hot water and sends the hot water to the hot water supply passage, and a non-water supply heat exchanger that heats a heat medium supplied through a non-hot water supply side circulation passage. The hot water supply heat exchanger, the hot water supply heat exchanger and the non-hot water supply side heat exchanger are integrated, and a burner for burning and heating the integrated hot water supply heat exchanger and the non-hot water supply side heat exchanger in common is provided. In a one-can two-channel water heater that can perform a hot water supply operation for supplying hot water produced by a hot water supply heat exchanger and a non-hot water supply side operation for heating a heat medium by a non-hot water supply side heat exchanger, A bypass passage connecting the passage and the hot water supply passage so as to bypass the hot water supply heat exchanger; a bypass flow rate control means capable of variably controlling a flow rate of the bypass passage by a valve opening; During simultaneous combustion with side operation A simultaneous combustion combustion heat amount increasing control unit for increasing the combustion heat amount of the burner over the combustion heat amount in the hot water supply alone operation to perform burner combustion control; and the simultaneous combustion combustion heat amount increase control unit increasing the burner combustion heat amount. When the valve is open, the valve opening of the bypass flow rate control means is controlled in the opening direction to control the opening of the hot water supply heat exchanger corresponding to the amount of combustion heat increase by the combustion heat increase control of the simultaneous combustion combustion heat increase control section. A hot water supply temperature decrease correction control unit that corrects the rise in temperature by water flowing from the bypass passage to the hot water supply passage;

【0015】第2の発明は、給水通路から供給された水
を加熱し湯を作り出し該湯を給湯通路に送出する給湯熱
交換器と、追い焚き循環通路を通して供給された浴槽水
を加熱し追い焚きを行う追い焚き熱交換器と、上記給湯
熱交換器と追い焚き熱交換器は一体化され、一体化され
た給湯熱交換器と追い焚き熱交換器を共通に燃焼加熱す
るバーナが設けられており、給湯熱交換器により作られ
た湯を給湯する給湯運転と、追い焚き熱交換器により浴
槽水の追い焚きを行う追い焚き運転とを行うことができ
る一缶二水路給湯器において、給水通路と給湯通路間を
給湯熱交換器を迂回して連通接続するバイパス通路と;
該バイパス通路の通水流量を弁開度で可変制御すること
ができるバイパス流量制御手段と;給湯運転と追い焚き
運転が共に行われる同時燃焼時にはバーナの燃焼熱量を
給湯単独運転時の燃焼熱量よりも増加してバーナの燃焼
制御を行う同時燃焼時燃焼熱量増加制御部と;該同時燃
焼時燃焼熱量増加制御部によりバーナ燃焼熱量が増加制
御されているときには、バイパス流量制御手段の弁開度
を開方向に制御して上記同時燃焼時燃焼熱量増加制御部
の燃焼熱量増加制御による燃焼熱量増加量に対応した給
湯熱交換器の出側の湯水温度の上昇分をバイパス通路か
ら給湯通路に流れ出る水によって低下補正する給湯湯温
低下補正制御部と;を設けた構成をもって前記課題を解
決する手段としている。
According to a second aspect of the present invention, there is provided a hot water supply heat exchanger for heating water supplied from a water supply passage to produce hot water and sending the hot water to the hot water supply passage, and for heating and purifying bath water supplied through the reheating circulation passage. A reheating heat exchanger for performing the heating, the above-mentioned hot water supply heat exchanger and the reheating heat exchanger are integrated, and a burner for burning and heating the integrated hot water supply heat exchanger and the reheating heat exchanger in common is provided. In a one-can, two-channel water heater, which can perform a hot water supply operation for supplying hot water produced by the hot water supply heat exchanger and a reheating operation for reheating the bathtub water using the reheating heat exchanger. A bypass passage communicating between the passage and the hot water supply passage, bypassing the hot water supply heat exchanger;
A bypass flow rate control means capable of variably controlling a flow rate of the water in the bypass passage by a valve opening degree; in a simultaneous combustion in which both the hot water supply operation and the reheating operation are performed, the combustion heat amount of the burner is calculated from the combustion heat amount in the hot water supply alone operation. A simultaneous combustion combustion heat amount increase control unit for controlling burner combustion by increasing the burner combustion heat amount by the simultaneous combustion combustion heat increase control unit. The water flowing out of the bypass passage into the hot water supply passage from the bypass passage is controlled in the opening direction and the amount of increase in the hot water temperature on the outlet side of the hot water supply heat exchanger corresponding to the increase in combustion heat amount by the combustion heat increase control of the simultaneous combustion heat amount increase control unit. And a hot-water supply temperature decrease correction control unit that compensates for the decrease in temperature.

【0016】第3の発明は、給水通路から供給された水
を加熱し湯を作り出し該湯を給湯通路に送出する給湯熱
交換器と、追い焚き循環通路を通して供給された浴槽水
を加熱し追い焚きを行う追い焚き熱交換器と、上記給湯
熱交換器と追い焚き熱交換器は一体化され、一体化され
た給湯熱交換器と追い焚き熱交換器を共通に燃焼加熱す
るバーナが設けられており、給湯熱交換器により作られ
た湯を給湯する給湯運転と、追い焚き熱交換器により浴
槽水の追い焚きを行う追い焚き運転とを行うことができ
る一缶二水路給湯器において、給水通路と給湯通路間を
給湯熱交換器を迂回して連通接続するバイパス通路と;
該バイパス通路の通水流量を弁開度でもって可変制御す
ることができるバイパス流量制御手段と;上記バイパス
通路から流れ出た水が合流する湯側の流量を弁開度で可
変制御することができる湯側流量制御手段と;給湯運転
と追い焚き運転が共に行われる同時燃焼時にはバーナの
燃焼熱量を給湯単独運転時の燃焼熱量よりも増加してバ
ーナの燃焼制御を行う同時燃焼時燃焼熱量増加制御部
と;該同時燃焼時燃焼熱量増加制御部により燃焼熱量が
増加制御されているときには、バイパス流量制御手段の
弁開度を開方向に制御し、湯側流量制御手段の弁開度を
閉方向に制御して上記バイパス通路から流れ出た水と上
記湯側の湯とのミキシング後の湯水温度が予め定められ
た給湯設定温度となる方向にバイパス通路を流れるバイ
パス流量と湯側の流量との流量比を制御する流量比制御
手段と;を設けた構成をもって前記課題を解決する手段
としている。
According to a third aspect of the present invention, there is provided a hot water supply heat exchanger for heating water supplied from a water supply passage to produce hot water and sending the hot water to the hot water supply passage, and for heating and purifying bath water supplied through a reheating circulation passage. A reheating heat exchanger for performing the heating, the above-mentioned hot water supply heat exchanger and the reheating heat exchanger are integrated, and a burner for burning and heating the integrated hot water supply heat exchanger and the reheating heat exchanger in common is provided. In a one-can, two-channel water heater, which can perform a hot water supply operation for supplying hot water produced by the hot water supply heat exchanger and a reheating operation for reheating the bathtub water using the reheating heat exchanger. A bypass passage communicating between the passage and the hot water supply passage, bypassing the hot water supply heat exchanger;
A bypass flow rate control means capable of variably controlling the flow rate of water in the bypass passage by the valve opening; and a flow rate on the hot water side where water flowing out from the bypass passage joins can be variably controlled by the valve opening. Hot water side flow rate control means; simultaneous combustion in which both the hot water supply operation and the reheating operation are performed, the combustion heat amount of the burner is increased to be greater than the combustion heat amount in the hot water supply alone operation, and the combustion heat amount increase control in simultaneous combustion is performed. When the combustion heat amount is controlled to increase by the simultaneous combustion combustion heat amount increase control unit, the valve opening of the bypass flow rate control means is controlled to open and the valve opening of the hot water side flow control means is closed. The bypass flow rate and hot-side flow flowing through the bypass passage in a direction in which the temperature of the hot water after mixing the water flowing out of the bypass passage with the hot water on the hot water side becomes a predetermined hot water supply set temperature. And a means for solving the problem with a the provided configuration; flow rate control means and for controlling the flow ratio of.

【0017】第4の発明は、上記第1又は第2又は第3
の発明を構成する同時燃焼時燃焼熱量増加制御部は、バ
ーナ燃焼熱量増加制御に伴ってバイパス流量制御手段の
弁開度が開方向に制御される状態でバイパス通路から流
れ出た水と湯側の湯とのミキシング後の湯水温度を給湯
設定温度に制御することが可能な最大の燃焼熱量を予め
定めた燃焼熱量の範囲内で求め、この求めた燃焼熱量で
バーナの燃焼制御を行う構成をもって前記課題を解決す
る手段としている。
According to a fourth aspect of the present invention, there is provided the first, second or third aspect.
The simultaneous combustion combustion heat amount increase control unit constituting the invention according to the invention includes a water and hot water side flowing out of the bypass passage in a state where the valve opening of the bypass flow rate control means is controlled in the opening direction in accordance with the burner combustion heat amount increase control. The maximum amount of combustion heat capable of controlling the temperature of the hot and cold water after mixing with the hot water to the set hot water supply temperature is determined within a predetermined range of the amount of combustion heat, and the burner combustion control is performed with the obtained amount of combustion heat. It is a means to solve the problem.

【0018】第5の発明は、給水通路から供給された水
を加熱し湯を作り出し該湯を給湯する給湯熱交換器と、
追い焚き循環通路を通して供給された浴槽水を加熱し追
い焚きを行う追い焚き熱交換器と、上記給湯熱交換器と
追い焚き熱交換器は一体化され、一体化された給湯熱交
換器と追い焚き熱交換器を共通に燃焼加熱するバーナが
設けられており、給湯熱交換器によって湯を作り予め定
められた給湯設定温度の湯を給湯する給湯運転と、追い
焚き熱交換器により浴槽水の追い焚きを行う追い焚き運
転とを行うことができる一缶二水路給湯器において、上
記追い焚き循環通路を流れる循環湯水の流量を可変制御
することが可能な循環ポンプと;給湯運転と追い焚き運
転とが共に行われる同時燃焼時には循環ポンプによって
追い焚き循環通路の循環流量を追い焚き単独運転時より
も増加させる同時燃焼時循環流量増加制御部と;が設け
られている構成をもって前記課題を解決する手段として
いる。
According to a fifth aspect of the present invention, there is provided a hot water supply heat exchanger for heating water supplied from a water supply passage to produce hot water and supply the hot water.
A reheating heater for heating the bathtub water supplied through the reheating circulation passage for reheating, the above-mentioned hot water supply heat exchanger and the reheating heat exchanger are integrated, and the integrated hot water supply heat exchanger There is a burner that burns and heats the boiler heat exchanger in common.Hot water supply operation to make hot water with a hot water supply heat exchanger and supply hot water at a predetermined hot water supply set temperature, and bath water with a reheating heat exchanger In a one-can two-channel water heater capable of performing a reheating operation for performing a reheating operation, a circulation pump capable of variably controlling a flow rate of circulating hot water flowing in the reheating heating circulation passage; and a hot water supply operation and a reheating operation A simultaneous-combustion circulation flow rate increase control unit that increases the circulation flow rate of the supplementary heating circulation passage by the circulation pump at the time of simultaneous combustion performed together with that of the supplementary heating operation. And a means for solving the problems I.

【0019】上記構成の発明において、例えば、同時燃
焼時燃焼熱量増加制御部は、同時燃焼時には、バーナ燃
焼熱量を給湯単独運転時の燃焼熱量よりも増加させてバ
ーナ燃焼制御を行う。この同時燃焼時燃焼熱量増加制御
部による燃焼熱量増加制御により給湯熱交換器を流れる
通水温度が上昇するので、給湯熱交換器から非給湯側熱
交換器(追い焚き熱交換器)に奪われる追い焚き熱交換
器の吸熱量が増加し追い焚き熱交換器を流れる通水が受
け取る熱量が増加して風呂の沸き上がりに要する時間が
長くなるのが抑制される。
In the invention having the above structure, for example, the simultaneous combustion combustion heat amount increase control section performs burner combustion control by increasing the burner combustion heat amount in comparison with the combustion heat amount in the hot water supply alone operation at the time of simultaneous combustion. Since the temperature of flowing water flowing through the hot water supply heat exchanger rises due to the control of increasing the amount of combustion heat by the control unit for increasing the amount of combustion heat during simultaneous combustion, the non-hot water supply heat exchanger (reheater) is taken from the hot water supply heat exchanger. The amount of heat absorbed by the reheating heat exchanger is increased, and the amount of heat received by the water flowing through the reheating heat exchanger is increased, so that the time required for boiling the bath is suppressed from becoming longer.

【0020】また、上記の如く同時燃焼時燃焼熱量増加
制御部による燃焼熱量増加制御により給湯熱交換器から
流れ出る湯温は上昇するが、給湯湯温低下補正制御部に
よってバイパス流量制御手段を開方向に制御することで
バイパス通路から給湯通路に水が流れ込んで上記給湯熱
交換器から流れ出た湯とミキシングされて湯温が低下
し、ほぼ給湯設定温度の湯を給湯することが可能であ
る。
As described above, the temperature of the hot water flowing out of the hot water supply heat exchanger is increased by the control of increasing the amount of combustion heat by the control unit for increasing the amount of combustion heat during simultaneous combustion. In this way, the water flows from the bypass passage into the hot water supply passage, is mixed with the hot water flowing out of the hot water supply heat exchanger, and the temperature of the hot water is reduced.

【0021】また、同時燃焼時に同時燃焼時循環流量増
加制御部により追い焚き循環通路の循環流量を循環ポン
プによって増加制御する場合には、同時燃焼時に、上記
同時燃焼時循環流量増加制御部の循環流量増加制御によ
って追い焚き熱交換器内を流れる循環流量が増加し、こ
の循環流量の増加に起因して給湯熱交換器から追い焚き
熱交換器が奪う吸熱量が増加し、上記同様に、風呂の沸
き上がりに要する時間が長くなるのが抑制される。
In the case where the circulating flow rate of the reburning circulation passage is controlled to be increased by the circulating pump by the simultaneous combustion circulating flow rate increasing control unit during the simultaneous combustion, the circulating flow rate of the simultaneous combustion circulating flow rate increasing control unit is simultaneously controlled. Due to the increase in the flow rate, the circulation flow rate in the reheating heat exchanger increases, and due to the increase in the circulation flow rate, the amount of heat absorbed by the reheating heat exchanger from the hot water supply heat exchanger increases. It is possible to prevent the time required for boiling up from becoming long.

【0022】上記のように、給湯熱交換器から追い焚き
熱交換器に奪われる熱量が増加すると、給湯熱交換器か
ら流れ出る湯温は低下するが、給湯運転制御により自動
的に直ちにバーナ燃焼熱量が増加されて上記湯温の低下
分は補償されるので、給湯設定温度の湯が供給される。
As described above, when the amount of heat taken from the hot water supply heat exchanger to the reheating heat exchanger increases, the temperature of the hot water flowing out of the hot water supply heat exchanger decreases, but the burner combustion heat amount is automatically and immediately controlled by the hot water supply operation control. Is increased to compensate for the decrease in the hot water temperature, so that hot water at the hot water supply set temperature is supplied.

【0023】[0023]

【発明の実施の形態】以下に、この発明に係る実施形態
例を図面に基づき説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】第1の実施形態例の一缶二水路給湯器は前
記図5に示すシステム構成を有し、図1にはこの実施形
態例において特徴的な制御構成がブロック図により示さ
れている。なお、この実施形態例の説明において、図5
の器具のシステム構成の説明は前述したのでその重複説
明は省略する。
The one-tank two-channel water heater of the first embodiment has the system configuration shown in FIG. 5, and FIG. 1 is a block diagram showing a characteristic control configuration in this embodiment. . In the description of this embodiment, FIG.
Since the description of the system configuration of the device has been described above, the duplicate description thereof will be omitted.

【0025】この第1の実施形態例において特徴的な制
御装置35は、図1に示すように、給湯運転制御部37
と同時燃焼監視部38と追い焚き運転制御部40と同時
燃焼時循環流量増加制御部41と循環流量可変制御部4
2とを有して構成されている。
As shown in FIG. 1, a control device 35 characteristic of the first embodiment is a hot water supply operation control unit 37.
And the simultaneous combustion monitoring unit 38, the reheating operation control unit 40, the simultaneous flow circulation increase control unit 41, and the circulation flow variable control unit 4
2 are provided.

【0026】給湯運転制御部37には前述したような給
湯運転を制御するための給湯運転のシーケンスプログラ
ムが予め定め与えられており、給湯運転制御部37は水
量センサ28や入水サーミスタ30や給湯サーミスタ3
1やリモコン36に設定されている給湯設定温度等の情
報を取り込み、上記給湯運転のシーケンスプログラムに
従って給湯運転を行う。この実施形態例では、給湯運転
制御部37は、水量センサ28により検出される流量Q
tlの水を入水サーミスタ30により検出される入水温度
Tinからリモコン36に設定されている給湯設定温度T
stに高めるのに要するフィードフォワード燃焼熱量Pff
(Pff=Qtl・(Tst−Tin)・η(ηは熱効率))
と、給湯設定温度Tstに対する給湯熱交換器10から流
れ出た給湯サーミスタ31により検出される給湯温度T
out の差分を補正するのに要するフィードバック燃焼熱
量Pfb(Pfb=Qtl・(Tst−Tout )・η)とを併用
した比例制御によりバーナ3の燃焼熱量制御を行う。
A hot water supply operation sequence program for controlling the hot water supply operation as described above is given to the hot water supply operation control unit 37 in advance, and the hot water supply operation control unit 37 includes a water amount sensor 28, a water input thermistor 30, and a hot water supply thermistor. 3
The hot water supply operation is performed according to the sequence program of the hot water supply operation described above by taking in information such as the hot water supply set temperature 1 and the hot water supply set temperature set in the remote controller 36. In this embodiment, the hot water supply operation control unit 37 controls the flow rate Q detected by the water quantity sensor 28.
The hot water supply temperature T set on the remote controller 36 from the water input temperature Tin detected by the water input thermistor 30 for the water of tl.
Feed forward combustion heat quantity Pff required to increase to st
(Pff = Qtl · (Tst−Tin) · η (η is thermal efficiency))
And hot water supply temperature T detected by hot water supply thermistor 31 flowing out of hot water supply heat exchanger 10 with respect to hot water supply set temperature Tst.
The combustion heat amount of the burner 3 is controlled by proportional control using the feedback combustion heat amount Pfb (Pfb = Qtl · (Tst−Tout) · η) required to correct the difference of out.

【0027】追い焚き運転制御部40には追い焚き運転
を制御するためのシーケンスプログラムが予め定め与え
られており、追い焚き運転制御部40は、追い焚き指令
がリモコン36等から発せられると、後述する循環流量
可変制御部42によって循環ポンプ18を予め定めた追
い焚き単独運転時の駆動量で駆動させ、上記追い焚き運
転のシーケンスプログラムに従って前記したような追い
焚き運転を行う。
A sequence program for controlling the reheating operation is given to the reheating operation control unit 40 in advance, and the reheating operation control unit 40 will be described later when a reheating command is issued from the remote controller 36 or the like. The circulating pump 18 is driven by the predetermined drive amount in the reheating alone operation by the circulating flow variable control unit 42 to perform the reheating operation as described above according to the reheating operation sequence program.

【0028】循環流量可変制御部42は前記追い焚き運
転制御部40から循環ポンプ駆動開始指令を受けると、
電力供給源(例えば、商用電源)から循環ポンプ18に
電力を供給して循環ポンプ18を駆動させ、また、循環
ポンプ18の停止指令を受けると循環ポンプ18への電
力供給をストップして循環ポンプ18を停止させると共
に、次に示すように循環ポンプ18への供給電力量を可
変制御することで追い焚き循環通路11を流れる循環流
量を可変制御できる構成を有している。
When the circulating flow variable control unit 42 receives a circulating pump drive start command from the reheating operation control unit 40,
The circulating pump 18 is driven by supplying power to the circulating pump 18 from an electric power supply source (for example, a commercial power supply). 18 is stopped, and the amount of electric power supplied to the circulation pump 18 is variably controlled as described below, so that the circulation flow rate flowing through the reheating circulation passage 11 can be variably controlled.

【0029】循環ポンプ18への供給電力量が増加する
と循環ポンプ18の駆動量が増加して追い焚き循環通路
21の循環流量が増加し、また、反対に、循環ポンプ1
8への供給電力量が減少すると循環ポンプ18の駆動量
が減少して追い焚き循環通路21の循環流量が減少する
ことから、循環流量可変制御部42は、循環ポンプ18
への供給電力量(つまり、電圧)を例えば位相制御手法
等により可変制御して追い焚き循環通路21の循環流量
を可変制御している。
When the amount of electric power supplied to the circulation pump 18 increases, the driving amount of the circulation pump 18 increases and the circulation flow rate of the reheating circulation passage 21 increases.
When the amount of power supplied to the circulation pump 8 decreases, the driving amount of the circulation pump 18 decreases and the circulation flow rate of the reheating circulation passage 21 decreases.
The circulating flow rate of the reheating circulation passage 21 is variably controlled by variably controlling the amount of electric power (that is, voltage) supplied to the circulating passage 21 by, for example, a phase control method.

【0030】この実施形態例では、循環流量可変制御部
42は、追い焚き運転制御部40から循環ポンプ18の
駆動指令を受けると、予め定めた追い焚き単独運転時の
ポンプ供給電圧(例えば、80V)を循環ポンプ18へ
供給して循環ポンプ18を駆動させる。
In this embodiment, when the circulation flow variable control unit 42 receives a drive command for the circulation pump 18 from the reheating operation control unit 40, a predetermined pump supply voltage (for example, 80 V) during reheating alone operation is used. Is supplied to the circulation pump 18 to drive the circulation pump 18.

【0031】同時燃焼監視部38は、上記給湯運転制御
部37と追い焚き運転制御部40の各動作情報を取り込
み、該情報に基づき器具が同時燃焼を行っているか否か
を監視する。つまり、水量センサ28が給水通路11の
通水を検知し、かつ、循環ポンプ18が駆動していると
きには、同時燃焼が行われていると検知し、それ以外の
ときには同時燃焼は行われていないと検知する。この同
時燃焼監視部38により同時燃焼が行われていると検知
されているときには、給湯運転が優先して行われる。
The simultaneous combustion monitoring unit 38 fetches each operation information of the hot water supply operation control unit 37 and the additional heating operation control unit 40, and monitors whether or not the appliances are performing simultaneous combustion based on the information. That is, when the water amount sensor 28 detects the flow of water through the water supply passage 11 and the circulation pump 18 is driven, it is detected that simultaneous combustion is being performed, and otherwise, simultaneous combustion is not being performed. Is detected. When the simultaneous combustion monitoring unit 38 detects that simultaneous combustion is being performed, the hot water supply operation is performed with priority.

【0032】同時燃焼時循環流量増加制御部41は、上
記同時燃焼監視部38の監視情報を時々刻々と取り込
み、この監視情報に基づき同時燃焼が行われていると検
知したときに、循環流量可変制御部42に循環流量アッ
プ指令を発し、循環流量可変制御部42による循環流量
増加制御によって循環ポンプ18の駆動量を増加させて
追い焚き循環通路21の循環流量を追い焚き単独運転時
よりも増加させる。
The simultaneous combustion circulation flow rate increase control section 41 fetches the monitoring information of the simultaneous combustion monitoring section 38 from time to time, and when it is detected that simultaneous combustion is being performed based on the monitoring information, the circulating flow rate variable. The circulation flow rate increase command is issued to the control unit 42, and the circulation flow rate increase control by the circulation flow rate variable control unit 42 increases the drive amount of the circulation pump 18 so that the circulation flow rate of the reheating circulation passage 21 is increased as compared with the reheating alone operation. Let it.

【0033】例えば、循環流量可変制御部42は、追い
焚き単独運転時よりも予め定めた増加量だけ循環ポンプ
18への供給電力量を増加させ(例えば、追い焚き単独
運転時のポンプ供給電圧80Vから100Vに増加さ
せ)、循環ポンプ18の駆動量を増加させて追い焚き循
環通路21の循環流量を増加する。
For example, the circulating flow rate variable control unit 42 increases the amount of electric power supplied to the circulation pump 18 by a predetermined increase amount from the time of the sole-fired operation alone (for example, the pump supply voltage 80 V during the single-fired operation). From 100 V to 100 V), and increase the driving amount of the circulation pump 18 to increase the circulation flow rate of the reheating circulation passage 21.

【0034】上記の如く、同時燃焼時に、追い焚き循環
通路21の循環流量を増加させることによって、当然
に、追い焚き熱交換器14を流れる通水流量が増加し、
この追い焚き熱交換器14の通水流量の増加に起因して
追い焚き熱交換器14が給湯熱交換器10から受け取る
吸熱量が増加するので、追い焚き熱交換器14の通水が
受け取る熱量が増加し浴槽水の温度上昇が早まり、この
ことによって、同時燃焼時に風呂が沸き上がるまでに要
する時間が長くなるのを回避することができる。
As described above, at the time of simultaneous combustion, by increasing the circulation flow rate of the reheating circulation passage 21, the flow rate of water flowing through the reheating heat exchanger 14 naturally increases,
Since the amount of heat absorbed by the reheating heat exchanger 14 from the hot water supply heat exchanger 10 increases due to the increase in the flow rate of water flowing through the reheating heat exchanger 14, the amount of heat received by the water flowing through the reheating heat exchanger 14. And the temperature of the bath water rises faster, which can prevent the time required for the bath to boil up during simultaneous combustion from being lengthened.

【0035】上記の如く追い焚き循環通路21の循環流
量を増加することによって給湯熱交換器10から追い焚
き熱交換器14に奪われる熱量が増加するので、給湯熱
交換器10の通水が受け取る熱量が減少し給湯熱交換器
10から流れ出る湯温が低下するが、その湯温低下を直
ちに補償するように前記給湯運転制御部37の比例制御
によりバーナ3の燃焼熱量が増加されるので、給湯設定
温度の湯を供給することができる。
By increasing the circulation flow rate in the reheating circulation passage 21 as described above, the amount of heat taken from the hot water supply heat exchanger 10 to the reheating heat exchanger 14 increases, so that the flow of water in the hot water supply heat exchanger 10 is received. Although the amount of heat decreases and the temperature of the hot water flowing out of the hot water supply heat exchanger 10 decreases, the amount of combustion heat of the burner 3 is increased by proportional control of the hot water supply operation control unit 37 so as to immediately compensate for the decrease in the hot water temperature. Hot water at a set temperature can be supplied.

【0036】この実施形態例によれば、同時燃焼時に
は、追い焚き循環通路21の循環流量を追い焚き単独運
転時よりも増加させる構成としたので、同時燃焼時に、
追い焚き単独運転時と同じ循環流量で追い焚き熱交換器
14を湯水が流れている場合と比べて、循環流量の増加
によって給湯熱交換器10から追い焚き熱交換器14が
奪う吸熱量が増加することから、追い焚き熱交換器14
の通水の吸熱量が増加し浴槽水の温度上昇が早くなり風
呂が沸き上がるまでに要する時間を短縮することができ
る。
According to this embodiment, at the time of simultaneous combustion, the circulation flow rate of the additional heating circulation passage 21 is set to be larger than that at the time of the additional combustion alone operation.
As compared with the case where hot water flows through the reheating heat exchanger 14 at the same circulation flow rate as during the reheating alone operation, the amount of heat absorbed by the reheating steam exchanger 14 from the hot water supply heat exchanger 10 increases due to the increase in the circulation flow rate. The heat exchanger 14
The amount of heat absorbed by the flowing water increases, the temperature of the bath water rises faster, and the time required for the bath to boil can be reduced.

【0037】また、この実施形態例では、給湯運転制御
部37はフィードフォワード燃焼熱量Pffとフィードバ
ック燃焼熱量Pfbとを併用した比例制御によりバーナ3
の燃焼熱量制御を行っているので、上記の如く、同時燃
焼時循環流量増加制御部41により追い焚き循環通路2
1の循環流量が増加して給湯熱交換器10から追い焚き
熱交換器14へ奪われる吸熱量が増加し、給湯熱交換器
10から流れ出る湯温が低下しても、上記フィードバッ
ク燃焼熱量Pfbが増加してバーナ3の燃焼熱量が増加制
御されることから、上記湯温の低下は直ちに補償され、
上記追い焚き循環流量の増加制御の影響を受けることな
く給湯設定温度の湯を安定して供給することができる。
In this embodiment, the hot water supply operation control unit 37 performs proportional control using the feedforward combustion heat amount Pff and the feedback combustion heat amount Pfb in combination with the burner 3.
As described above, the recirculation flow passage 2 is controlled by the simultaneous combustion circulation flow rate increase control unit 41 as described above.
Even if the circulation flow rate of 1 increases and the amount of heat absorbed from the hot water supply heat exchanger 10 to the reheating heat exchanger 14 increases, and the temperature of the hot water flowing out of the hot water supply heat exchanger 10 decreases, the feedback combustion heat amount Pfb remains unchanged. Since the amount of combustion heat of the burner 3 is controlled to increase, the decrease in the hot water temperature is immediately compensated,
Hot water at the hot water supply set temperature can be supplied stably without being affected by the increase control of the reheating circulation flow rate.

【0038】なお、上記第1の実施形態例では、予め定
めた量だけ追い焚き単独運転時のポンプ供給電圧よりも
循環ポンプ18へ供給する電圧を増加して追い焚き循環
通路21の循環流量を増加させていたが、例えば、風呂
温度センサ33により検出される風呂温度と、入水サー
ミスタ30により検出される入水温度Tinと、給湯設定
温度Tstとの組み合わせによって、予め定まる最大燃焼
熱量又はその近傍の燃焼熱量でバーナ3の燃焼を行わせ
たときに給湯設定温度の湯を給湯することができる循環
流量を循環ポンプ18の可変可能な駆動量範囲を考慮し
て求め、その求めた循環流量となるように循環ポンプ1
8の駆動量を増加させてもよい。
In the first embodiment, the voltage supplied to the circulation pump 18 is increased by a predetermined amount from the voltage supplied to the pump 18 in the reheating alone operation to reduce the circulation flow rate in the reheating circulation passage 21. Although it has been increased, for example, the maximum combustion heat amount or a predetermined vicinity thereof is determined in advance by a combination of the bath temperature detected by the bath temperature sensor 33, the water inlet temperature Tin detected by the water inlet thermistor 30, and the hot water supply set temperature Tst. A circulation flow rate at which hot water at a set hot water supply temperature can be supplied when the burner 3 is burned with the amount of combustion heat is determined in consideration of a variable drive amount range of the circulation pump 18, and is the determined circulation flow rate. Circulating pump 1
8 may be increased.

【0039】以下に、第2の実施形態例を説明する。こ
の実施形態例では、前記図5の実線に示すシステム構成
に加えて、同図の点線に示すように、給水通路11と給
湯通路12を給湯熱交換器10を迂回して連通接続する
バイパス通路25が設けられ、このバイパス通路25に
はバイパス流量制御手段26が介設されている。上記バ
イパス流量制御手段26は上記バイパス通路25を流れ
る通水流量を弁開度でもって可変制御することが可能な
通常閉止状態の流量制御弁であり、弁開度を可変制御す
るためのギアモータ等の駆動源が備えられている。な
お、給湯サーミスタ31は上記バイパス通路25との接
続部Xよりも下流側の給湯通路12に接続されており、
それ以外の図5のシステム構成は前述したのでその重複
説明は省略する。
Hereinafter, a second embodiment will be described. In this embodiment, in addition to the system configuration shown by the solid line in FIG. 5, a bypass passage connecting the water supply passage 11 and the hot water supply passage 12 to bypass the hot water supply heat exchanger 10 and to communicate therewith as shown by the dotted line in FIG. The bypass passage 25 is provided with a bypass flow rate control means 26. The bypass flow rate control means 26 is a normally closed flow rate control valve capable of variably controlling the flow rate of water flowing through the bypass passage 25 by the valve opening degree, such as a gear motor for variably controlling the valve opening degree. Are provided. The hot water supply thermistor 31 is connected to the hot water supply passage 12 downstream of the connection X with the bypass passage 25,
Since the rest of the system configuration in FIG. 5 has been described above, a duplicate description thereof will be omitted.

【0040】図2にはこの第2の実施形態例において特
徴的な制御構成がブロック図により示されており、この
図2に示すように、第2の実施形態例に示す制御装置3
5は、給湯運転を制御する給湯運転制御部37と同時燃
焼を監視する同時燃焼監視部38と追い焚き運転を制御
する追い焚き運転制御部40とに加えて、給湯湯温低下
補正制御部44と、同時燃焼時燃焼熱量増加制御部45
とを有して構成されている。なお、上記給湯運転制御部
37、同時燃焼監視部38、追い焚き運転制御部40の
構成は前記第1の実施形態例に示した給湯運転制御部3
7、同時燃焼監視部38、追い焚き運転制御部40の構
成とそれぞれ同様の構成を有し、ここでは、その重複説
明は省略する。
FIG. 2 is a block diagram showing a characteristic control structure in the second embodiment. As shown in FIG. 2, the control device 3 shown in the second embodiment is different from the control system shown in FIG.
5 is a hot water supply temperature decrease correction control unit 44 in addition to a hot water supply operation control unit 37 for controlling hot water supply operation, a simultaneous combustion monitoring unit 38 for monitoring simultaneous combustion, and a reheating operation control unit 40 for controlling reheating operation. And the combustion heat quantity increase control unit 45 during simultaneous combustion.
And is configured. The configurations of the hot water supply operation control unit 37, the simultaneous combustion monitoring unit 38, and the additional heating operation control unit 40 are the same as those of the hot water supply operation control unit 3 shown in the first embodiment.
7, has the same configuration as the configuration of the simultaneous combustion monitoring unit 38 and the reheating operation control unit 40, and a duplicate description thereof is omitted here.

【0041】同時燃焼時燃焼熱量増加制御部45は同時
燃焼監視部38の監視情報を時々刻々と取り込み、この
監視情報に基づき同時燃焼が行われていると検知したと
きには、給湯単独運転時よりも比例弁8の弁開度を開け
て給湯単独運転時の燃焼熱量よりもバーナ3の燃焼熱量
を増加させる。
The simultaneous combustion combustion calorie increase control unit 45 fetches the monitoring information of the simultaneous combustion monitoring unit 38 every moment, and when it is detected based on this monitoring information that the simultaneous combustion is being performed, it is more than in the hot water supply alone operation. By opening the valve opening of the proportional valve 8, the amount of combustion heat of the burner 3 is increased more than the amount of combustion heat in the hot water supply alone operation.

【0042】例えば、同時燃焼時燃焼熱量増加制御部4
5は、給湯運転制御部37からバーナ3の燃焼熱量の情
報を取り込み、該燃焼熱量に対応する比例弁8の比例弁
駆動電流(比例弁8の弁開度を制御している電流)より
も予め定めた電流分増加させた比例弁駆動電流を比例弁
8に供給し該比例弁8の弁開度を開方向に制御してバー
ナ3の燃焼熱量を給湯単独運転時よりも増加させる。
For example, the control unit 4 for increasing the amount of combustion heat during simultaneous combustion
5 fetches information on the amount of combustion heat of the burner 3 from the hot water supply operation control unit 37, and sets a value higher than the proportional valve driving current of the proportional valve 8 (current controlling the valve opening of the proportional valve 8) corresponding to the amount of combustion heat. The proportional valve driving current, which is increased by a predetermined current, is supplied to the proportional valve 8, and the valve opening of the proportional valve 8 is controlled in the opening direction to increase the amount of combustion heat of the burner 3 as compared with the hot water supply alone operation.

【0043】この燃焼熱量増加制御により、必然的に、
追い焚き熱交換器14が燃焼火炎から受け取る熱量が増
加すると共に、給湯熱交換器10が燃焼火炎から受け取
る熱量も増加し給湯熱交換器10から流れ出る湯温が上
昇する。
By this combustion heat quantity increase control, inevitably,
As the amount of heat received by the reheating heat exchanger 14 from the combustion flame increases, the amount of heat received by the hot water supply heat exchanger 10 from the combustion flame also increases, and the temperature of the hot water flowing out of the hot water supply heat exchanger 10 increases.

【0044】給湯湯温低下補正制御部44は上記同時燃
焼時燃焼熱量増加制御部45の動作情報を取り込み、該
動作情報により燃焼熱量が増加されたことを検知したと
きに、次に示すようにバイパス流量制御手段26の弁開
度を開方向に制御して上記燃焼熱量増加制御により高め
られた給湯熱交換器10の出側の湯温の上昇分をバイパ
ス通路25から給水通路11に流れ出る水によって低下
補正する。
The hot water supply temperature drop correction control unit 44 takes in the operation information of the simultaneous combustion combustion heat amount increasing control unit 45, and when it detects that the combustion heat amount has been increased based on the operation information, as shown below. By controlling the valve opening degree of the bypass flow rate control means 26 in the opening direction, the rise in the hot water temperature at the outlet side of the hot water supply heat exchanger 10 raised by the above combustion heat amount increase control flows from the bypass passage 25 to the water supply passage 11. To compensate for the drop.

【0045】例えば、給湯熱交換器10から流れ出る給
湯湯温を検出する給湯出側湯温センサ27を図5の鎖線
に示すように設けておき、この給湯出側湯温センサ27
により検出される湯温Tdyと給湯設定温度Tstとに基づ
いて、バイパス流量制御手段26のギアモータ等の駆動
源にはV=K・(Tdy−Tst)(ただし、Kは係数)の
演算により求まる電圧Vを供給してバイパス流量制御手
段26の弁開度を開方向に制御する。
For example, a hot water supply side hot water temperature sensor 27 for detecting hot water temperature flowing out of the hot water supply heat exchanger 10 is provided as shown by a chain line in FIG.
Is determined by the calculation of V = K · (Tdy−Tst) (where K is a coefficient) for the drive source such as the gear motor of the bypass flow rate control means 26 based on the hot water temperature Tdy and the hot water supply set temperature Tst detected by The voltage V is supplied to control the valve opening of the bypass flow control means 26 in the opening direction.

【0046】なお、上記同時燃焼時燃焼熱量増加制御部
45により燃焼熱量増加分に対応した給湯熱交換器10
の出側の湯温上昇分をバイパス通路25から流れ出る水
によって低下補正するためのバイパス流量制御手段26
の弁開度の制御手法は上記以外にも様々な手法が考えら
れ、ここでは、それら手法のうちの何れの手法を用いて
バイパス流量制御手段26の弁開度を制御してもよい。
It is to be noted that the simultaneous heating combustion heat quantity increase control section 45 controls the hot water supply heat exchanger 10 corresponding to the increased combustion heat quantity.
Flow rate control means 26 for compensating for the rise in the temperature of the hot water on the outlet side by the water flowing out of the bypass passage 25
Various methods other than the above may be considered as the control method of the valve opening degree. Here, any of these methods may be used to control the valve opening degree of the bypass flow control means 26.

【0047】この実施形態例によれば、同時燃焼時に
は、給湯単独運転時よりもバーナ燃焼熱量を増加させる
ので、この燃焼熱量増加によって、追い焚き熱交換器1
4がバーナ3の燃焼火炎から受け取る熱量が増加するだ
けでなく、上記燃焼熱量増加に伴って給湯熱交換器10
を流れる通水の温度も上昇することから、この給湯熱交
換器10の通水温度上昇によって給湯熱交換器10から
追い焚き熱交換器14が吸熱する熱量が増加し、上記追
い焚き熱交換器14が燃焼火炎から受け取る熱量と給湯
熱交換器10から受け取る熱量との両方が増加すること
によって、追い焚き熱交換器14の通水が吸熱する熱量
が大幅に増加し、風呂の温度上昇を早めることができ、
同時燃焼時に風呂が沸き上がるのに要する時間が長くな
ることを抑制することができる。
According to this embodiment, the amount of burner combustion heat is increased at the time of simultaneous combustion as compared with the case of solely hot water supply operation.
Not only does the amount of heat received by the burner 4 from the combustion flame of the burner 3 increase, but also the hot water supply heat exchanger 10
Since the temperature of the water flowing through the hot water supply heat exchanger 10 also increases, the amount of heat absorbed by the reheater heat exchanger 14 from the hot water supply heat exchanger 10 increases due to the increase in the water supply temperature of the hot water supply heat exchanger 10, and the reheater heat exchanger By increasing both the amount of heat received from the combustion flame and the amount of heat received from the hot water supply heat exchanger 10, the amount of heat absorbed by the water passing through the reheating heat exchanger 14 is greatly increased, and the temperature of the bath is quickly increased. It is possible,
The time required for the bath to boil during simultaneous combustion can be suppressed from becoming longer.

【0048】また、上記燃焼熱量増加制御により高めら
れた給湯熱交換器10の出側の湯温をバイパス流量制御
手段26の弁開度を開方向に制御することで低下補正す
る構成を備えたので、バーナ3の燃焼熱量が給湯単独運
転時よりも増加して給湯熱交換器10の出側の湯温が上
昇しても、給湯設定温度の湯を給湯することができる湯
温までバイパス通路25から流れ出る水によって下げる
ことができることから、上記の如くバーナ3の燃焼熱量
を給湯単独運転時よりも増加させても、給湯設定温度の
湯を安定して供給することができる。
Further, a configuration is provided in which the hot water temperature at the outlet side of the hot water supply heat exchanger 10 raised by the combustion heat amount increase control is reduced by controlling the valve opening of the bypass flow rate control means 26 in the opening direction. Therefore, even if the amount of combustion heat of the burner 3 increases compared to the hot water supply alone operation and the temperature of the hot water on the outlet side of the hot water supply heat exchanger 10 rises, the bypass passage reaches the hot water temperature at which the hot water of the set hot water supply temperature can be supplied. Since the temperature can be lowered by the water flowing out of the hot water 25, even if the amount of combustion heat of the burner 3 is increased as compared with the time of the hot water supply alone operation, the hot water at the hot water supply set temperature can be stably supplied.

【0049】以下に、第3の実施形態例を説明する。こ
の実施形態例において特徴的なことは、図3に示すよう
に、給水通路11と給湯通路12を給湯熱交換器10を
迂回して連通接続するバイパス通路25と、該バイパス
通路25に介設されるバイパス流量制御手段26とに加
えて、バイパス通路25との接続部Xよりも上流側の給
湯通路12に湯側流量制御手段34が設けられていると
共に、図4に示すように流量比制御手段46を制御装置
35に設けたことを特徴としている。なお、上記以外の
システム構成は前記図5のシステム構成と同様であり、
図3ではその図示が省略され、その重複説明も省略す
る。
Hereinafter, a third embodiment will be described. Characteristic features of this embodiment are, as shown in FIG. 3, a bypass passage 25 that connects the water supply passage 11 and the hot water supply passage 12 so as to bypass the hot water supply heat exchanger 10, and is provided in the bypass passage 25. In addition to the bypass flow rate control means 26 provided, a hot water side flow rate control means 34 is provided in the hot water supply passage 12 upstream of the connection portion X with the bypass passage 25, and the flow rate ratio as shown in FIG. The control means 46 is provided in the control device 35. The system configuration other than the above is the same as the system configuration in FIG.
In FIG. 3, the illustration is omitted, and the overlapping description is omitted.

【0050】上記バイパス流量制御手段26は前記第2
の実施形態例で述べたバイパス流量制御手段26と同様
の構成を有し、通常時には閉止状態に制御される。ま
た、湯側流量制御手段34はバイパス通路25から流れ
出た水が合流する湯側の流量Qを弁開度でもって可変制
御することができる流量制御弁であり、上記バイパス流
量制御手段26と同様に弁開度を制御するためのギアモ
ータ等の駆動源を備えており、通常時には開状態に制御
される。
The bypass flow rate control means 26 is provided with the second
It has the same configuration as the bypass flow rate control means 26 described in the embodiment, and is normally controlled to be in the closed state. The hot water flow rate control means 34 is a flow rate control valve which can variably control the flow rate Q of the hot water side where the water flowing out from the bypass passage 25 merges with the valve opening degree, and is the same as the bypass flow rate control means 26 described above. A drive source such as a gear motor for controlling the valve opening is provided, and is normally controlled to an open state.

【0051】この第3の実施形態例に示す制御装置35
は、前記第2の実施形態例で述べた給湯湯温低下補正制
御部44に代えて、流量比制御手段46を設けた構成を
有し、流量比制御手段46以外の構成は前記第2の実施
形態例に示した制御装置35の構成と同様であり、図4
では流量比制御手段46以外の制御構成要素の図示が省
略されており、この実施形態例ではその共通部分の重複
説明は省略する。
The control device 35 shown in the third embodiment example
Has a configuration in which a flow rate ratio control means 46 is provided in place of the hot water supply temperature drop correction control section 44 described in the second embodiment, and the configuration other than the flow rate ratio control means 46 is the second configuration. The configuration of the control device 35 shown in FIG.
In the figure, control components other than the flow ratio control means 46 are not shown, and in this embodiment, a duplicate description of the common parts is omitted.

【0052】流量比制御手段46は同時燃焼時燃焼熱量
増加制御部45の動作情報を時々刻々と取り込み、この
動作情報により燃焼熱量増加制御が行われていることを
検知したときには、燃焼熱量増加制御により給湯熱交換
器10の出側の湯温が上昇していることからバイパス流
量制御手段26を開方向に制御してバイパス通路25か
ら給湯通路12に水を流し込んで給湯熱交換器10側か
らの湯温を低下させると共に、湯側流量制御手段34を
閉方向に制御して湯側の流量を減少させ、湯側の湯とバ
イパス通路25から給湯通路12に流れ出る水とがミキ
シングした後の湯温が給湯設定温度Tstとなるように湯
側の流量Qとバイパス通路25のバイパス流量Qbpの流
量比Wを制御する。
The flow ratio control means 46 fetches the operation information of the simultaneous heat combustion heat increase control section 45 from time to time. When it is detected from the operation information that the combustion heat increase control is being performed, the combustion heat increase control is performed. As a result, the hot water temperature at the outlet side of the hot water supply heat exchanger 10 is increased, so that the bypass flow rate control means 26 is controlled in the opening direction to flow the water from the bypass passage 25 into the hot water supply passage 12 and from the hot water supply heat exchanger 10 side. After the hot water temperature is lowered, the hot water flow rate control means 34 is controlled in the closing direction to reduce the hot water flow, and the hot water and the water flowing out of the bypass passage 25 into the hot water supply passage 12 are mixed. The flow ratio W between the hot water side flow rate Q and the bypass flow rate Qbp in the bypass passage 25 is controlled so that the hot water temperature becomes the hot water supply set temperature Tst.

【0053】給湯設定温度の湯を給湯することができる
ように湯側の流量Qとバイパス流量Qbpの流量比Wを制
御する手法は様々な手法が考えられ、この実施形態例で
は、それら手法のうちの何れの手法を用いて上記流量比
制御を行ってもよい。その流量制御手法の一例を以下に
説明する。
Various methods are conceivable for controlling the flow ratio W between the hot water side flow rate Q and the bypass flow rate Qbp so that hot water at the hot water supply set temperature can be supplied. In this embodiment, various methods are considered. The flow ratio control may be performed using any of the above methods. An example of the flow control method will be described below.

【0054】例えば、給湯熱交換器10から流れ出た温
度Tdyをもつ流量Qの湯が給湯設定温度Tstに低下する
ための放出熱量はバイパス通路25から流れ出る入水温
度Tinをもつ流量Qbpの水が受け取る熱量と等しく、こ
の熱平衡バランスの関係から湯側の流量Qの湯とバイパ
ス流量Qbpの水とがミキシングした後の湯温が給湯設定
温度Tstとなるための湯側の流量Qとバイパス流量Qbp
の目標の流量比Wst(Wst=Qbp/Q)を次式(1)に
より求めることができる。
For example, the amount of heat released from the hot-water supply heat exchanger 10 at the flow rate Q having the temperature Tdy to the set hot-water supply temperature Tst is received by the water having the flow-in temperature Qbp flowing out of the bypass passage 25 and having the input water temperature Tin. From the relationship of the thermal equilibrium balance, the hot water flow rate Q and the bypass flow rate Qbp after the hot water temperature after mixing the hot water flow rate Q and the bypass flow rate Qbp become the hot water supply set temperature Tst.
The target flow ratio Wst (Wst = Qbp / Q) can be obtained by the following equation (1).

【0055】 Wst=(Tdy−Tst)/(Tst−Tin)・・・・・(1)Wst = (Tdy−Tst) / (Tst−Tin) (1)

【0056】上記のことから、給湯熱交換器10から流
れ出る湯温を検出する給湯出側湯温センサ27を設けて
おき、給湯出側湯温センサ27により検出される湯側の
湯温Tdyと、リモコン36により設定されている給湯設
定温度Tstと、入水サーミスタ30により検出される入
水温度Tinと、上式(1)に基づいて、目標流量比Wst
を求める。
From the above, a hot water supply-side hot water temperature sensor 27 for detecting the temperature of hot water flowing out of the hot water supply heat exchanger 10 is provided, and the hot-water temperature Tdy detected by the hot water supply-side hot water temperature sensor 27 is provided. The target flow ratio Wst based on the hot water supply set temperature Tst set by the remote controller 36, the water input temperature Tin detected by the water input thermistor 30, and the above equation (1).
Ask for.

【0057】また、湯側の流量Qを検出することができ
る次に示す湯側流量検出手段を設ける。例えば、バイパ
ス通路25との接続部Yよりも下流側の給水通路11に
通水流量を検出することができる湯側流量検出センサを
湯側流量検出手段として設け、この湯側流量検出センサ
により湯側の流量Qを検出する。又は、バイパス通路2
5のバイパス流量Qbpを検出することができるバイパス
流量検出センサを設け、このバイパス流量検出センサに
より検出されるバイパス流量Qbpを水量センサ28によ
り検出される総流量Qtlから差し引いて湯側の流量Q
(Q=Qtl−Qbp)を求める湯側流量検出手段を設けて
もよい。
Further, the following hot water flow rate detecting means capable of detecting the hot water flow rate Q is provided. For example, a hot water side flow rate detection sensor capable of detecting the flow rate of water flowing in the water supply passage 11 downstream of the connection portion Y with the bypass passage 25 is provided as hot water side flow rate detection means. Side flow rate Q is detected. Or, bypass passage 2
5, a bypass flow rate detection sensor capable of detecting the bypass flow rate Qbp is provided, and the bypass flow rate Qbp detected by the bypass flow rate detection sensor is subtracted from the total flow rate Qtl detected by the water flow rate sensor 28 to obtain a flow rate Q on the hot water side.
Hot water side flow rate detecting means for obtaining (Q = Qtl-Qbp) may be provided.

【0058】水量センサ28により検出される総流量Q
tlと、上記湯側流量検出手段により検出される湯側の流
量Qとに基づき、湯側の流量Qとバイパス流量Qbpの流
量比Wを検出する。
The total flow rate Q detected by the water quantity sensor 28
A flow ratio W between the hot water side flow rate Q and the bypass flow rate Qbp is detected based on tl and the hot water side flow rate Q detected by the hot water side flow rate detection means.

【0059】前記のように求めた目標流量比Wspと、
上記検出した流量比Wとに基づき、バイパス流量制御手
段26の駆動源にはV26=α・(Wst−W)(αは係
数)の演算により求まる電圧V26を供給してバイパス流
量制御手段26の弁開度を開方向に制御し、湯側流量制
御手段34にはV34=β・(Wst−W)(βは係数)の
演算により求まる電圧V34を供給して湯側流量制御手段
34の弁開度を閉方向に制御する。
The target flow ratio Wsp obtained as described above,
Based on the detected flow ratio W, the drive source of the bypass flow control means 26 is supplied with the voltage V26 obtained by the calculation of V26 = α · (Wst−W) (α is a coefficient), The valve opening is controlled in the opening direction, and a voltage V34 determined by an operation of V34 = β · (Wst−W) (β is a coefficient) is supplied to the hot water side flow control means 34, and the valve of the hot water side flow control means 34 is controlled. Controls the opening in the closing direction.

【0060】同時燃焼時にバーナ3の燃焼熱量が増加制
御されたときに、上記のように、バイパス流量制御手段
26の弁開度を開方向に制御し、湯側流量制御手段34
の弁開度を閉方向に制御して湯側の流量Qとバイパス流
量Qbpの流量比Wを制御することによって、給湯湯温を
ほぼ給湯設定温度に制御することができる。
When the amount of combustion heat of the burner 3 is controlled to increase during simultaneous combustion, the valve opening of the bypass flow control means 26 is controlled in the opening direction as described above, and the hot water flow control means 34 is controlled.
By controlling the valve opening degree in the closing direction to control the flow ratio W of the hot water side flow rate Q and the bypass flow rate Qbp, the hot water temperature can be controlled to approximately the hot water set temperature.

【0061】この実施形態例によれば、前記第2の実施
形態例と同様に、同時燃焼時には給湯単独運転時よりも
バーナ3の燃焼熱量を増加させるので、前記第2の実施
形態例と同様に、追い焚き熱交換器14がバーナ3の燃
焼火炎から受け取る熱量と給湯熱交換器10から受け取
る熱量の両方が増加して追い焚き熱交換器14の通水が
受け取る熱量が増加し、風呂が沸き上がるのに要する時
間が長くなるのを防止することができる。
According to this embodiment, as in the case of the second embodiment, the amount of combustion heat of the burner 3 is increased during simultaneous combustion as compared to when the hot-water supply alone is operated. In addition, both the amount of heat received by the reheating heat exchanger 14 from the combustion flame of the burner 3 and the amount of heat received from the hot water supply heat exchanger 10 increase, and the amount of heat received by the reheating heat exchanger 14 through the water increases. The time required for boiling can be prevented from becoming long.

【0062】また、この実施形態例では、バイパス流量
制御手段26と湯側流量制御手段34を設け、同時燃焼
時に燃焼熱量増加制御が行われたときには、給湯設定温
度の湯を給湯することができるように上記バイパス流量
制御手段26の弁開度を開方向に、湯側流量制御手段3
4の弁開度を閉方向にそれぞれ制御して湯側の流量Qと
バイパス流量Qbpの流量比を制御する構成としたので、
同時燃焼時に燃焼熱量増加制御によって給湯熱交換器1
0から流れ出る湯温が上昇しても、上記流量比制御によ
り給湯設定温度の湯を安定的に、しかも精度良く供給す
ることができる。さらに、上記バイパス流量制御手段2
6と湯側流量制御手段34の各弁開度をそれぞれ制御す
ることによって、給湯量の変動を抑制することも可能で
ある。
Further, in this embodiment, the bypass flow rate control means 26 and the hot water side flow rate control means 34 are provided, and when the control for increasing the amount of combustion heat is performed during simultaneous combustion, hot water at the set hot water supply temperature can be supplied. As described above, the valve opening degree of the bypass flow rate control means 26 is set in the opening direction,
4 is controlled in the closing direction to control the flow ratio of the hot water side flow rate Q to the bypass flow rate Qbp.
Hot water supply heat exchanger 1 by simultaneous combustion increase control
Even if the temperature of the hot water flowing from 0 rises, hot water at the hot water supply set temperature can be supplied stably and accurately by the flow rate ratio control. Further, the bypass flow rate control means 2
By controlling the respective valve openings of the hot water flow rate control means 6 and the hot water side flow control means 34, it is also possible to suppress fluctuations in the hot water supply amount.

【0063】なお、この発明は上記各実施形態例に限定
されるものではなく、様々な実施の形態を採り得る。例
えば、上記第2や第3の実施形態例では、バイパス流量
制御手段26は連続的に又は段階的に弁開度を可変制御
することが可能な流量制御弁で構成されていたが、バイ
パス通路25の通路を開状態又は閉状態のどちらかに制
御する電磁弁等をバイパス流量制御手段26として設け
てもよい。この場合、通常時にはバイパス流量制御手段
26の弁開度を閉止状態に制御し、同時燃焼時には給湯
湯温低下補正制御部44によりバイパス流量制御手段2
6を開状態にし、バイパス通路25から給湯通路12に
流れ出る流量Qbpの水によって給湯設定温度Tstに低下
させることができる湯側の流量Qの湯の温度を求め、給
湯熱交換器10から流れ出る湯温が上記求めた湯温とな
るようにバーナ3の燃焼熱量を同時燃焼時燃焼熱量増加
制御部45によって増加することにより、前記各実施形
態例と同様に、同時燃焼時に風呂の沸き上がりが遅くな
ることを抑制することができ、かつ、給湯設定温度の湯
を供給することができる。
It should be noted that the present invention is not limited to the above embodiments, and various embodiments can be adopted. For example, in the second and third embodiments, the bypass flow rate control means 26 is constituted by a flow rate control valve capable of continuously or stepwise variably controlling the valve opening. An electromagnetic valve or the like for controlling the passage 25 to be in an open state or a closed state may be provided as the bypass flow rate control means 26. In this case, the valve opening degree of the bypass flow rate control means 26 is controlled to be closed at normal times, and the bypass flow rate control means 2 is controlled by the hot water temperature decrease correction control section 44 during simultaneous combustion.
6 is opened, the temperature of the hot water having a flow rate Q on the hot water side that can be reduced to the hot water set temperature Tst by the water having the flow rate Qbp flowing out of the bypass passage 25 into the hot water supply passage 12 is determined, and the hot water flowing out of the hot water supply heat exchanger 10 is obtained. By increasing the combustion heat amount of the burner 3 by the simultaneous combustion combustion heat amount increasing control unit 45 so that the temperature becomes the above-determined hot water temperature, the boiling of the bath at the time of simultaneous combustion is delayed similarly to the above-described embodiments. Can be suppressed, and hot water at a hot water supply set temperature can be supplied.

【0064】また、上記第2や第3の実施形態例では、
同時燃焼時燃焼熱量増加制御部45による燃焼熱量増加
制御によって、給湯単独運転時よりも予め定めた燃焼熱
量分だけ増加させていたが、バイパス通路25のバイパ
ス流量制御手段26が開方向に制御される状態でバイパ
ス通路25から流れ出る水と湯側の湯とのミキシング後
の湯温を給湯設定温度に制御することが可能な最大の燃
焼熱量を予め定めた燃焼熱量の範囲内で求め、この求め
た燃焼熱量でバーナ3の燃焼制御を行うようにしてもよ
い。
In the second and third embodiments,
By the combustion heat amount increase control by the simultaneous combustion heat amount increase control unit 45, the combustion heat amount is increased by a predetermined amount of combustion heat compared with the hot water supply alone operation. However, the bypass flow rate control means 26 of the bypass passage 25 is controlled in the opening direction. The maximum amount of combustion heat that can control the temperature of the hot water after mixing the water flowing out of the bypass passage 25 and the hot water on the hot water side to the set hot water supply temperature is determined within a predetermined combustion heat amount. The combustion control of the burner 3 may be performed using the combustion heat quantity.

【0065】例えば、バイパス流量制御手段26を予め
定まる最大の弁開度に開けたときに、湯側の流量Qの湯
と、バイパス通路25から流れ出るバイパス流量Qbpの
水とがミキシングした後の湯温が給湯設定温度Tstにな
るためのバーナ3の燃焼熱量を求め、この求めた燃焼熱
量が最大燃焼熱量以下のときには同時燃焼時燃焼熱量増
加制御部45により上記求めた燃焼熱量でバーナ燃焼熱
量制御を行うと共に、バイパス流量制御手段26を最大
弁開度に開制御し、上記求めた燃焼熱量が最大燃焼熱量
よりも大きいときには、同時燃焼時燃焼熱量増加制御部
45により最大燃焼熱量でバーナ3の燃焼を制御すると
共に、前記各実施形態例で述べたように、バイパス流量
制御手段26の弁開度や、湯側流量制御手段34が設け
られている場合には湯側流量制御手段34の弁開度の制
御をも行って、同時燃焼時には、風呂の沸き上がりが遅
くなることを防止し、かつ、給湯設定温度の湯を給湯す
ることができるように制御する。
For example, when the bypass flow control means 26 is opened to a predetermined maximum valve opening, the hot water having the flow rate Q on the hot water side and the water having the bypass flow rate Qbp flowing out from the bypass passage 25 are mixed. The amount of combustion heat of the burner 3 required for the temperature to reach the hot water supply set temperature Tst is obtained. When the obtained amount of combustion heat is equal to or less than the maximum amount of combustion heat, the simultaneous combustion combustion heat amount increase control unit 45 controls the amount of combustion heat using the amount of combustion heat obtained above. And the bypass flow rate control means 26 is controlled to open to the maximum valve opening degree. When the calculated combustion heat amount is larger than the maximum combustion heat amount, the simultaneous combustion combustion heat amount increase control unit 45 controls the burner 3 at the maximum combustion heat amount. In addition to controlling the combustion, as described in the above embodiments, when the valve opening of the bypass flow rate control means 26 and the hot water side flow rate control means 34 are provided, The valve opening of the hot water side flow control means 34 is also controlled to prevent slowing down of the boiling of the bath and to supply hot water at the set hot water supply temperature during simultaneous combustion. .

【0066】さらに、上記第2や第3の実施形態例で
は、バイパス通路25は1本だけ設けられていたが、複
数本設けてもよい。それら複数のバイパス通路25に通
路の開閉を行うことができる電磁弁等がバイパス流量制
御手段として介設される場合には、上記開弁しているバ
イパス流量制御手段の数量等によって給湯通路12に流
れ込む水量を段階的に可変制御することができるように
なる。
Further, in the second and third embodiments, only one bypass passage 25 is provided, but a plurality of bypass passages may be provided. When an electromagnetic valve or the like capable of opening and closing the passages is provided as bypass flow control means in the plurality of bypass passages 25, the hot water supply passage 12 may be provided depending on the number of bypass flow control means that are open. The amount of flowing water can be variably controlled stepwise.

【0067】さらに、上記第2や第3の実施形態例で
は、バイパス流量制御手段26は通常時には閉止状態で
あったが、予め定めた微小な弁開度でもって開弁してい
てもよい。
Further, in the second and third embodiments, the bypass flow rate control means 26 is normally in the closed state, but may be opened with a predetermined minute valve opening.

【0068】さらに、上記各実施形態例では、図5に示
す一缶二水路給湯器を例にして説明したが、この発明は
図5に示す一缶二水路給湯器以外の一缶二水路給湯器に
も適用することができる。例えば、上記図3の鎖線に示
すように、給水通路11と給湯通路12を給湯熱交換器
10を迂回して連通接続する開閉弁を持たない常時バイ
パス通路を設けてもよい。この常時バイパス通路は複数
本設けてもよい。このように、常時バイパス通路が設け
られる場合には、常時バイパス通路から給湯通路12に
流れ出る水を考慮して給湯運転が制御される。
Further, in each of the above-described embodiments, the one-can two-channel water heater shown in FIG. 5 has been described as an example. However, the present invention is not limited to the one-can two-channel water heater shown in FIG. It can also be applied to vessels. For example, as shown by the chain line in FIG. 3, a continuous bypass passage having no open / close valve for connecting the water supply passage 11 and the hot water supply passage 12 to bypass the hot water supply heat exchanger 10 may be provided. A plurality of the constant bypass passages may be provided. As described above, when the constant bypass passage is provided, the hot water supply operation is controlled in consideration of the water flowing from the constant bypass passage into the hot water supply passage 12.

【0069】また、上記図5に示す一缶二水路給湯器は
給湯機能に風呂機能を備えたものであったが、この発明
は、給湯機能に風呂機能以外の機能を備えた一缶二水路
タイプのものにも適用することが可能である。例えば、
上記給湯機能に加えて、図6に示すような暖房機能を備
えた一缶二水路タイプの暖房機能付き給湯器にも適用す
ることができる。図6の器具では、給湯熱交換器10に
非給湯側熱交換器48が一体的に設けられ、また、タン
クからポンプと非給湯側熱交換器8と開閉弁と放熱器を
通ってタンクに戻る経路で熱媒体(例えば、エチレング
リコールやプロピレングリコール)を循環させるための
非給湯側循環通路が形成されている。暖房を行うときに
は、開閉弁を開弁してポンプを駆動し、該ポンプ駆動に
よりタンクの熱媒体をポンプを介して非給湯側熱交換器
48に供給する。非給湯側熱交換器48に流れ込んだ熱
媒体はバーナ燃焼火炎の熱によって加熱され、非給湯側
熱交換器48から開閉弁を通って放熱器に至り、放熱器
でファン駆動による風によって保有熱量を放熱して上記
風を加熱し、この熱風によって室内を暖房する。上記放
熱器で放熱した熱媒体はタンクに戻る。なお、図6の器
具では、前記図5に示す給湯側のシステム構成を有して
いるが、図6ではその給湯側のシステム構成の図示を省
略している。
Although the one-can two-canal water heater shown in FIG. 5 has a hot-water supply function with a bath function, the present invention provides a one-can two-canal water system with a hot-water supply function other than the bath function. It is also possible to apply to the type. For example,
In addition to the above hot water supply function, the present invention can also be applied to a one-can-two-channel water heater with a heating function having a heating function as shown in FIG. In the appliance of FIG. 6, the non-hot water supply heat exchanger 48 is provided integrally with the hot water supply heat exchanger 10, and the tank is passed from the tank through the pump, the non-hot water supply side heat exchanger 8, the on-off valve, and the radiator. A non-hot water supply side circulation passage for circulating a heat medium (for example, ethylene glycol or propylene glycol) in the return path is formed. When performing heating, the on-off valve is opened to drive the pump, and the drive of the pump supplies the heat medium in the tank to the non-hot water supply side heat exchanger 48 via the pump. The heat medium flowing into the non-hot water supply side heat exchanger 48 is heated by the heat of the burner combustion flame, passes from the non-hot water supply side heat exchanger 48 to the radiator through the on-off valve, and is held by the radiator by the wind driven by the fan. To radiate heat to heat the wind, and heat the room by the hot wind. The heat medium radiated by the radiator returns to the tank. Although the appliance of FIG. 6 has the hot water supply system configuration shown in FIG. 5, the hot water supply system configuration is not shown in FIG.

【0070】上記の如く、暖房機能付きの給湯器に本発
明を適用した場合には、非給湯側運転である暖房運転
と、給湯運転とが共に行われる同時燃焼時に、従来のよ
うな給湯運転が優先されたために暖房の風の温度が低下
するというような暖房能力の低下の問題を回避すること
ができる上に、もちろん、給湯設定温度の湯を給湯する
ことができる。
As described above, when the present invention is applied to a water heater with a heating function, the conventional hot water supply operation is performed during simultaneous combustion in which both the heating operation on the non-hot water supply side operation and the hot water supply operation are performed. Is given priority, it is possible to avoid a problem of a decrease in the heating capacity such as a decrease in the temperature of the air for heating, and, of course, it is possible to supply hot water at a set hot water supply temperature.

【0071】[0071]

【発明の効果】同時燃焼時燃焼熱量増加制御部を備えた
構成のものにあっては、同時燃焼時に、同時燃焼時燃焼
熱量増加制御部によってバーナ燃焼熱量を給湯単独運転
時よりも増加させるので、非給湯側熱交換器又は追い焚
き熱交換器がバーナ燃焼火炎から受け取る熱量が増加す
る上に、上記燃焼熱量増加に起因して給湯熱交換器を流
れる湯温が上昇するので給湯熱交換器から非給湯側熱交
換器又は追い焚き熱交換器が吸熱する熱量も大幅に増加
し、これら熱交換器が受け取る熱量の大幅な増加によっ
て、給湯単独運転時とほぼ同様な燃焼熱量でバーナ燃焼
が行われる場合と比べて、例えば、浴槽水の温度上昇が
早くなり、風呂が沸き上がるのに要する時間が長くなる
のを防止することができる。
According to the structure provided with the simultaneous combustion combustion heat amount increase control unit, the simultaneous combustion combustion heat amount increase control unit increases the burner combustion heat amount in the simultaneous combustion compared to the single hot water supply operation. In addition to the increase in the amount of heat received by the non-hot water supply side heat exchanger or the reheating heat exchanger from the burner combustion flame, the temperature of hot water flowing through the hot water supply heat exchanger increases due to the increase in the amount of combustion heat, so the hot water supply heat exchanger Therefore, the amount of heat absorbed by the non-hot water supply side heat exchanger or the reheater heat exchanger also greatly increases, and the burner combustion with substantially the same amount of combustion heat as in the hot water supply alone operation due to the large increase in the amount of heat received by these heat exchangers. Compared with the case where the bath is performed, for example, the temperature of the bathtub water rises faster, so that it is possible to prevent the time required for the bath to boil longer.

【0072】また、上記構成に加えてバイパス通路と、
バイパス流量制御手段と、給湯湯温低下補正制御部とが
設けられているものにあっては、上記燃焼熱量増加制御
によってバーナの燃焼熱量が増加し給湯熱交換器から流
れ出る湯温が上昇するが、上記給湯湯温低下補正制御部
によりバイパス流量制御手段が開方向に制御されて上記
給湯熱交換器の出側の湯温の上昇分をバイパス通路から
給湯通路に流れ出る水によって低下補正するので、給湯
設定温度の湯を給湯することができ、同時燃焼時におい
て、例えば、風呂の沸き上がりが遅くなるのを回避する
ことができると共に、給湯設定温度の湯を安定して供給
することができるという効果を得ることができる。
Further, in addition to the above configuration, a bypass passage
In the apparatus provided with the bypass flow rate control means and the hot water supply temperature decrease correction control unit, the combustion heat amount increase control increases the combustion heat amount of the burner and the hot water temperature flowing out of the hot water supply heat exchanger increases. The bypass flow rate control means is controlled in the opening direction by the hot water supply temperature drop correction control unit, so that the rise in the hot water temperature on the outlet side of the hot water supply heat exchanger is corrected by the water flowing from the bypass passage into the hot water supply passage. It is possible to supply hot water at a set hot water supply temperature, and to avoid slowing down of boiling water in a simultaneous combustion, for example, and to stably supply hot water at a set hot water supply temperature. The effect can be obtained.

【0073】上記同時燃焼時燃焼熱量増加制御部に加え
て、バイパス通路と、バイパス流量制御手段と、湯側流
量制御手段と、流量比制御手段とを備えた構成のものに
あっては、上記燃焼熱量増加制御により給湯熱交換器の
出側の湯温が上昇するが、バイパス流量制御手段の弁開
度を開方向に制御し、湯側流量制御手段の弁開度を閉方
向に制御してバイパス通路から給湯通路に流れ出る水と
バイパス通路から流れ出た水が合流する湯側の湯とのミ
キシング後の湯水温度が給湯設定温度となる方向にバイ
パス通路のバイパス流量と湯側の流量の流量比を流量比
制御手段によって制御することにより、上記同様に、給
湯設定温度の湯を給湯することができ、同時燃焼時にお
いて、風呂の沸き上がりが遅くなるのを回避することが
できると共に、給湯設定温度の湯を安定して供給するこ
とができるという効果を得ることができる。
In the configuration having the bypass passage, the bypass flow rate control means, the hot water side flow rate control means, and the flow rate ratio control means in addition to the above-described simultaneous combustion combustion heat amount increase control section, Although the hot water temperature on the outlet side of the hot water supply heat exchanger rises due to the combustion heat amount increase control, the valve opening of the bypass flow rate control means is controlled in the opening direction, and the valve opening of the hot water flow rate control means is controlled in the closing direction. The flow rate of the bypass flow rate in the bypass passage and the flow rate of the hot water flow in a direction in which the hot water temperature after mixing the water flowing out of the bypass passage into the hot water supply passage and the hot water on the hot water side where the water flowing out of the bypass passage merges becomes the hot water supply set temperature. By controlling the ratio by the flow ratio control means, the hot water at the hot water supply set temperature can be supplied in the same manner as described above. The hot water set temperature can be obtained an effect that it is possible to stably supply.

【0074】上記同時燃焼時燃焼熱量増加制御部は、バ
イパス流量制御手段の弁開度が開方向に制御される状態
でバイパス通路から流れ出る水と湯側の湯とのミキシン
グ後の湯水温度が給湯設定温度に制御することが可能な
最大の燃焼熱量を設定の燃焼熱量の範囲内で求め、この
求めた燃焼熱量でバーナ燃焼制御を行う構成を備えたも
のにあっては、同時燃焼時に、可能な限りバーナの予め
定まる最大燃焼熱量に近い燃焼熱量、又は、最大燃焼熱
量でバーナ燃焼を行わせることができ、同時燃焼時に風
呂の沸き上がりが遅くなるのを抑制することができると
いうより一層の効果を得ることができる。
The simultaneous combustion combustion heat amount increase control section controls the temperature of hot water after mixing the water flowing out of the bypass passage with the hot water on the hot water side in a state where the valve opening of the bypass flow control means is controlled in the opening direction. The maximum amount of combustion heat that can be controlled to the set temperature is determined within the range of the set amount of combustion heat, and the burner combustion control that uses the calculated amount of combustion heat is possible for simultaneous combustion. It is possible to perform the burner combustion with the combustion heat amount close to the predetermined maximum combustion heat amount of the burner as much as possible, or the maximum combustion heat amount, and it is possible to suppress the slowing of the boiling of the bath at the same time as the simultaneous combustion. The effect can be obtained.

【0075】追い焚き循環通路の循環流量を可変制御す
ることが可能な循環ポンプと、同時燃焼時循環流量増加
制御部とを設けたものにあっては、同時燃焼時に、同時
燃焼時循環流量増加制御部により追い焚き循環流量が循
環ポンプによって追い焚き単独運転時よりも増加制御さ
れるので、上記循環流量の増加によって追い焚き熱交換
器を流れる通水が給湯熱交換器から吸熱する熱量が増加
し、このことによって、同時燃焼時に、風呂の沸き上が
りに要する時間が長くなるのを抑制することができる。
In the case where the circulation pump capable of variably controlling the circulation flow rate of the reheating circulation passage and the simultaneous combustion circulation flow rate increase control unit are provided, the simultaneous combustion circulation flow rate increase Since the recirculation flow rate is controlled by the control unit to be increased by the circulation pump compared to the reheating alone operation, the amount of heat absorbed by the water flowing through the reheating heat exchanger from the hot water supply heat exchanger increases due to the increase in the recirculation flow rate. However, this makes it possible to prevent the time required for boiling the bath from becoming longer during simultaneous combustion.

【0076】また、上記の如く、循環流量増加制御に起
因して給湯熱交換器から追い焚き熱交換器に吸熱される
熱量が増加することによって給湯熱交換器の出側の湯温
が低下するが、給湯運転の制御により上記給湯熱交換器
の出側の湯温の低下分を補償するためにバーナ燃焼熱量
が直ちに増加されるので、上記のように循環流量の増加
に伴って給湯熱交換器の出側の湯温が低下しても直ちに
バーナの燃焼熱量が増加して給湯設定温度の湯を給湯す
ることができる。
As described above, the amount of heat absorbed from the hot water supply heat exchanger to the reheating heat exchanger due to the circulation flow rate increase control decreases the temperature of the hot water at the outlet side of the hot water supply heat exchanger. However, the control of the hot water supply operation immediately increases the burner combustion heat in order to compensate for the decrease in the hot water temperature at the outlet side of the hot water supply heat exchanger. Even if the temperature of the hot water on the outlet side of the vessel drops, the amount of combustion heat of the burner immediately increases and hot water at the hot water supply set temperature can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態例において特徴的な制御構成を
示すブロック図である。
FIG. 1 is a block diagram illustrating a characteristic control configuration in a first embodiment.

【図2】第2の実施形態例において特徴的な制御構成を
示すブロック図である。
FIG. 2 is a block diagram showing a characteristic control configuration in a second embodiment.

【図3】第3の実施形態例において特徴的なシステム構
成部分を抜き出して示すモデル図である。
FIG. 3 is a model diagram extracting and showing characteristic system components in the third embodiment.

【図4】第3の実施形態例において特徴的な流量比制御
部の制御構成を示すブロック図である。
FIG. 4 is a block diagram showing a control configuration of a flow rate control unit which is characteristic in the third embodiment.

【図5】一缶二水路給湯器の一例を示すモデル図であ
る。
FIG. 5 is a model diagram showing an example of a one-can two-channel water heater.

【図6】一缶二水路給湯器のその他の一例を示すモデル
図である。
FIG. 6 is a model diagram showing another example of the one-can two-channel water heater.

【符号の説明】[Explanation of symbols]

3 バーナ 10 給湯熱交換器 11 給水通路 12 給湯通路 14 追い焚き熱交換器 18 循環ポンプ 21 追い焚き循環通路 25 バイパス通路 26 バイパス流量制御手段 34 湯側流量制御手段 41 同時燃焼時循環流量増加制御部 44 給湯湯温低下補正制御部 45 同時燃焼時燃焼熱量増加制御部 46 流量比制御手段 3 Burner 10 Hot water supply heat exchanger 11 Water supply passage 12 Hot water supply passage 14 Reheating heat exchanger 18 Circulation pump 21 Reheating heating circulation passage 25 Bypass passage 26 Bypass flow control means 34 Hot water side flow control means 41 Simultaneous combustion circulation flow increase control unit 44 Hot water temperature decrease correction control unit 45 Simultaneous combustion combustion heat amount increase control unit 46 Flow rate ratio control means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 給水通路から供給された水を加熱し湯を
作り出し該湯を給湯通路に送出する給湯熱交換器と、非
給湯側循環通路を通して供給された熱媒体を加熱する非
給湯側熱交換器と、上記給湯熱交換器と非給湯側熱交換
器は一体化され、一体化された給湯熱交換器と非給湯側
熱交換器を共通に燃焼加熱するバーナが設けられてお
り、給湯熱交換器により作られた湯を給湯する給湯運転
と、非給湯側熱交換器により熱媒体の加熱を行う非給湯
側運転とを行うことができる一缶二水路給湯器におい
て、給水通路と給湯通路間を給湯熱交換器を迂回して連
通接続するバイパス通路と;該バイパス通路の通水流量
を弁開度で可変制御することができるバイパス流量制御
手段と;給湯運転と非給湯側運転が共に行われる同時燃
焼時にはバーナの燃焼熱量を給湯単独運転時の燃焼熱量
よりも増加してバーナの燃焼制御を行う同時燃焼時燃焼
熱量増加制御部と;該同時燃焼時燃焼熱量増加制御部に
よりバーナ燃焼熱量が増加制御されているときには、バ
イパス流量制御手段の弁開度を開方向に制御して上記同
時燃焼時燃焼熱量増加制御部の燃焼熱量増加制御による
燃焼熱量増加量に対応した給湯熱交換器の出側の湯水温
度の上昇分をバイパス通路から給湯通路に流れ出る水に
よって低下補正する給湯湯温低下補正制御部と;を設け
たことを特徴とする一缶二水路給湯器。
1. A hot water supply heat exchanger for heating water supplied from a water supply passage to produce hot water and sending the hot water to the hot water supply passage, and a non-hot water supply side heat for heating a heat medium supplied through a non-hot water supply side circulation passage. The heat exchanger and the hot water supply heat exchanger and the non-hot water supply side heat exchanger are integrated, and a burner that burns and heats the integrated hot water supply heat exchanger and the non-hot water supply side heat exchanger in common is provided. In a one-can two-channel water heater that can perform a hot water supply operation of supplying hot water produced by a heat exchanger and a non-hot water supply side operation of heating a heat medium by a non-hot water supply side heat exchanger, a water supply passage and hot water supply are provided. A bypass passage connecting between the passages bypassing the hot water supply heat exchanger and communicating therewith; a bypass flow rate control means capable of variably controlling the flow rate of the bypass passage by a valve opening; and a hot water supply operation and a non-hot water supply side operation. Burner combustion heat during simultaneous combustion A simultaneous combustion combustion heat amount increase control unit for increasing the amount of combustion heat during the hot water supply alone operation to control burner combustion; and when the simultaneous combustion combustion heat amount increase control unit controls the burner combustion heat amount. By controlling the valve opening degree of the bypass flow rate control means in the opening direction, the rise of the water temperature at the outlet side of the hot water supply heat exchanger corresponding to the increase in combustion heat quantity by the combustion heat quantity increase control of the simultaneous combustion heat quantity increase control section. A hot water supply temperature decrease correction control unit for compensating for a decrease in water flow from the bypass passage to the hot water supply passage.
【請求項2】 給水通路から供給された水を加熱し湯を
作り出し該湯を給湯通路に送出する給湯熱交換器と、追
い焚き循環通路を通して供給された浴槽水を加熱し追い
焚きを行う追い焚き熱交換器と、上記給湯熱交換器と追
い焚き熱交換器は一体化され、一体化された給湯熱交換
器と追い焚き熱交換器を共通に燃焼加熱するバーナが設
けられており、給湯熱交換器により作られた湯を給湯す
る給湯運転と、追い焚き熱交換器により浴槽水の追い焚
きを行う追い焚き運転とを行うことができる一缶二水路
給湯器において、給水通路と給湯通路間を給湯熱交換器
を迂回して連通接続するバイパス通路と;該バイパス通
路の通水流量を弁開度で可変制御することができるバイ
パス流量制御手段と;給湯運転と追い焚き運転が共に行
われる同時燃焼時にはバーナの燃焼熱量を給湯単独運転
時の燃焼熱量よりも増加してバーナの燃焼制御を行う同
時燃焼時燃焼熱量増加制御部と;該同時燃焼時燃焼熱量
増加制御部によりバーナ燃焼熱量が増加制御されている
ときには、バイパス流量制御手段の弁開度を開方向に制
御して上記同時燃焼時燃焼熱量増加制御部の燃焼熱量増
加制御による燃焼熱量増加量に対応した給湯熱交換器の
出側の湯水温度の上昇分をバイパス通路から給湯通路に
流れ出る水によって低下補正する給湯湯温低下補正制御
部と;を設けたことを特徴とする一缶二水路給湯器。
2. A hot water supply heat exchanger for heating water supplied from a water supply passage to produce hot water and sending the hot water to the hot water supply passage, and a heater for heating and reheating the bath water supplied through the reheating circulation passage. The heating heat exchanger, the above-mentioned hot water supply heat exchanger and the additional heating heat exchanger are integrated, and a burner for burning and heating the integrated hot water supply heat exchanger and the additional heating heat exchanger is provided. A water supply passage and a hot water supply passage in a one-can-two-water supply water heater capable of performing a hot water supply operation for supplying hot water produced by a heat exchanger and a reheating operation for reheating the bathtub water using a reheating heat exchanger. A bypass passage connecting between the bypass passages and bypassing the hot water supply heat exchanger; bypass flow rate control means capable of variably controlling the flow rate of the bypass passage by the valve opening; and performing both hot water supply operation and reheating operation During simultaneous combustion Is a simultaneous combustion combustion heat amount increasing control unit for increasing the combustion heat amount of the burner from the combustion heat amount in the hot water supply alone operation and performing burner combustion control; and controlling the burner combustion heat amount by the simultaneous combustion combustion heat amount increase control unit. When it is, the valve opening degree of the bypass flow rate control means is controlled in the opening direction, and the outlet side of the hot water supply heat exchanger corresponding to the combustion heat amount increase amount by the combustion heat amount increase control of the simultaneous combustion heat amount increase control unit is controlled. A two-channel hot water supply device comprising: a hot water supply temperature decrease correction control unit that corrects a rise in hot water temperature by water flowing from the bypass passage to the hot water supply passage.
【請求項3】 給水通路から供給された水を加熱し湯を
作り出し該湯を給湯通路に送出する給湯熱交換器と、追
い焚き循環通路を通して供給された浴槽水を加熱し追い
焚きを行う追い焚き熱交換器と、上記給湯熱交換器と追
い焚き熱交換器は一体化され、一体化された給湯熱交換
器と追い焚き熱交換器を共通に燃焼加熱するバーナが設
けられており、給湯熱交換器により作られた湯を給湯す
る給湯運転と、追い焚き熱交換器により浴槽水の追い焚
きを行う追い焚き運転とを行うことができる一缶二水路
給湯器において、給水通路と給湯通路間を給湯熱交換器
を迂回して連通接続するバイパス通路と;該バイパス通
路の通水流量を弁開度でもって可変制御することができ
るバイパス流量制御手段と;上記バイパス通路から流れ
出た水が合流する湯側の流量を弁開度で可変制御するこ
とができる湯側流量制御手段と;給湯運転と追い焚き運
転が共に行われる同時燃焼時にはバーナの燃焼熱量を給
湯単独運転時の燃焼熱量よりも増加してバーナの燃焼制
御を行う同時燃焼時燃焼熱量増加制御部と;該同時燃焼
時燃焼熱量増加制御部により燃焼熱量が増加制御されて
いるときには、バイパス流量制御手段の弁開度を開方向
に制御し、湯側流量制御手段の弁開度を閉方向に制御し
て上記バイパス通路から流れ出た水と上記湯側の湯との
ミキシング後の湯水温度が予め定められた給湯設定温度
となる方向にバイパス通路を流れるバイパス流量と湯側
の流量との流量比を制御する流量比制御手段と;を設け
たことを特徴とする一缶二水路給湯器。
3. A hot water supply heat exchanger for heating water supplied from a water supply passage to produce hot water and sending the hot water to the hot water supply passage, and a heater for heating bath tub water supplied through the reheating circulation passage to perform reheating. The heating heat exchanger, the above-mentioned hot water supply heat exchanger and the additional heating heat exchanger are integrated, and a burner for burning and heating the integrated hot water supply heat exchanger and the additional heating heat exchanger is provided. A water supply passage and a hot water supply passage in a one-can-two-water supply water heater capable of performing a hot water supply operation for supplying hot water produced by a heat exchanger and a reheating operation for reheating the bathtub water using a reheating heat exchanger. A bypass passage connecting between the bypass heat exchanger and the hot water supply heat exchanger; a bypass flow rate control means capable of variably controlling the flow rate of the bypass passage by the valve opening; and water flowing out of the bypass passage. Hot water to join -Side flow rate control means capable of variably controlling the flow rate on the side by the valve opening degree; in the simultaneous combustion in which both the hot water supply operation and the reheating operation are performed, the combustion heat amount of the burner is increased from the combustion heat amount in the hot water supply alone operation. A control unit for increasing the amount of combustion heat during simultaneous combustion, which controls combustion of the burner; controlling the valve opening of the bypass flow control means in the opening direction when the amount of combustion heat is controlled to increase by the control unit for increasing simultaneous combustion heat. Then, by controlling the valve opening degree of the hot water side flow control means in the closing direction, the hot water temperature after mixing the water flowing out of the bypass passage with the hot water side becomes a predetermined hot water supply set temperature. Flow rate control means for controlling a flow rate ratio between a bypass flow rate flowing through the bypass passage and a flow rate on the hot water side;
【請求項4】 同時燃焼時燃焼熱量増加制御部は、バー
ナ燃焼熱量増加制御に伴ってバイパス流量制御手段の弁
開度が開方向に制御される状態でバイパス通路から流れ
出た水と湯側の湯とのミキシング後の湯水温度を給湯設
定温度に制御することが可能な最大の燃焼熱量を予め定
めた燃焼熱量の範囲内で求め、この求めた燃焼熱量でバ
ーナの燃焼制御を行うことを特徴とする請求項1又は請
求項2又は請求項3記載の一缶二水路給湯器。
4. The simultaneous combustion combustion heat amount increase control section includes a water and hot water side flowing out of the bypass passage in a state where the valve opening of the bypass flow rate control means is controlled to open in accordance with the burner combustion heat amount increase control. The maximum amount of combustion heat that can control the temperature of hot and cold water after mixing with hot water to the set hot water supply temperature is determined within a predetermined combustion heat amount, and the burner combustion control is performed using the calculated combustion heat amount. The one-can two-channel water heater according to claim 1, 2 or 3.
【請求項5】 給水通路から供給された水を加熱し湯を
作り出し該湯を給湯する給湯熱交換器と、追い焚き循環
通路を通して供給された浴槽水を加熱し追い焚きを行う
追い焚き熱交換器と、上記給湯熱交換器と追い焚き熱交
換器は一体化され、一体化された給湯熱交換器と追い焚
き熱交換器を共通に燃焼加熱するバーナが設けられてお
り、給湯熱交換器によって湯を作り予め定められた給湯
設定温度の湯を給湯する給湯運転と、追い焚き熱交換器
により浴槽水の追い焚きを行う追い焚き運転とを行うこ
とができる一缶二水路給湯器において、上記追い焚き循
環通路を流れる循環湯水の流量を可変制御することが可
能な循環ポンプと;給湯運転と追い焚き運転とが共に行
われる同時燃焼時には循環ポンプによって追い焚き循環
通路の循環流量を追い焚き単独運転時よりも増加させる
同時燃焼時循環流量増加制御部と;が設けられているこ
とを特徴とする一缶二水路給湯器。
5. A hot water supply heat exchanger for heating the water supplied from the water supply passage to produce hot water and supplying the hot water, and a reheating heat exchanger for heating and reheating the bath water supplied through the reheating circulation passage. The hot water supply heat exchanger and the reheating heat exchanger are integrated, and a burner for burning and heating the integrated hot water supply heat exchanger and the reheating heat exchanger in common is provided. In a one-can two-channel water heater that can perform a hot water supply operation of making hot water and supplying hot water of a predetermined hot water supply set temperature and a reheating operation of reheating the bathtub water by a reheating heat exchanger, A circulating pump capable of variably controlling the flow rate of the circulating hot water flowing through the reheating circulating passage; and a circulating pump for controlling the circulating flow rate of the reheating circulating passage by the circulating pump during simultaneous combustion in which both the hot water supply operation and the reheating operation are performed. A simultaneous-combustion circulating flow rate increase control unit for increasing the flow rate compared to a single-fired single operation.
JP27050397A 1997-09-17 1997-09-17 One can two water heater Expired - Fee Related JP3848756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27050397A JP3848756B2 (en) 1997-09-17 1997-09-17 One can two water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27050397A JP3848756B2 (en) 1997-09-17 1997-09-17 One can two water heater

Publications (2)

Publication Number Publication Date
JPH1183170A true JPH1183170A (en) 1999-03-26
JP3848756B2 JP3848756B2 (en) 2006-11-22

Family

ID=17487169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27050397A Expired - Fee Related JP3848756B2 (en) 1997-09-17 1997-09-17 One can two water heater

Country Status (1)

Country Link
JP (1) JP3848756B2 (en)

Also Published As

Publication number Publication date
JP3848756B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
JPH1183170A (en) Hot water supply unit having single storage water heater body and two water channels
JP3876877B2 (en) Gas hot water heater
JPH11141979A (en) Single-can two-water channel type water heater
JP2004125306A (en) Hot water storage type water heater
JP3872864B2 (en) Hot water combustion equipment
JP3859811B2 (en) Hot water combustion equipment
JPH11257736A (en) Hot-water supply device
JP3859837B2 (en) Combustion device
JP4215337B2 (en) Heat supply system
JP3776975B2 (en) Combustion equipment
JP3848728B2 (en) One can two water bath hot water heater
JP3735891B2 (en) 1 can, 2 waterway bath equipment
JP3908330B2 (en) Hot water combustion equipment
JP3822721B2 (en) One can two water bath hot water heater
JP3801338B2 (en) Water heater
JP2921177B2 (en) Water heater with bath kettle
JPH0517554Y2 (en)
JP2946862B2 (en) Operation control method of bath kettle with water heater
JP3922788B2 (en) Hot water supply method and hot water supply apparatus
JP3922795B2 (en) Water heater with hot water filling function
JP3536735B2 (en) Water heater
JPH01277137A (en) Temperature control device in hot water-circulating heater
JP3855456B2 (en) Heat source equipment
JPS6311545Y2 (en)
JPH10300222A (en) Hot water supply burning equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees