JPH1180843A - Device for continuously cooling steel sheet by gas jet - Google Patents

Device for continuously cooling steel sheet by gas jet

Info

Publication number
JPH1180843A
JPH1180843A JP23830797A JP23830797A JPH1180843A JP H1180843 A JPH1180843 A JP H1180843A JP 23830797 A JP23830797 A JP 23830797A JP 23830797 A JP23830797 A JP 23830797A JP H1180843 A JPH1180843 A JP H1180843A
Authority
JP
Japan
Prior art keywords
cooling
steel sheet
gas
cooling device
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23830797A
Other languages
Japanese (ja)
Inventor
Hiroyuki Oshida
裕之 押田
Shuho Kobayashi
秀峰 小林
Yutaka Kuze
裕 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP23830797A priority Critical patent/JPH1180843A/en
Publication of JPH1180843A publication Critical patent/JPH1180843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the flow-in and the flow-out of non-oxidizing gas into the other treating zone or treating device at the front and the rear parts of a cooling device, to reduce the supply of hydrogen and to easily and constantly hold the non-oxidizing gas concn. in the cooling device by arranging at least the outlet side seal part of a steel sheet at the lower part of the vertical type forcedly cooling device using the non-oxidizing gas having high hydrogen concn equal to or higher than a specific value. SOLUTION: In a continuous annealing line process, the heated, soaked and further, slow-cooled steel sheet is passed through the cooling zone from the inlet side seal part A of the steel sheet arranged at the lower part of the cooling zone. This cooling zone is provided with a cooler for cooling the non-oxidizing gas having >=50% hydrogen concn. in the inner part of the device and a blower for blowing the cooled gas to the steel sheet. The steel sheet is cooled to a prescribed temp. in the cooling zone and passed to a treating zone at the latter step from the outlet side seal part B arranged at the lower part of the cooling zone. In such a case, the seal device is constituted of one set of faced seal rolls, but any device for preventing the flow-out/in of the atmospheric gas in the inner part of the cooling zone is allowed to be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続焼鈍ラインに
おける鋼帯のガスジェット冷却装置に関する。
The present invention relates to a gas jet cooling apparatus for a steel strip in a continuous annealing line.

【0002】[0002]

【従来の技術】従来の低水素濃度からなるガスジェット
冷却は熱伝達率が低いため、鋼板の急速冷却にあまり適
していなかった。そのため、熱伝達率の向上を目的とし
て、ガスの吐出流速の増加、冷却ノズルと鋼板間距離の
短縮化が試みられてきたが、鋼板のバタツキ、スリ傷が
発生しやすくなるため、新たに押えロールを設置しなけ
ればならないという問題が生じた。
2. Description of the Related Art Conventional gas jet cooling with a low hydrogen concentration is not very suitable for rapid cooling of steel sheets because of its low heat transfer coefficient. For this reason, attempts have been made to increase the gas discharge flow rate and shorten the distance between the cooling nozzle and the steel plate in order to improve the heat transfer coefficient.However, fluttering and scratches on the steel plate are likely to occur, so a new presser foot is required. There was a problem that a roll had to be installed.

【0003】そこで、例えば特開平6−346156号
公報では、高熱伝達率による急速冷却、鋼板のバタツキ
の低減を目的として、高水素濃度による冷却方法が提案
されている。
[0003] For example, Japanese Patent Application Laid-Open No. 6-346156 proposes a cooling method using a high hydrogen concentration for the purpose of rapid cooling by a high heat transfer coefficient and reduction of flapping of a steel sheet.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、高水素
濃度ガスを使用し、鋼板を冷却する場合、逐次、新たな
る水素ガスを供給して冷却を行うと、水素使用量が大と
なり、ランニングコスト高となる。そのため、通常は、
冷却装置内を高水素濃度からなる雰囲気ガスとして、雰
囲気ガスの循環によるガスジェット冷却を行う。だが、
縦型の連続処理ラインにおいては、鋼板の随伴流、ドラ
フトによる流入、流出により、ガスジェット冷却装置か
らガスジェット冷却装置前後の処理帯もしくは処理装置
への高水素濃度からなる雰囲気ガスの流出、または、ガ
スジェット冷却装置前後の処理帯もしくは処理装置から
ガスジェット冷却装置へのガスジェット冷却装置内の雰
囲気ガスと異なる組成の処理帯雰囲気ガスの流入が発生
する。そのため、ガスジェット冷却装置内の水素濃度を
一定に保つことが困難となり、急速冷却における熱伝達
率及び冷却速度の制御に支障をきたす。
However, when a steel sheet is cooled by using a high hydrogen concentration gas, if a new hydrogen gas is successively supplied and cooled, the amount of hydrogen used increases and the running cost increases. Becomes So, usually,
A gas jet cooling is performed by circulating the atmosphere gas by using the atmosphere gas having a high hydrogen concentration in the cooling device. But
In the vertical continuous processing line, the accompanying flow of the steel sheet, the inflow and outflow by the draft, the outflow of the atmospheric gas having a high hydrogen concentration from the gas jet cooling device to the processing zone or the processing device before and after the gas jet cooling device, or At the same time, an atmosphere gas of a treatment zone having a composition different from that of the atmosphere gas in the gas jet cooling device flows from the treatment zone before and after the gas jet cooling device or from the treatment device to the gas jet cooling device. Therefore, it is difficult to keep the hydrogen concentration in the gas jet cooling device constant, which hinders the control of the heat transfer rate and the cooling rate in rapid cooling.

【0005】本発明の目的は、上記のような問題を解決
するために、50%以上の高水素濃度からなる雰囲気ガ
ス循環にてガスジェット冷却する縦型冷却装置におい
て、冷却装置前後にある他の処理帯もしくは処理装置へ
の非酸化ガスの流入、流出を抑制し、水素供給量の低減
を図り、冷却装置内における非酸化ガス濃度を容易に一
定に保つことができる連続鋼板のガスジェット冷却装置
を提供することにある。
[0005] An object of the present invention is to solve the above-mentioned problems by providing a vertical cooling device for gas jet cooling by circulation of an atmosphere gas having a high hydrogen concentration of 50% or more, which is provided before and after the cooling device. Gas jet cooling of a continuous steel plate that can suppress the inflow and outflow of non-oxidizing gas into the processing zone or processing equipment, reduce the amount of hydrogen supply, and easily maintain a constant non-oxidizing gas concentration in the cooling equipment It is to provide a device.

【0006】[0006]

【課題を解決するための手段】前記課題を解決し目的を
達成するために、本発明は以下に示す手段を用いてい
る。 (1)本発明の装置は、強制冷却過程を含む連続焼鈍ラ
インにおいて、50%以上の水素濃度から成る非酸化ガ
スを用いて鋼板冷却を行う手段を備えた縦型の強制冷却
装置であって、前記縦型冷却装置への鋼板の少なくとも
出側シール部を装置下部に設けたことを特徴とする、連
続鋼板のガスジェット冷却装置である。
In order to solve the above problems and achieve the object, the present invention uses the following means. (1) The apparatus of the present invention is a vertical forced cooling apparatus including means for cooling a steel sheet using a non-oxidizing gas having a hydrogen concentration of 50% or more in a continuous annealing line including a forced cooling step. A gas jet cooling apparatus for a continuous steel sheet, wherein at least a sealing portion on the outlet side of the steel sheet to the vertical cooling apparatus is provided at a lower portion of the apparatus.

【0007】(2)本発明の装置は、強制冷却過程を含
む連続焼鈍ラインにおいて、50%以上の水素濃度から
成る非酸化ガスを用いて鋼板冷却を行う手段を備えた縦
型の強制冷却装置であって、前記縦型冷却装置への鋼板
の入側シール部及び出側シール部を装置下部に設けたこ
とを特徴とする、連続鋼板のガスジェット冷却装置であ
る。
(2) The apparatus according to the present invention is a vertical forced cooling apparatus having means for cooling a steel sheet using a non-oxidizing gas having a hydrogen concentration of 50% or more in a continuous annealing line including a forced cooling step. A gas jet cooling apparatus for a continuous steel sheet, wherein an inlet side seal part and an outlet side seal part for a steel sheet to the vertical cooling apparatus are provided at a lower part of the apparatus.

【0008】[0008]

【発明の実施の形態】本発明者らは上記の課題達成のた
めに、50%以上の高水素濃度からなる雰囲気ガス循環
にてガスジェット冷却する縦型冷却装置において、冷却
装置前後にある他の処理帯もしくは処理装置への非酸化
ガスの流入、流出を抑制し、水素供給量の低減を図り、
冷却装置内における非酸化ガス濃度を容易に一定に保つ
ことができる連続鋼板のガスジェット冷却装置につい
て、鋭意研究を重ねた結果、以下の知見を得るに至っ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS To achieve the above-mentioned object, the present inventors have developed a vertical cooling device for gas jet cooling by circulation of an atmosphere gas having a high hydrogen concentration of 50% or more. The inflow and outflow of non-oxidizing gas into and from the treatment zone or treatment equipment is reduced, and the amount of hydrogen supplied is reduced.
As a result of intensive studies on a gas jet cooling device for a continuous steel plate that can easily keep the non-oxidizing gas concentration in the cooling device constant, the following findings have been obtained.

【0009】一般に、縦型焼鈍設備においては、各処理
装置内にて下記(1)式で表されるドラフト力が生じ
る。 P=H(ρAIR −ρg ) …(1) 但し、H:炉高(m)、ρAIR :外気密度(kg/m
3 )、ρg :炉内ガス密度(kg/m3 )。
In general, in a vertical annealing facility, a draft force represented by the following equation (1) is generated in each processing apparatus. P = H (ρ AIR −ρ g ) (1) where H: furnace height (m), ρ AIR : outside air density (kg / m)
3 ), ρ g : gas density in the furnace (kg / m 3 ).

【0010】今、各処理装置が装置上部にて連結されて
いる場合、処理装置間のドラフト力の差異により圧力勾
配が生じ、下記(2)式で表される炉内ガスの流入、流
出が発生する。 ΔP=P1 −P2 =C・ρg ・U2 /2g …(2) 但し、C:流体,連結部形状に従う係数、U:炉内ガス
流出速度(m/秒)。
[0010] When the respective processing apparatuses are connected at the upper part of the apparatus, a pressure gradient is generated due to a difference in draft force between the processing apparatuses, and the inflow and outflow of the furnace gas represented by the following equation (2) occurs. Occur. ΔP = P 1 −P 2 = C · ρ g · U 2 / 2g (2) where C is a coefficient according to the fluid and the shape of the connection portion, and U is a gas outflow velocity in the furnace (m / sec).

【0011】通常の焼鈍設備においては、冷却装置内と
他の処理装置内の雰囲気ガスに差異がなく、3〜7%の
水素濃度からなる非酸化ガスが使用されており、その雰
囲気ガス温度も、冷却装置内の雰囲気ガスが最も低い。
そのため、冷却装置と他の処理装置が装置上部にて連結
されていた場合、冷却装置前後の処理装置から冷却装置
内へ処理装置内雰囲気ガスの流入が発生する。
In ordinary annealing equipment, there is no difference between the atmosphere gas in the cooling apparatus and the other processing apparatus, and a non-oxidizing gas having a hydrogen concentration of 3 to 7% is used. The atmosphere gas in the cooling device is the lowest.
Therefore, when the cooling device and another processing device are connected at the upper part of the device, the atmospheric gas in the processing device flows into the cooling device from the processing devices before and after the cooling device.

【0012】だが、冷却装置内が高水素濃度からなる非
酸化ガスであり、その他の処理装置内が3〜7%の低水
素濃度からなる非酸化ガスで満たされている場合、冷却
装置と他の処理装置が装置上部にて連結されていると、
高水素濃度の非酸化ガスのため密度が非常に小さく、冷
却装置から冷却装置前後の処理装置内へ冷却装置内雰囲
気ガス(高水素濃度の非酸化ガス)の流出が発生する。
更に、水素濃度が増加する程、冷却装置内雰囲気ガスの
流出速度が大きくなり、鋼板の随伴流による処理装置内
雰囲気ガスの流入との相殺効果が期待できなくなる。そ
のため、水素供給量が多くなり、ランニングコストの増
加の原因となる。また、水素供給量が大きいと、冷却装
置内にて局所的に雰囲気ガス濃度の分布が生じやすく、
鋼板に対する熱伝達性及び冷却速度の制御が劣化する。
However, when the inside of the cooling device is filled with a non-oxidizing gas having a high hydrogen concentration and the inside of another processing device is filled with a non-oxidizing gas having a low hydrogen concentration of 3 to 7%, the cooling device and the other components are not used. Is connected at the top of the equipment,
The density is very low because of the non-oxidizing gas having a high hydrogen concentration, and the atmosphere gas (non-oxidizing gas having a high hydrogen concentration) in the cooling device flows out of the cooling device into the processing device before and after the cooling device.
Furthermore, as the hydrogen concentration increases, the outflow speed of the atmosphere gas in the cooling device increases, and the effect of offsetting the inflow of the atmosphere gas in the processing device due to the accompanying flow of the steel sheet cannot be expected. Therefore, the supply amount of hydrogen increases, which causes an increase in running cost. Also, when the hydrogen supply amount is large, the distribution of the atmospheric gas concentration tends to occur locally in the cooling device,
Control of heat transfer and cooling rate to the steel sheet is deteriorated.

【0013】図4は、表1の条件における、装置上部に
て冷却装置と処理装置間が連結された場合のドラフト力
の差異による圧力勾配のシミュレーション結果を示す。
同図において、冷却装置内の雰囲気ガスの水素濃度が4
5%を境にして、低水素濃度側では冷却装置と他の処理
装置の雰囲気ガスの圧力差が負となり、他の処理装置か
ら冷却装置へのガスの流入が発生する。一方、高水素濃
度側では冷却装置と他の処理装置の雰囲気ガスの圧力差
が正となり、冷却装置から他の処理装置へのガスの流出
が発生する。
FIG. 4 shows a simulation result of a pressure gradient due to a difference in draft force when the cooling device and the processing device are connected at the upper portion of the device under the conditions shown in Table 1.
In the figure, the hydrogen concentration of the atmosphere gas in the cooling device is 4
On the low hydrogen concentration side from the boundary of 5%, the pressure difference between the atmosphere gas of the cooling device and the other processing device becomes negative, and the gas flows from the other processing device to the cooling device. On the other hand, on the high hydrogen concentration side, the pressure difference between the atmospheric gas of the cooling device and the other processing device becomes positive, and the gas flows out of the cooling device to the other processing device.

【0014】[0014]

【表1】 [Table 1]

【0015】そこで、本発明者らは、長年にわたり培っ
た経験に基づき、種々の装置構成及び条件にて検討した
結果、鋼板の入側シール部を縦型冷却装置の下部に設
け、鋼板の出側シール部も縦型冷却装置の下部に設ける
ことにより、水素供給量の低減を図ることができ、冷却
装置内における非酸化ガス濃度を容易に一定に保てるこ
とを見出し、本発明を完成させた。すなわち、本発明
は、連続焼鈍ラインにおいて、熱伝導率の高い50%以
上の水素濃度から成る非酸化ガスを用いて行う縦型の強
制冷却装置において、強制冷却装置への鋼板の入側シー
ル部及び出側シール部を装置下部に設けることにより、
冷却装置前後にある他の処理帯もしくは処理装置への非
酸化ガスの流入、流出を抑制し、水素供給量の低減を図
ることができ、冷却装置内における非酸化ガス濃度を容
易に一定に保つことができる連続鋼板のガスジェット冷
却装置を提供することができる。
The inventors of the present invention have studied various configurations and conditions based on the experience gained over many years. By providing the side seal portion also in the lower part of the vertical cooling device, the hydrogen supply amount can be reduced, and it has been found that the concentration of non-oxidizing gas in the cooling device can be easily kept constant, and the present invention has been completed. . That is, the present invention relates to a vertical forced cooling device that uses a non-oxidizing gas having a high thermal conductivity and a hydrogen concentration of 50% or more in a continuous annealing line, and a sealing portion on the inlet side of a steel sheet to the forced cooling device. And by providing the outlet side seal part at the bottom of the device,
The inflow and outflow of the non-oxidizing gas into and out of the other treatment zones or treatment units before and after the cooling device can be suppressed, the amount of hydrogen supply can be reduced, and the concentration of the non-oxidizing gas in the cooling device can be easily maintained constant. A gas jet cooling device for a continuous steel plate that can be provided.

【0016】以下、本発明の実施例について説明する。
図1は、鋼板の連続焼鈍プロセスにおける冷却帯におい
て、本発明の構成が適用された状態のものを示す説明図
である。(a)は鋼板の入側シール部及び出側シール部
を縦型冷却装置の下部に設けた装置概略図、(b)は鋼
板の出側シール部を縦型冷却装置の下部に設けた装置概
略図を示す。本発明では、前述したように、鋼板の入側
シール部及び出側シール部を縦型冷却装置の下部に設け
ることが望ましいが、図1の(b)に示すように、ライ
ン構成の制約(能力、スペース)により、パス数が奇数
となり、鋼板の入側、出側が冷却装置の上下に分かれる
ときは、少なくとも出側シール部が冷却装置の下部にな
るようにする。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is an explanatory view showing a cooling zone in a continuous annealing process of a steel sheet in a state where the configuration of the present invention is applied. (A) is a schematic diagram of an apparatus in which an inlet-side seal portion and an outlet-side seal portion of a steel plate are provided below a vertical cooling device, and (b) is a device in which an outlet-side seal portion of a steel plate is provided below a vertical cooling device. FIG. In the present invention, as described above, it is desirable to provide the inlet seal portion and the outlet seal portion of the steel plate at the lower part of the vertical cooling device. However, as shown in FIG. (The capacity and space), the number of passes becomes odd, and when the inlet side and the outlet side of the steel plate are divided into upper and lower sides of the cooling device, at least the outlet side seal portion is located at the lower portion of the cooling device.

【0017】図1の(a)に示すように、加熱・均熱さ
れ、更に徐冷された鋼板は、冷却帯下部に設けられた鋼
板の入側シール部Aより冷却帯に通板される。この冷却
帯は、装置内部の水素濃度50%以上の非酸化ガスを冷
却するクーラと、冷却したガスを鋼板に吹き付けるブロ
アとを装置外部に備えている。冷却帯にて所定の温度ま
で冷却され、冷却帯下部に設けられた出側シール部Bよ
り、後段の処理帯に通板される。本図では、対向する1
組のシールロールよりシール装置が構成されているが、
これは冷却帯内部の雰囲気ガスの流出入を防ぐものであ
ればどのような構造でもよい。また、鋼板の出側シール
部は縦型冷却装置の下端から少し上方の位置にあっても
よい。
As shown in FIG. 1 (a), the steel sheet which has been heated and soaked and then gradually cooled is passed through the cooling zone from the inlet side seal portion A of the steel sheet provided at the lower part of the cooling zone. . This cooling zone includes a cooler for cooling a non-oxidizing gas having a hydrogen concentration of 50% or more inside the apparatus and a blower for blowing the cooled gas to a steel plate outside the apparatus. It is cooled to a predetermined temperature in the cooling zone, and is passed through a processing zone at a later stage from an outlet side seal portion B provided at a lower portion of the cooling zone. In this drawing, the opposing 1
The seal device is composed of a set of seal rolls,
This may have any structure as long as it prevents the inflow and outflow of the atmospheric gas inside the cooling zone. Further, the outlet seal portion of the steel plate may be located slightly above the lower end of the vertical cooling device.

【0018】なお、本発明において、水素濃度50%以
上の非酸化ガスを用いる理由は、前述したように、高熱
伝達率による急速冷却を行うためである。図2は、表2
の条件における、本発明の冷却装置を適用した場合(ケ
ース1(図1の(a)の装置を適用)、ケース2(図1
の(b)の装置を適用))と図3の(a),(b)に示
すような他の冷却帯構成(ケース3(図3の(a)の装
置を適用)、ケース4(図3の(b)の装置を適用))
の定常状態での水素供給量のシミュレーション結果を示
す。同図において、水素濃度の増加に伴い、ケース1,
2(本発明例)の水素供給量とケース3,4(比較例)
の水素供給量の差異が顕著となる。さらに、鋼板に対す
る熱伝達率が最大になるポイントであり、爆発限界範囲
外であるため、冷却装置内の雰囲気ガス組成として最も
望ましい水素濃度80%において最大となる。
In the present invention, the reason why a non-oxidizing gas having a hydrogen concentration of 50% or more is used is to perform rapid cooling with a high heat transfer coefficient as described above. FIG. 2 shows Table 2.
In the case where the cooling device of the present invention is applied under the conditions of (1) (case 1 (the device of FIG.
3 (a) and (b)) and other cooling zone configurations as shown in FIGS. 3 (a) and 3 (b) (case 3 (the device of FIG. 3 (a) is applied), and case 4 (FIG. 3 (b) is applied))
The simulation result of the hydrogen supply amount in the steady state of FIG. In the figure, as the hydrogen concentration increases, Case 1,
Case 2 and 3 (Comparative Example)
The difference in the hydrogen supply amount becomes significant. Further, since the heat transfer coefficient with respect to the steel sheet is the maximum point and is outside the explosion limit range, the maximum value is obtained at the most desirable hydrogen concentration of 80% as the atmosphere gas composition in the cooling device.

【0019】この傾向は、冷却装置と冷却装置前後の処
理装置の雰囲気ガスの温度差が増大する程、さらに顕著
となる。これは、雰囲気ガスの温度差がさらに大きい表
3の条件における各冷却装置構成における水素供給量の
シミュレーション結果を示した図5より明らかである。
また、図2において、ケース2(本発明例)とケース4
(比較例)の水素供給量を比較すると、鋼板の出側シー
ル部を縦型冷却装置の下部に設けることにより、水素供
給量を低減することが分かる。
This tendency becomes more remarkable as the temperature difference between the cooling device and the atmospheric gas in the processing device before and after the cooling device increases. This is evident from FIG. 5 which shows a simulation result of the hydrogen supply amount in each cooling device configuration under the conditions of Table 3 where the temperature difference of the atmosphere gas is even larger.
Also, in FIG. 2, case 2 (example of the present invention) and case 4
Comparing the hydrogen supply amounts of the (Comparative Example), it can be seen that the supply amount of hydrogen is reduced by providing the outlet seal portion of the steel plate at the lower part of the vertical cooling device.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】なお、本発明の冷却装置は、図6の
(a),(b),(c)に示すような構成であってもよ
い。すなわち、図6の(a),(b)の冷却装置は、冷
却帯を前段部と後段部とに分け、冷却帯の前段部または
後段部は、装置内部の水素濃度50%以上の非酸化ガス
を冷却するクーラと、冷却したガスを鋼板に吹き付ける
ブロアとを装置外部に備えており、さらに、残りの冷却
帯は、冷却ロールを装置内部に備えている。また、図6
の(c)の冷却装置は、冷却帯を装置内部の水素濃度5
0%以上の非酸化ガスを冷却するクーラと、冷却したガ
スを鋼板に吹き付けるブロアとを装置外部に2組備え、
かつ、シール装置とハースロールの間の鋼板にも冷却ガ
スを吹き付けるようにしている。
The cooling device of the present invention may have a configuration as shown in FIGS. 6 (a), 6 (b) and 6 (c). That is, in the cooling devices of FIGS. 6A and 6B, the cooling zone is divided into a front stage and a rear stage, and the front stage or the rear stage of the cooling zone is a non-oxidizing device having a hydrogen concentration of 50% or more inside the device. A cooler for cooling the gas and a blower for blowing the cooled gas to the steel plate are provided outside the device, and the remaining cooling zone is provided with a cooling roll inside the device. FIG.
In the cooling device of (c), the cooling zone is set to a hydrogen concentration of 5 in the device.
Two sets of a cooler for cooling non-oxidizing gas of 0% or more and a blower for blowing the cooled gas to a steel plate are provided outside the apparatus,
Further, the cooling gas is also blown to the steel plate between the sealing device and the hearth roll.

【0023】[0023]

【発明の効果】以上のように、本発明によれば、連続焼
鈍プロセスにて、熱伝導率の高い50%以上の水素濃度
から成る非酸化ガスを用いて行う縦型の強制冷却装置に
おいて、強制冷却装置への鋼板の入側シール部を縦型冷
却装置の下部に設け、鋼板の出側シール部も縦型冷却装
置の下部に設けることにより、冷却装置前後にある他の
処理帯もしくは処理装置への非酸化ガスの流入,流出を
抑制し、水素供給量の低減を図ることができ、冷却装置
内における非酸化ガス濃度を容易に一定に保つことが可
能となった。
As described above, according to the present invention, in a vertical forced cooling device which uses a non-oxidizing gas having a high thermal conductivity and a hydrogen concentration of 50% or more in a continuous annealing process, By providing the sealing part of the steel plate to the forced cooling device at the lower part of the vertical cooling device and the sealing material of the steel plate at the lower part of the vertical cooling device, other treatment zones or treatments before and after the cooling device are provided. The inflow and outflow of the non-oxidizing gas into and from the device can be suppressed, the amount of hydrogen supply can be reduced, and the concentration of the non-oxidizing gas in the cooling device can easily be kept constant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る冷却装置の構成を示す概
略図。(a)は鋼板の入側シール部及び出側シール部を
縦型冷却装置の下部に設けた装置概略図。(b)は鋼板
の出側シール部を縦型冷却装置の下部に設けた装置概略
図。
FIG. 1 is a schematic diagram showing a configuration of a cooling device according to an embodiment of the present invention. (A) is an apparatus schematic in which the entrance side seal part and the exit side seal part of the steel plate were provided in the lower part of the vertical cooling device. (B) is an apparatus schematic diagram in which a delivery side seal portion of a steel plate is provided below a vertical cooling device.

【図2】本発明の実施例に係る各冷却装置構成における
水素供給量の計算結果を示す図。
FIG. 2 is a diagram showing a calculation result of a hydrogen supply amount in each cooling device configuration according to the embodiment of the present invention.

【図3】比較例の冷却装置の構成を示す概略図。(a)
は鋼板の入側シール部及び出側シール部を縦型冷却装置
の上部に設けた装置概略図。(b)は鋼板の出側シール
部を縦型冷却装置の上部に設けた装置概略図。
FIG. 3 is a schematic diagram illustrating a configuration of a cooling device of a comparative example. (A)
FIG. 3 is a schematic diagram of an apparatus in which an inlet seal portion and an outlet seal portion of a steel plate are provided on an upper part of a vertical cooling device. (B) is an apparatus schematic diagram in which a delivery side seal portion of a steel plate is provided on an upper part of a vertical cooling device.

【図4】縦型冷却装置上部にて冷却装置と処理装置間が
連結された場合のドラフト力の差異による圧力勾配の計
算結果を示す図。
FIG. 4 is a diagram showing a calculation result of a pressure gradient due to a difference in draft force when a cooling device and a processing device are connected at an upper portion of a vertical cooling device.

【図5】本発明の実施例に係る各冷却装置構成における
水素供給量の計算結果(雰囲気ガス温度差大)を示す
図。
FIG. 5 is a diagram showing a calculation result of a hydrogen supply amount (atmospheric gas temperature difference is large) in each cooling device configuration according to the embodiment of the present invention.

【図6】本発明の実施例に係る冷却装置の構成を示す概
略図。(a)は冷却帯後段に冷却ロールを設けた装置概
略図。(b)は冷却帯前段に冷却ロールを設けた装置概
略図。(c)はシール装置とハースロールの間にも冷却
手段を設けた装置概略図。
FIG. 6 is a schematic diagram illustrating a configuration of a cooling device according to an embodiment of the present invention. (A) is an apparatus schematic diagram provided with a cooling roll at the latter stage of a cooling zone. (B) is a schematic diagram of an apparatus in which a cooling roll is provided in a preceding stage of a cooling zone. (C) is a schematic diagram of an apparatus in which a cooling means is provided between a sealing device and a hearth roll.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 強制冷却過程を含む連続焼鈍ラインにお
いて、50%以上の水素濃度から成る非酸化ガスを用い
て鋼板冷却を行う手段を備えた縦型の強制冷却装置であ
って、 前記縦型冷却装置への鋼板の少なくとも出側シール部を
装置下部に設けたことを特徴とする、連続鋼板のガスジ
ェット冷却装置。
1. A vertical forced cooling device comprising: means for cooling a steel sheet using a non-oxidizing gas having a hydrogen concentration of 50% or more in a continuous annealing line including a forced cooling process, A gas jet cooling device for a continuous steel plate, wherein at least a sealing portion on the outlet side of the steel plate to the cooling device is provided at a lower portion of the device.
【請求項2】 強制冷却過程を含む連続焼鈍ラインにお
いて、50%以上の水素濃度から成る非酸化ガスを用い
て鋼板冷却を行う手段を備えた縦型の強制冷却装置であ
って、 前記縦型冷却装置への鋼板の入側シール部及び出側シー
ル部を装置下部に設けたことを特徴とする、連続鋼板の
ガスジェット冷却装置。
2. A vertical forced cooling apparatus comprising: means for cooling a steel sheet using a non-oxidizing gas having a hydrogen concentration of 50% or more in a continuous annealing line including a forced cooling step, A gas jet cooling apparatus for a continuous steel sheet, wherein a sealing part on an inlet side and a sealing part on an outlet side of a steel sheet to a cooling apparatus are provided at a lower part of the apparatus.
JP23830797A 1997-09-03 1997-09-03 Device for continuously cooling steel sheet by gas jet Pending JPH1180843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23830797A JPH1180843A (en) 1997-09-03 1997-09-03 Device for continuously cooling steel sheet by gas jet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23830797A JPH1180843A (en) 1997-09-03 1997-09-03 Device for continuously cooling steel sheet by gas jet

Publications (1)

Publication Number Publication Date
JPH1180843A true JPH1180843A (en) 1999-03-26

Family

ID=17028268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23830797A Pending JPH1180843A (en) 1997-09-03 1997-09-03 Device for continuously cooling steel sheet by gas jet

Country Status (1)

Country Link
JP (1) JPH1180843A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080641A (en) * 2012-10-15 2014-05-08 Jfe Steel Corp Control method of atmospheric gas concentration in continuous annealing furnace
KR20180121949A (en) 2016-04-05 2018-11-09 신닛테츠스미킨 카부시키카이샤 Cooling facility in continuous annealing furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080641A (en) * 2012-10-15 2014-05-08 Jfe Steel Corp Control method of atmospheric gas concentration in continuous annealing furnace
KR20180121949A (en) 2016-04-05 2018-11-09 신닛테츠스미킨 카부시키카이샤 Cooling facility in continuous annealing furnace
US10927426B2 (en) 2016-04-05 2021-02-23 Nippon Steel Corporation Cooling equipment for continuous annealing furnace

Similar Documents

Publication Publication Date Title
JPS6318649B2 (en)
JP4123690B2 (en) Method for supplying atmospheric gas into continuous annealing furnace
US6913659B2 (en) Rapid cooling device for steel band in continuous annealing equipment
JPH1180843A (en) Device for continuously cooling steel sheet by gas jet
JP2002003956A (en) Rolls at front and rear parts of rapid cooling zone in continuous heat treatment furnace and rapid cooling zone facility
JP2002003954A (en) Method for safely operating heat treatment enclosure under controlled atmosphere, and plant used therefor
JPS5822525B2 (en) Sealing device in cooling section of steel strip
US3938979A (en) Method and apparatus for vertically drawing a glass ribbon
JP2002206117A (en) Continuous annealing equipment and continuous annealing method
JP3572983B2 (en) Continuous heat treatment furnace and cooling method in continuous heat treatment furnace
EP0803583B2 (en) Primary cooling method in continuously annealing steel strips
EP0210847A2 (en) Method and apparatus for cooling steel strips
JP4286544B2 (en) Method and apparatus for forced convection cooling of steel strip in continuous heat treatment equipment
JPH11124634A (en) Heat treatment apparatus of steel strip in continuous annealing process and its heat treatment method
JP4102130B2 (en) Steel strip cooling device
JP2640398B2 (en) Cooling control method of steel pipe in roller hearth heat treatment furnace
KR102639796B1 (en) Apparatus for manufacturing glass plate
JP2807134B2 (en) Gas jet chamber sealing device
US3233884A (en) Furnace for the treatment of strip metals
JP2592175B2 (en) Strip cooling device
JPS59159927A (en) Heat treating device
JPH0514773B2 (en)
JP2651310B2 (en) Method and apparatus for supporting floating of metal strip
JPH10176226A (en) Method for continuously annealing metallic strip and convection type vertical continuous annealing furnace
JPH0578755A (en) Bright annealing furnace for stainless steel sheet