JPH1181052A - Production of oxidized fiber and carbon fiber - Google Patents

Production of oxidized fiber and carbon fiber

Info

Publication number
JPH1181052A
JPH1181052A JP24593197A JP24593197A JPH1181052A JP H1181052 A JPH1181052 A JP H1181052A JP 24593197 A JP24593197 A JP 24593197A JP 24593197 A JP24593197 A JP 24593197A JP H1181052 A JPH1181052 A JP H1181052A
Authority
JP
Japan
Prior art keywords
fiber
magnetic field
oxidized
polyacrylonitrile
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24593197A
Other languages
Japanese (ja)
Other versions
JP4068694B2 (en
Inventor
Hiroyasu Ogawa
博靖 小川
Shigeo Asai
滋生 浅井
Kensuke Sasa
健介 佐々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP24593197A priority Critical patent/JP4068694B2/en
Publication of JPH1181052A publication Critical patent/JPH1181052A/en
Application granted granted Critical
Publication of JP4068694B2 publication Critical patent/JP4068694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To oxidize and/or carbonize polyacrylonitrile fiber or polyacrylonitrile polymer-containing fiber in a shortened time by effecting the oxidation and/or carbonization in a strong magnetic field with a magnetic flux density more than a specific value. SOLUTION: Polyacrylonitrile fiber or a polyacrylonitrile fiber-containing fiber is passed through the heating furnace that has a magnetic field with a magnetic flux density of >=1 tesla, preferably >=5 tesla generated by the magnets 9, 9,... and heated in an oxidative atmosphere to prepare the oxidized fiber. The resultant oxidized fiber is carbonized in an inert gas over 800 deg.C, preferably a strong magnetic field as in the oxidation thereby producing carbon fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリアクリロニトリ
ルまたはポリアクリロニトリル系の繊維から酸化繊維お
よび炭素繊維を製造する方法に関するものであり、より
詳しくはポリアクリロニトリルまたはポリアクリロニト
リル系の繊維から酸化繊維および/または炭素繊維を製
造する過程において、強磁場を印加して該繊維を酸化ま
たは炭素化することによって短時間で酸化繊維を製造す
る方法および高性能な炭素繊維を製造する新規な方法に
関するものである。
The present invention relates to a method for producing oxidized fibers and carbon fibers from polyacrylonitrile or polyacrylonitrile-based fibers, and more particularly to oxidized fibers and / or polyacrylonitrile or polyacrylonitrile-based fibers. The present invention relates to a method for producing an oxidized fiber in a short time by applying a strong magnetic field to oxidize or carbonize the fiber in a process of producing the carbon fiber, and a novel method for producing a high-performance carbon fiber.

【0002】[0002]

【従来の技術】従来より、ポリアクリロニトリルまたは
ポリアクリロニトリル系繊維から得られる酸化繊維は耐
熱性、耐炎性に優れているために断熱材、充填材、強化
材、耐熱材やスパッターシートなどとして使われてい
る。また、該酸化繊維を炭素化して得られる炭素繊維は
比強度、比弾性率に優れていることから航空・宇宙分野
の飛翔体やスポーツ用品、工業製品等の製品として、あ
るいはそれらの部材・部品として多用されている。この
酸化繊維は湿式紡糸または乾式紡糸などの公知の方法に
より製造されるポリアクリロニトリルまたはポリアクリ
ロニトリル系繊維を200〜300℃の空気中で数時間
酸化する方法により得られ、また、炭素繊維は該酸化繊
維を800℃以上の不活性雰囲気中で繊維を延伸しなが
ら炭素化する方法により得られていた。
2. Description of the Related Art Conventionally, oxidized fibers obtained from polyacrylonitrile or polyacrylonitrile-based fibers have been used as heat insulating materials, fillers, reinforcing materials, heat-resistant materials and spatter sheets because of their excellent heat resistance and flame resistance. ing. Further, carbon fibers obtained by carbonizing the oxidized fibers are excellent in specific strength and specific elastic modulus, so that they are used as products such as flying objects, sporting goods, and industrial products in the aviation and space fields, or members and parts thereof. It has been heavily used. The oxidized fiber is obtained by oxidizing polyacrylonitrile or a polyacrylonitrile-based fiber produced by a known method such as wet spinning or dry spinning in air at 200 to 300 ° C. for several hours. It has been obtained by a method of carbonizing a fiber while drawing the fiber in an inert atmosphere at 800 ° C. or higher.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
製造方法で得られる酸化繊維は酸化に長時間を要するた
めに製造コストが高くなるという問題があった。また、
該酸化繊維を用いて炭素化して得られる炭素繊維はコス
トが高くなるという問題があった。さらに、従来の炭素
繊維の製造方法では炭素繊維の引張強度や引張弾性率を
高くすべく炭素化過程で繊維を延伸するために毛羽の多
い炭素繊維になるという問題があった。
However, the oxidized fiber obtained by the conventional production method has a problem that the production cost is high because the oxidation takes a long time. Also,
The carbon fiber obtained by carbonizing using the oxidized fiber has a problem that the cost is high. Furthermore, the conventional method for producing carbon fibers has a problem that the fibers are stretched during the carbonization process in order to increase the tensile strength and tensile modulus of the carbon fibers.

【0004】本発明者等はかかる従来の問題を解決すべ
く鋭意検討した結果、磁束密度が1テスラ以上の強磁場
中で酸化および/または炭素化することによって、これ
らの問題点を解消できることを見い出し本発明に至っ
た。
The inventors of the present invention have conducted intensive studies to solve the conventional problems, and as a result, have found that oxidation and / or carbonization in a strong magnetic field having a magnetic flux density of 1 Tesla or more can solve these problems. The present invention has been found.

【0005】すなわち、本発明の目的は安価な酸化繊維
および/または炭素繊維を製造する方法を提供すること
であり、他の目的は毛羽の少ない品格に優れた高性能の
炭素繊維を製造する方法を提供することである。さら
に、他の目的は安価で毛羽の少ない品格に優れた高性能
の炭素繊維を製造する方法を提供することにある。
[0005] That is, an object of the present invention is to provide a method for producing inexpensive oxidized fiber and / or carbon fiber, and another object is to provide a method for producing a high-quality carbon fiber with less fluff and excellent quality. It is to provide. Still another object is to provide a method for producing a high-performance carbon fiber which is inexpensive, has less fluff, and is excellent in quality.

【0006】[0006]

【課題を解決するための手段】本目的の一つは、ポリア
クリロニトリル繊維またはポリアクリロニトリル系繊維
を磁束密度が1テスラ以上の磁場下、酸化性雰囲気中で
酸化する方法によって達成でき、さらに、当該方法によ
って得られる酸化繊維を800℃以上の不活性ガス雰囲
気中で従来よりも小さい延伸を施すことによって達成さ
れる。
One object of the present invention can be achieved by a method of oxidizing polyacrylonitrile fiber or polyacrylonitrile fiber in a oxidizing atmosphere under a magnetic field having a magnetic flux density of 1 Tesla or more. This is achieved by subjecting the oxidized fiber obtained by the method to a smaller stretching than in the past in an inert gas atmosphere at 800 ° C. or higher.

【0007】また、他の目的は、ポリアクリロニトリル
繊維またはポリアクリロニトリル系繊維を磁束密度が1
テスラ以上の磁場下、または、磁場のない状態で酸化性
雰囲気中で酸化する方法によって得られる酸化繊維を磁
束密度が1テスラ以上の磁場下、800℃以上の不活性
ガス雰囲気中で従来よりも小さい延伸を施すことによっ
て達成される。
Another object is to provide a polyacrylonitrile fiber or a polyacrylonitrile fiber having a magnetic flux density of 1%.
An oxidized fiber obtained by a method of oxidizing in an oxidizing atmosphere in a magnetic field of 1 Tesla or more or in the absence of a magnetic field in an inert gas atmosphere of 800 ° C. or more under a magnetic field having a magnetic flux density of 1 Tesla or more is used. Achieved by applying a small stretch.

【0008】[0008]

【発明の詳細な開示】以下に、本発明を詳細に説明す
る。
DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention will be described in detail.

【0009】本発明で用いるポリアクリロニトリル繊維
またはポリアクリロニトリル系繊維はアクリロニトリル
の単独またはアクリル酸、メタクリル酸、イタコン酸等
の単量体およびそれらの塩類およびメチルまたはエチル
エステル、アクリルアミド、スチレンスルホン酸、アリ
ルスルホン酸、メタリルスルホン酸またはそれらスルホ
ン酸塩などの公知の共単量体とアクリロニトリルとの分
子量30,000以上を有する共重合体を公知の方法に
より紡糸して得た繊維である。
The polyacrylonitrile fiber or polyacrylonitrile fiber used in the present invention may be acrylonitrile alone or a monomer such as acrylic acid, methacrylic acid, itaconic acid and salts thereof, and methyl or ethyl ester, acrylamide, styrene sulfonic acid, allyl. A fiber obtained by spinning a copolymer having a molecular weight of 30,000 or more between acrylonitrile and a known comonomer such as sulfonic acid, methallyl sulfonic acid or a sulfonate thereof by a known method.

【0010】すなわち、当該共重合体をジメチルホルム
アミド、ジメチルアセトアミド、ジメチルスルホキシド
などの有機溶剤、塩化亜鉛濃厚水溶液、濃硝酸水溶液、
ロダン塩水溶液などの無機溶剤などの当該共重合体を溶
解する公知の溶剤に溶解して得た重合体溶液を溶剤の水
希釈液中または溶剤の沸点近傍の温度雰囲気中に細孔を
有するノズルを通して圧出する公知の湿式または乾式法
により紡出後、脱溶媒中に2〜5倍延伸、高温水または
乾燥後蒸気中でさらに2〜5倍延伸して得られる繊維で
あり、好ましくは、酸化繊維および炭素繊維の引張強度
の点から繊維乾強度が3グラム(g)/デニール(d)
以上が好ましい。
That is, the copolymer is treated with an organic solvent such as dimethylformamide, dimethylacetamide and dimethylsulfoxide, a concentrated aqueous solution of zinc chloride, a concentrated aqueous solution of nitric acid,
Nozzles having pores in a water solution of a solvent or in a temperature atmosphere near the boiling point of the solvent, obtained by dissolving a polymer solution obtained by dissolving the copolymer in a known solvent such as an inorganic solvent such as an aqueous solution of rodan salt. A fiber obtained by spinning by a known wet or dry method, which is extruded through, and then stretched 2 to 5 times during desolvation, and further stretched 2 to 5 times in high-temperature water or dried steam. Fiber dry strength is 3 grams (g) / denier (d) in terms of tensile strength of oxidized fiber and carbon fiber
The above is preferred.

【0011】酸化は当該アクリロニトリル繊維またはア
クリロニトリル系繊維を200〜300℃の空気、酸素
などの酸化性ガス雰囲気中で10〜200mg/dの張
力下で、磁束密度1テスラ以上の強磁場を印加するかま
たは印加しないで10〜100分間処理して行う。酸化
温度はアクリロニトリル繊維またはアクリロニトリル系
繊維の示差熱量計(DSC)で測定される発熱ピーク温
度から10℃低い温度と50℃低い温度の間であること
が、安定した酸化処理と均一な酸化繊維とするために好
ましい。雰囲気は空気が経済的であり好ましいが、短時
間酸化をより重視する場合は酸素または空気に酸素を3
0〜50体積%混合したガスが好ましい。
In the oxidation, the acrylonitrile fiber or the acrylonitrile-based fiber is applied with a strong magnetic field having a magnetic flux density of 1 Tesla or more under a tension of 10 to 200 mg / d in an oxidizing gas atmosphere such as air or oxygen at 200 to 300 ° C. The treatment is performed for 10 to 100 minutes with or without application. The oxidation temperature is between 10 ° C. lower and 50 ° C. lower than the exothermic peak temperature measured by differential calorimetry (DSC) of acrylonitrile fiber or acrylonitrile-based fiber. It is preferable to The atmosphere is preferably air because it is economical, but if short-time oxidation is more important, oxygen or oxygen should be added to the air.
Gas mixed with 0 to 50% by volume is preferable.

【0012】張力は酸化繊維の目的により異なるが、特
に毛羽のない高性能炭素繊維とする場合は50〜150
mg/dが好ましい。磁場は短時間酸化による安価な酸
化繊維を製造することを目的とする場合は1テスラ以上
の磁束密度が好ましく、より好ましくは5テスラ以上で
ある。これは磁場によって雰囲気中の酸素と繊維との反
応や繊維分子の環状構造化が加速されるためと思われ
る。酸化時間は得られる酸化繊維の密度が1.25〜1
・48g/ccとなるように調整する。高性能炭素繊維
とする場合は1.25〜1.35g/ccが好ましく、
高い耐炎性と高い引張強度の酸化繊維とする場合は1.
40〜1.45g/ccが好ましい。
The tension varies depending on the purpose of the oxidized fiber.
mg / d is preferred. The magnetic field has a magnetic flux density of preferably 1 Tesla or more, more preferably 5 Tesla or more, for the purpose of producing inexpensive oxidized fibers by short-time oxidation. This is presumably because the magnetic field accelerates the reaction between oxygen in the atmosphere and the fiber and the formation of a cyclic structure of the fiber molecule. The oxidation time is such that the density of the obtained oxidized fiber is 1.25 to 1
・ Adjust to 48 g / cc. When high-performance carbon fiber is used, 1.25 to 1.35 g / cc is preferable,
When using oxidized fiber having high flame resistance and high tensile strength, 1.
40 to 1.45 g / cc is preferred.

【0013】本発明に用いられる酸化のための装置は2
00〜300℃に加熱可能な雰囲気ガス循環式加熱炉、
管状炉などの酸化繊維を製造するために用いられる公知
の加熱炉にその外側に繊維を供給するローラーと引き取
りローラーを装着した装置である。
The apparatus for oxidation used in the present invention is 2
Atmosphere gas circulation heating furnace capable of heating to 00 to 300 ° C,
A known heating furnace used for producing oxidized fibers, such as a tubular furnace, is equipped with a roller for supplying fibers to the outside thereof and a take-off roller.

【0014】特に、強磁場を印加する場合は繊維を通過
させる部分の外側に磁場に影響されない発熱体を配置
し、さらにその外側に磁場を発生する磁石を配置した管
状炉型が均一な磁場を印加出来るので好ましい。磁石は
強磁場をつくれるのに適している超電導磁石が適当であ
る。
In particular, when a strong magnetic field is applied, a tubular furnace mold in which a heating element which is not affected by the magnetic field is arranged outside the portion through which the fiber passes, and a magnet which generates a magnetic field is arranged outside the heating element, generates a uniform magnetic field. It is preferable because it can be applied. As the magnet, a superconducting magnet suitable for generating a strong magnetic field is suitable.

【0015】本発明における炭素化は、当該酸化繊維を
800℃以上の窒素、アルゴンなどの不活性ガス雰囲気
中、10〜200mg/dの張力下で、磁束密度1テス
ラ以上の強磁場を印加するかまたは印加しないで1〜2
0分間処理して行う。炭素化温度は得られる炭素繊維の
引張強度、引張弾性率に応じて選ぶ。高強度の炭素繊維
とする場合は1200〜1400℃が好ましく、高弾性
率の炭素繊維とする場合は2000〜3000℃が好ま
しい。
In the carbonization according to the present invention, a strong magnetic field having a magnetic flux density of 1 Tesla or more is applied to the oxidized fiber in an atmosphere of an inert gas such as nitrogen or argon at 800 ° C. or more under a tension of 10 to 200 mg / d. 1-2 with or without application
Perform for 0 minutes. The carbonization temperature is selected according to the tensile strength and tensile modulus of the obtained carbon fiber. In the case of a high-strength carbon fiber, the temperature is preferably from 1200 to 1400 ° C, and in the case of a high-modulus carbon fiber, the temperature is preferably from 2000 to 3000 ° C.

【0016】また、張力は炭素繊維の目的により異なる
が、特に毛羽のない高強度、高弾性率の炭素繊維とする
場合は50〜150mg/dが好ましい。磁場は高性能
炭素繊維、特に高弾性率炭素繊維を目的とする場合は1
テスラ以上の磁束密度が好ましく、より好ましくは5テ
スラ以上である。
Although the tension varies depending on the purpose of the carbon fiber, it is preferably 50 to 150 mg / d in the case of a high-strength, high-modulus carbon fiber having no fluff. The magnetic field is 1 for high performance carbon fiber, especially high modulus carbon fiber.
The magnetic flux density is preferably not less than Tesla, more preferably not less than 5 Tesla.

【0017】磁場を印加する、特に、繊維軸方向に磁場
を印加することによって炭素繊維中の炭素6員環網平面
が繊維軸方向により配列するため引張弾性率は磁場を印
加しない場合に比べて高く出来るので好ましい。印加す
る磁束密度はより高性能化するためには強い磁場が好ま
しく、特に5テスラ以上が好ましい。炭素化時間は酸化
繊維が炭素化過程で分解ガスを放散しながら炭素繊維に
なるために最高温度に達するまでは4〜10℃/秒で加
熱して、最高温度で3〜10分が好ましい。
When a magnetic field is applied, particularly when a magnetic field is applied in the fiber axis direction, the carbon 6-membered ring network planes in the carbon fiber are arranged in the fiber axis direction, so that the tensile elastic modulus is lower than that in the case where no magnetic field is applied. It is preferable because it can be made higher. The applied magnetic flux density is preferably a strong magnetic field for higher performance, and particularly preferably 5 Tesla or more. The carbonization time is preferably 4 to 10 ° C./sec until the maximum temperature is reached in order for the oxidized fiber to become a carbon fiber while emitting decomposition gas during the carbonization process, and is preferably 3 to 10 minutes at the maximum temperature.

【0018】本発明で用いられる炭素化のための装置は
800〜3000℃または800〜1500℃と300
0℃の2つの加熱可能な雰囲気ガス導入式電気管状炉な
どの炭素繊維を製造するために用いられる公知の加熱炉
にその外側に繊維を供給するローラーと引き取りローラ
ーを装着した装置である。特に、磁場を印加する場合は
繊維を通過させる部分の外側に磁場に影響されない発熱
体を配置した構造またはレーザー光線で直接加熱するま
たは炭素均熱材にレーザーを照射して加熱して間接的に
繊維を加熱する構造と、さらにその外側に磁場を発生す
る磁石を配置した構造の管状炉型が均一な磁場を印加で
きるので好ましい。磁石は省電力に優れているので超電
導磁石が好ましい。
The apparatus for carbonization used in the present invention may be 800-3000 ° C. or 800-1500 ° C. and 300 ° C.
A known heating furnace used for producing carbon fibers such as two heatable atmosphere gas introduction type electric tubular furnaces at 0 ° C., which is provided with a roller for supplying fibers to the outside thereof and a take-off roller. In particular, when a magnetic field is applied, a structure in which a heating element that is not affected by the magnetic field is arranged outside the portion through which the fiber passes, or heated directly by a laser beam or indirectly heated by irradiating a laser to the carbon soaking material and heating the fiber And a tubular furnace mold having a structure in which a magnet for generating a magnetic field is arranged outside the tube furnace is preferable because a uniform magnetic field can be applied. A superconducting magnet is preferable because the magnet is excellent in power saving.

【0019】本発明において安価な酸化繊維および安価
な炭素繊維を製造することを目的とする場合は酸化時に
強磁場を印加することが必要であるが炭素化では必ずし
も強磁場を印加することを要しない。
In the present invention, in order to produce inexpensive oxidized fibers and inexpensive carbon fibers, it is necessary to apply a strong magnetic field during oxidation, but it is not necessary to apply a strong magnetic field in carbonization. do not do.

【0020】しかし、毛羽のない高性能炭素繊維を製造
することを目的とする場合は炭素化時に強磁場を印加す
ることが好ましい。特に、毛羽のない安価で高性能な炭
素繊維を製造することを目的とする場合は酸化時および
炭素化時に強磁場を印加することが好ましい。
However, when the purpose is to produce high-performance carbon fibers without fluff, it is preferable to apply a strong magnetic field during carbonization. In particular, when the purpose is to produce inexpensive and high-performance carbon fibers without fluff, it is preferable to apply a strong magnetic field during oxidation and carbonization.

【0021】本発明の酸化繊維および炭素繊維の製造方
法により、より安価で耐熱性、耐炎性に優れる酸化繊維
を提供し、より経済的な各種の断熱材やスパッター材料
などの市場を拡大でき、また、安価な炭素繊維、高性能
な炭素繊維、さらには安価で高性能な炭素繊維を提供し
て従来の炭素繊維の用途分野や新規な用途を飛躍的に拡
大できる。
According to the method for producing oxidized fiber and carbon fiber of the present invention, oxidized fiber which is less expensive and has excellent heat resistance and flame resistance can be provided, and the market for various heat insulating materials and spatter materials which are more economical can be expanded. In addition, by providing inexpensive carbon fibers, high-performance carbon fibers, and inexpensive and high-performance carbon fibers, it is possible to dramatically expand the fields of use of conventional carbon fibers and new applications.

【0022】[0022]

【実施例】以下に、実施例により本発明を具体的に説明
するが、本発明はその要旨を超えない限り下記実施例に
限定されるものではない。本発明で用いられる密度はア
セトンを用いたアルキメデス法により測定した。なお、
特に指定しない限り%は重量で記載する。
EXAMPLES The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the scope of the invention. The density used in the present invention was measured by the Archimedes method using acetone. In addition,
Unless otherwise specified,% is given by weight.

【0023】[0023]

【実施例1、比較例1】アクリロニトリル95%とアク
リル酸メチルエステル5%からなる重合体を60%塩化
亜鉛濃厚水溶液に溶解し、9%の重合体溶液を得た。こ
の溶液を25%の塩化亜鉛水溶液中に孔径0.06mm
で12000ホールのノズルを通して圧出し、水洗して
脱溶媒中に2.5倍延伸し、乾燥後105℃の飽和水蒸
気中で5倍延伸して繊維特性が単繊維直径10ミクロ
ン、繊維本数12000本、引っ張り強さ483MP
a、引っ張りヤング率89GPaのポリアクリロニトリ
ル系繊維を得た。
Example 1, Comparative Example 1 A polymer consisting of 95% of acrylonitrile and 5% of methyl acrylate was dissolved in a 60% concentrated aqueous solution of zinc chloride to obtain a 9% polymer solution. This solution is placed in a 25% aqueous zinc chloride solution with a pore size of 0.06 mm.
, Pressurized through a 12000 hole nozzle, washed with water, stretched 2.5 times in desolvation solvent, dried and stretched 5 times in saturated steam at 105 ° C. , Tensile strength 483MP
a, Polyacrylonitrile fiber having a tensile Young's modulus of 89 GPa was obtained.

【0024】この繊維を加熱炉(図1)を用いて炉内に
2.5L/分の酸素を流動させて、240℃、張力80
mg/dで5分間、磁束密度5テスラの磁場を印加して
酸化繊維Aを得た。磁場を印加しない以外は同条件で酸
化して酸化繊維Bを得た(比較例1)。加熱炉には図1
に示す装置を用いた。加熱炉は出入り口の外側にローラ
を配置し、ニクロム線8を出口から400cmのところ
まで管の外周に巻き付けた長さ100cm、内径15c
mの石英管2の外にさらに水冷ジャケット式石英管を配
置し、これを超電導磁石9の円筒の中に設置した竪型加
熱装置で、磁場は管の出口から20cmと40cmの間
を磁束密度5テスラにできる。
Using a heating furnace (FIG. 1), 2.5 L / min of oxygen was flowed through the fiber at 240 ° C. and a tension of 80 ° C.
An oxidized fiber A was obtained by applying a magnetic field having a magnetic flux density of 5 Tesla at mg / d for 5 minutes. Oxidized fiber B was obtained by oxidation under the same conditions except that no magnetic field was applied (Comparative Example 1). Fig. 1 for heating furnace
Was used. In the heating furnace, a roller was placed outside the entrance, and a nichrome wire 8 was wound around the outer periphery of the pipe to a position 400 cm from the exit, having a length of 100 cm and an inner diameter of 15 c.
In addition to the quartz tube 2, a water-cooled jacket type quartz tube is placed outside the tube, and this is placed in the cylinder of the superconducting magnet 9 with a vertical heating device. The magnetic field is between 20 cm and 40 cm from the outlet of the tube. Can be 5 Tesla.

【0025】酸素は石英管の下部流入口6から導入し、
上部の排出口7から排出した。酸化時間は繊維を上部か
ら下部に通糸して所定の温度領域を通過する時間とし、
糸速度により調整した。この様にして得られた酸化繊維
について密度と赤外線吸収スペクトルにおけるニトリル
基の吸収ピークを測定し評価した。
Oxygen is introduced from the lower inlet 6 of the quartz tube,
It was discharged from the upper outlet 7. The oxidation time is the time that the fiber passes from the top to the bottom and passes through a predetermined temperature range,
It was adjusted according to the yarn speed. The density and the absorption peak of the nitrile group in the infrared absorption spectrum of the oxidized fiber thus obtained were measured and evaluated.

【0026】その結果を表1に示すように、コントロー
ル繊維(ポリアクリロニトリル系繊維)に比べて酸化に
よって密度が高くなり、赤外線吸収スペクトルによるニ
トリル基量は減少するが、酸化繊維AとBを比較する
と、磁場を印加して得た酸化繊維Aの方が密度が高く、
赤外線吸収スペクトルによるニトリル基量が少なく、酸
化時間を短縮する酸化方法として磁場を印加して酸化す
る方が優れていた。これは磁場が酸素と繊維の反応に影
響を及ぼし、酸化を促進したものと思われる。
As shown in Table 1, the density increased by oxidation and the amount of nitrile groups in the infrared absorption spectrum decreased as compared with the control fiber (polyacrylonitrile fiber). Then, the density of the oxidized fiber A obtained by applying a magnetic field is higher,
The amount of nitrile groups in the infrared absorption spectrum was small, and it was better to oxidize by applying a magnetic field as an oxidation method to shorten the oxidation time. This seems to be due to the fact that the magnetic field affected the reaction between the oxygen and the fiber and promoted the oxidation.

【0027】[0027]

【表1】酸化に関する磁場の効果 Table 1 Effect of magnetic field on oxidation

【0028】[0028]

【実施例2、実施例3、実施例4、比較例2】実施例
1、比較例1において酸化時間を調整する以外は同条件
とし、それぞれから繊維の密度が同じ1.36g/cc
である酸化繊維C、Dを得た。これらの酸化繊維C、D
を得るに要した酸化時間はサンプルCでは21分であっ
たがサンプルDは27分を要した。
Example 2, Example 3, Example 4, Comparative Example 2 The same conditions as in Example 1 and Comparative Example 1 were adopted except that the oxidation time was adjusted, and the fiber density was the same at 1.36 g / cc.
Oxidized fibers C and D were obtained. These oxidized fibers C and D
The oxidation time required to obtain was 21 minutes for sample C, but 27 minutes for sample D.

【0029】この酸化繊維を図1に示す加熱炉の石英管
下部に径5mmの硝子管を挿入して出口を絞った石英管
内に2.5L/分で窒素を流入し、炉内を1000℃に
保持して、酸化繊維CおよびDを石英管の上部から下部
に張力75mg/dで通糸して5分間、磁場を印加した
場合と磁場を印加しない場合の条件で炭素化した。磁束
密度5テスラの磁場を印加して酸化繊維CおよびDから
それぞれ炭素繊維C1(実施例2)および炭素繊維D1
(実施例3)を得た。
The oxidized fiber was inserted into a quartz tube having a diameter of 5 mm under the quartz tube of the heating furnace shown in FIG. Then, the oxidized fibers C and D were passed through the quartz tube from the upper part to the lower part with a tension of 75 mg / d, and carbonized for 5 minutes under the conditions of applying a magnetic field and not applying a magnetic field. By applying a magnetic field of a magnetic flux density of 5 Tesla, the carbon fibers C1 (Example 2) and the carbon fibers D1 were obtained from the oxidized fibers C and D, respectively.
(Example 3) was obtained.

【0030】また、酸化繊維CおよびDを磁場を印加し
ないでそれぞれ炭素化した炭素繊維C2(実施例4)お
よび炭素繊維D2(比較例2)を得た。これらの炭素繊
維について、単繊維の引っ張り強度、弾性率を測定し
た。引っ張り強度、弾性率は、試料長さ50mm、引っ
張り速度1mm/分で25本測定した平均値で評価し
た。
Further, carbon fibers C2 (Example 4) and carbon fibers D2 (Comparative Example 2) were obtained by carbonizing the oxidized fibers C and D, respectively, without applying a magnetic field. For these carbon fibers, the tensile strength and elastic modulus of the single fibers were measured. The tensile strength and the elastic modulus were evaluated by an average value of 25 samples measured at a sample length of 50 mm and a tensile speed of 1 mm / min.

【0031】その結果、表2に示すように本発明の実施
例2、3の炭素繊維は高い引っ張り弾性率を示し、ま
た、実施例4は炭素繊維をつくるまでの時間(酸化時間
と炭素化時間の合計処理時間)は比較例2に比べて短く
経済的であった。なお、磁場を印加して炭素化すること
によって弾性率が向上するのは炭素6員環網平面構造が
磁場によってよく配列するためと思われる。
As a result, as shown in Table 2, the carbon fibers of Examples 2 and 3 of the present invention exhibited a high tensile modulus, and Example 4 showed the time (oxidation time and carbonization time) until carbon fibers were formed. (The total processing time) was shorter and more economical than Comparative Example 2. The reason why the elastic modulus is improved by carbonization by applying a magnetic field is considered to be because the carbon six-membered ring network planar structure is well arranged by the magnetic field.

【0032】[0032]

【表2】炭素化に対する磁場の効果 Table 2 Effect of magnetic field on carbonization

【0033】[0033]

【比較例3】炭素化時の張力を85mg/dとする以外
は実施例4と同じ条件で炭素繊維を得た。この炭素繊維
について、実施例4と同様にして単繊維の引っ張り強
度、弾性率を測定した。その結果、炭素繊維の引っ張り
強度は3452MPa、引っ張り弾性率は132GPa
を示し、実施例4に比べて同等の引っ張り強度、引っ張
り弾性率になったが毛羽の数は実施例4の1m当たり5
本に比べて15本に増加し品格が低下した。なお、毛羽
の数は1mの長さの構成本数12000本の炭素繊維に
認められる切断した単繊維数として測定した。
Comparative Example 3 A carbon fiber was obtained under the same conditions as in Example 4 except that the tension during carbonization was 85 mg / d. About this carbon fiber, the tensile strength and the elastic modulus of the single fiber were measured in the same manner as in Example 4. As a result, the carbon fiber had a tensile strength of 3452 MPa and a tensile modulus of 132 GPa.
The same tensile strength and tensile elastic modulus as in Example 4 were obtained, but the number of fluff was 5 per m in Example 4.
The number increased to 15 compared to the book, and the dignity decreased. In addition, the number of fluff was measured as the number of cut single fibers found in 12,000 carbon fibers having a length of 1 m.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガス流入口6とガス排出口7を有し、ニクロム
線8を巻き付けた石英管2の外側に、水の流入口4と排
水口5を有する水冷ジャケット式石英管3を配置し、こ
れらを超電導磁石9を有する管状装置のボアーに入れた
加熱装置に繊維1を通糸している図。
FIG. 1 shows a water-cooled jacketed quartz tube 3 having a gas inlet 6 and a gas outlet 7 and having a water inlet 4 and a drain 5 outside a quartz tube 2 around which a nichrome wire 8 is wound. FIG. 3 is a diagram in which the fiber 1 is passed through a heating device in which these are placed in a bore of a tubular device having a superconducting magnet 9.

【符号の説明】[Explanation of symbols]

1.繊維、 2.加熱用石英管、 3.水冷ジャケット式石英管、 4.水注入口、 5.水排出口 6.ガス注入口、 7.ガス排出口、 8.ニクロム線、 9.超電導磁石、 Z.磁場中心 1. Fiber, 2. 2. quartz tube for heating, 3. water-cooled jacketed quartz tube; 4. water inlet; Water outlet 6. 6. gas inlet; 7. gas outlet; 8. Nichrome wire, Superconducting magnet, Z. Magnetic field center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ポリアクリロニトリル繊維またはポリアク
リロニトリル系繊維を磁束密度が1テスラ以上の磁場
下、酸化性雰囲気中で加熱することを特徴とする酸化繊
維の製造法。
1. A method for producing an oxidized fiber, comprising heating a polyacrylonitrile fiber or a polyacrylonitrile-based fiber in an oxidizing atmosphere under a magnetic field having a magnetic flux density of 1 Tesla or more.
【請求項2】請求項1に記載の方法で得た酸化繊維を8
00℃以上の不活性ガス中で炭素化することを特徴とす
る炭素繊維の製造法。
2. An oxidized fiber obtained by the method according to claim 1,
A method for producing carbon fiber, comprising carbonizing in an inert gas at a temperature of 00 ° C or higher.
【請求項3】ポリアクリロニトリル繊維またはポリアク
リロニトリル系繊維を酸化性雰囲気中で加熱して得た酸
化繊維を磁束密度が1テスラ以上の磁場下、800℃以
上の不活性ガス中で炭素化することを特徴とする炭素繊
維の製造法。
3. An oxidized fiber obtained by heating a polyacrylonitrile fiber or a polyacrylonitrile-based fiber in an oxidizing atmosphere, and carbonizing the oxidized fiber in an inert gas at 800 ° C. or more under a magnetic field having a magnetic flux density of 1 tesla or more. A method for producing carbon fiber, characterized by the following.
【請求項4】[請求項1]に記載の方法で得た酸化繊維を
磁束密度が1テスラ以上の磁場下、800℃以上の不活
性ガス中で炭素化することを特徴とする炭
4. A charcoal characterized in that the oxidized fiber obtained by the method according to claim 1 is carbonized in an inert gas at 800 ° C. or more under a magnetic field having a magnetic flux density of 1 tesla or more.
【請求項5】1テラス以上の磁場下で、酸化繊維、炭素
繊維を製造するにあたり張力を50〜150mg/dと
することを特徴とする請求項1ないし4記載の製造法。
5. The method according to claim 1, wherein the tension is set to 50 to 150 mg / d for producing oxidized fibers and carbon fibers under a magnetic field of at least one terrace.
JP24593197A 1997-08-28 1997-08-28 Method for producing oxidized fiber and carbon fiber Expired - Fee Related JP4068694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24593197A JP4068694B2 (en) 1997-08-28 1997-08-28 Method for producing oxidized fiber and carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24593197A JP4068694B2 (en) 1997-08-28 1997-08-28 Method for producing oxidized fiber and carbon fiber

Publications (2)

Publication Number Publication Date
JPH1181052A true JPH1181052A (en) 1999-03-26
JP4068694B2 JP4068694B2 (en) 2008-03-26

Family

ID=17140994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24593197A Expired - Fee Related JP4068694B2 (en) 1997-08-28 1997-08-28 Method for producing oxidized fiber and carbon fiber

Country Status (1)

Country Link
JP (1) JP4068694B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135543A (en) * 1999-08-26 2001-05-18 Nikko Consulting & Engineering Co Ltd Device for heat treatment
KR101013783B1 (en) 2008-12-24 2011-02-14 주식회사 효성 Method and apparatus for treating surface of carbon fiber
KR101295284B1 (en) * 2011-10-14 2013-08-08 한국원자력연구원 Apparatus for fiber stabilization
US20140265038A1 (en) * 2013-03-15 2014-09-18 Ut-Battelle, Llc Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135543A (en) * 1999-08-26 2001-05-18 Nikko Consulting & Engineering Co Ltd Device for heat treatment
KR101013783B1 (en) 2008-12-24 2011-02-14 주식회사 효성 Method and apparatus for treating surface of carbon fiber
KR101295284B1 (en) * 2011-10-14 2013-08-08 한국원자력연구원 Apparatus for fiber stabilization
US20140265038A1 (en) * 2013-03-15 2014-09-18 Ut-Battelle, Llc Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby
US9725829B2 (en) * 2013-03-15 2017-08-08 Ut-Battelle, Llc Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby

Also Published As

Publication number Publication date
JP4068694B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
Yusof et al. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review
Gupta et al. Acrylic precursors for carbon fibers
KR101689861B1 (en) Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
US10745828B2 (en) Process of making polyacrylonitrile fibers
Sen et al. Thermal behavior of drawn acrylic fibers
US4113847A (en) Process for producing carbon fibers
AU2016381341A1 (en) Method of producing carbon fibers from multipurpose commercial fibers
US4576810A (en) Carbon fiber production
JPH1181052A (en) Production of oxidized fiber and carbon fiber
US4526770A (en) Method of producing carbon fiber and product thereof
US3656910A (en) Induction furnace having improved susceptor for use in the continuous production of carbonaceous fibrous materials
US3592595A (en) Stabilization and carbonization of acrylic fibrous material
KR102102984B1 (en) Method for preparing carbon fiber
JPS6113004B2 (en)
CA1156409A (en) Method of producing carbon fiber and product thereof
JP4077980B2 (en) Carbon fiber manufacturing method
US3954950A (en) Production of high tenacity graphitic fibrous materials
JP2009221619A (en) Precursor fiber and method for producing precursor fiber, flame-resistant fiber and carbon fiber
JPH0583642B2 (en)
JP2013023801A (en) Method for producing carbon fiber bundle
JPS60181323A (en) Manufacture of carbon fiber
JPS6327448B2 (en)
JP3303424B2 (en) Method for producing acrylic carbon fiber
JP6928048B2 (en) Manufacturing method of carbon material
JPH0433890B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A977 Report on retrieval

Effective date: 20060425

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A131 Notification of reasons for refusal

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071218

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110118

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees