JPH1180810A - Production of ferrous sintered parts - Google Patents

Production of ferrous sintered parts

Info

Publication number
JPH1180810A
JPH1180810A JP23709797A JP23709797A JPH1180810A JP H1180810 A JPH1180810 A JP H1180810A JP 23709797 A JP23709797 A JP 23709797A JP 23709797 A JP23709797 A JP 23709797A JP H1180810 A JPH1180810 A JP H1180810A
Authority
JP
Japan
Prior art keywords
sintered body
mold
iron
temperature
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23709797A
Other languages
Japanese (ja)
Inventor
Ryuji Shiga
竜治 志賀
由重 ▲高▼ノ
Yoshie Kouno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23709797A priority Critical patent/JPH1180810A/en
Publication of JPH1180810A publication Critical patent/JPH1180810A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain parts in a complicated shape excellent in dimensional precision and strength by subjecting a powdery sintered body using powder essentially consisting of iron as the raw material to quenching and thereafter working the sintered body by using a die in a state of being heated in a specified temp. range. SOLUTION: A powdery sintered body using powder essentially consisting of iron as the raw material is quenched to make its strength high, thereafter, this sintered body is worked by using a die in a state of being heated at 100 to 550 deg.C. In this way, the warm deformation resistance of the material can be reduced without deteriorating the characteristics of the material after cooling. When the sintered body is recompressed by a die heated at a room temp. to 550 deg.C while the temp. is as it is, since its deformation, resistance is low, the dimensional modification thereof can easily be executed. Moreover, after it is drawn out from the die, air cooling is executed, by which sintered parts having a structure obtd. by refining the quenched structure and excellent in dimensional precision can be obtd. Furthermore, since induction hardening is not required and only the execution of ordinary quenching is enough, batch treatment is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄系焼結部品の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an iron-based sintered part.

【0002】[0002]

【従来の技術】従来、鉄系焼結部品の製造方法は、粉末
原料を所望形状に圧縮成形した圧粉体を加熱焼結して焼
結部品とするものである。この後、強度が必要なものに
ついては、焼入れ工程が施された後に焼戻しにより材質
調質が行なわれる。また寸法精度が必要な部品について
は、金型内で再圧縮して寸法矯正する工程(サイジン
グ)がある。
2. Description of the Related Art Conventionally, a method for producing an iron-based sintered component is to heat and sinter a green compact obtained by compressing a powder raw material into a desired shape to obtain a sintered component. Thereafter, for those requiring strength, tempering is performed after tempering after a quenching step. In addition, there is a step (sizing) of re-compression in a mold to correct dimensions of parts that require dimensional accuracy.

【0003】[0003]

【発明が解決しようとする課題】しかし、焼入れ後では
変形抵抗が高くなるためサイジングで十分な寸法矯正を
行なうことができない。一方、焼入れ前にサイジングを
行なった後に焼入れを行なうと、焼入れによる寸法歪み
が発現し寸法精度が劣化する。そのため最終工程で機械
加工により寸法精度を確保しているが、その費用が高額
であるという問題点がある。
However, after quenching, deformation resistance increases, so that sizing cannot be performed sufficiently. On the other hand, when quenching is performed after sizing is performed before quenching, dimensional distortion due to quenching appears and dimensional accuracy is degraded. Therefore, dimensional accuracy is ensured by machining in the final step, but there is a problem that the cost is high.

【0004】この問題に対して、特開昭55−1285
04号公報は、焼入れ工程の後、550〜750℃で焼
戻し処理を行なって再圧縮に適した調質組織にした後、
再圧縮を行なうことを提案している。しかし、この方法
では、焼戻し温度が高いため、材料が軟化して強度が劣
化するという問題点がある。
To solve this problem, Japanese Patent Laid-Open Publication No. 55-1285
No. 04 discloses a tempering process at 550 to 750 ° C. after a quenching step to obtain a tempered structure suitable for recompression.
It proposes performing recompression. However, in this method, since the tempering temperature is high, there is a problem that the material is softened and the strength is deteriorated.

【0005】また特開昭61−210106号公報は、
焼結体に高周波焼入れ処理により表層部のみに焼入れを
施した後に再圧縮することを提案している。この方法で
は、焼結体内部の変形能により寸法矯正することが可能
であるが、最表面しか焼入れすることができない。また
高周波加熱処理はバッチ処理ができないため、通常のバ
ッチ式の焼入れより生産性が低く、また複雑な形状には
適応できないという問題点がある。
Japanese Patent Application Laid-Open No. 61-210106 discloses that
It has been proposed to subject the sintered body to quenching only to the surface layer by induction hardening and then to recompress the sintered body. According to this method, the dimension can be corrected by the deformability inside the sintered body, but only the outermost surface can be hardened. In addition, since the high-frequency heat treatment cannot be performed in a batch process, there is a problem in that productivity is lower than that of a normal batch-type quenching, and that it cannot be applied to a complicated shape.

【0006】それゆえ本発明の目的は、寸法精度および
強度に優れた複雑形状の鉄系焼結部品を生産性よく製造
できる鉄系焼結部品の製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an iron-based sintered part capable of manufacturing a complicated-shaped iron-based sintered part having excellent dimensional accuracy and strength with high productivity.

【0007】[0007]

【課題を解決するための手段】本発明の鉄系焼結部品の
製造方法は、鉄を主成分とする粉末を原料とする粉末焼
結体に焼入れ処理を施した後、前記焼結体を100℃以
上550℃以下に加熱した状態で金型を用いて加工する
ことを特徴とする。
According to a method of manufacturing an iron-based sintered component of the present invention, a sintering process is performed on a powder sintered body made of a powder mainly composed of iron, and then the sintered body is subjected to quenching. It is characterized in that processing is performed using a mold while being heated to 100 ° C. or more and 550 ° C. or less.

【0008】焼結部品を焼入れ処理により高強度化させ
た後に、100℃以上550℃以下の温度範囲に加熱す
ることにより、材料の変形抵抗を低下させることができ
る。焼結体をその温度のまま室温〜550℃の金型で再
圧縮すると低変形抵抗であるため容易に寸法矯正するこ
とができる。また金型から抜き出した後、空冷すること
により、焼入れ組織を調質した組織で、かつ寸法精度に
優れた焼結部品が得られる。また高周波焼入れ処理を行
なう必要はなく、通常の焼入れ処理で足りるため、バッ
チ処理が可能となり、生産性が良好となるとともに複雑
な形状にも適用することができる。
After the sintered component has been strengthened by quenching, it is heated to a temperature range of 100 ° C. or more and 550 ° C. or less, so that the deformation resistance of the material can be reduced. When the sintered body is recompressed at the same temperature in a mold at room temperature to 550 ° C., the dimensions can be easily corrected because of low deformation resistance. After being extracted from the mold, by air cooling, a sintered part having a quenched structure having a refined structure and excellent dimensional accuracy can be obtained. In addition, since it is not necessary to perform induction hardening treatment, ordinary quenching treatment is sufficient, batch processing becomes possible, and productivity can be improved, and it can be applied to complicated shapes.

【0009】また金型を用いて焼結体を加工する際の焼
結体の温度を100℃以上550℃以下とすることによ
り、冷却後の材質特性を劣化させることなく、温間での
変形抵抗を低下させることができる。この加熱温度が1
00℃未満であると材質の変形抵抗を下げることができ
ず、加熱温度が550℃を超えると冷却後の材質は軟化
するため焼入れ処理の効果が小さくなってしまう。
[0009] By setting the temperature of the sintered body at 100 ° C or more and 550 ° C or less when processing the sintered body using the mold, deformation during warming can be performed without deteriorating the material properties after cooling. Resistance can be reduced. This heating temperature is 1
If the temperature is lower than 00 ° C., the deformation resistance of the material cannot be reduced, and if the heating temperature exceeds 550 ° C., the material after cooling is softened, so that the effect of the quenching treatment is reduced.

【0010】また焼入れ性の良い材質を用いた場合や、
焼結炉の加熱後の冷却能が優れている場合は、焼結工程
のみで焼結体が焼入れ組織となり寸法矯正することが困
難となる。その場合も同様に、焼結工程後に焼結部品を
100℃以上550℃以下に加熱し、室温〜500℃の
金型でサイジングを行なうことによって、寸法精度の良
好な鉄系焼結部品を得ることができる。
When a material having good hardenability is used,
If the cooling capacity after heating of the sintering furnace is excellent, the sintered body becomes a quenched structure only in the sintering step, and it is difficult to correct the dimensions. In this case, similarly, after the sintering step, the sintered component is heated to 100 ° C. or more and 550 ° C. or less, and sizing is performed with a mold at room temperature to 500 ° C. to obtain an iron-based sintered component having good dimensional accuracy. be able to.

【0011】なお、焼結体を100℃以上550℃以下
に加熱した状態で、室温〜500℃の金型を用いて焼結
体を加工する際、この金型の温度は焼結体の温度以下で
あることが望ましい。
When the sintered body is processed using a mold at room temperature to 500 ° C. in a state where the sintered body is heated to 100 ° C. or more and 550 ° C. or less, the temperature of the mold is the temperature of the sintered body. It is desirable that:

【0012】本発明は、鉄系焼結部品の焼入れ後の寸法
精度を向上させる方法であり、焼入れ処理によって高強
度化させる各種の成分の粉末材料において有効である。
また本発明は、焼結体の形状によらず、寸法精度の要求
の高いいかなる形状においても有効である。
The present invention is a method for improving the dimensional accuracy after quenching of an iron-based sintered part, and is effective for powder materials of various components which are strengthened by quenching.
Further, the present invention is effective in any shape requiring high dimensional accuracy regardless of the shape of the sintered body.

【0013】上記局面において好ましくは、焼結体を金
型を用いて加工する工程は、焼結体を金型内で圧縮する
工程、焼結体を金型ダイに通す工程、もしくは焼結体を
内径金型に通す工程のいずれかを有している。
[0013] Preferably, in the above aspect, the step of processing the sintered body using a mold includes a step of compressing the sintered body in a mold, a step of passing the sintered body through a mold die, or a step of Through an inner diameter mold.

【0014】このように焼結体を金型内で圧縮する工程
のみならず、特に外形上の寸法精度が必要な場合は、上
記の温度条件において金型ダイを突き通すことによって
も寸法を矯正することができる。同様に内形上の寸法精
度が特に必要な場合は、上記の温度条件において内径金
型を突き通すことにより寸法精度を矯正することもでき
る。また、形状によって寸法精度が必要な部位のみ上記
温度条件で金型矯正することもできる。
In this way, not only in the step of compressing the sintered body in the mold, but also in the case where dimensional accuracy in the outer shape is particularly required, the dimensions are corrected by penetrating the mold die under the above-mentioned temperature conditions. be able to. Similarly, when the dimensional accuracy on the inner shape is particularly required, the dimensional accuracy can be corrected by piercing the inner diameter die under the above-mentioned temperature conditions. Further, it is also possible to correct the mold only at a portion where dimensional accuracy is required depending on the shape under the above temperature conditions.

【0015】上記局面において好ましくは、主成分が鉄
であり、かつ次式で表わされるXの値が20以上である
ことを満たす添加元素と不可避不純物とからなる材料組
成が使用される。
In the above aspect, preferably, a material composition comprising an additional element and an unavoidable impurity that satisfies that the main component is iron and that the value of X represented by the following formula is 20 or more is used.

【0016】X=550−(350×重量%C)−(4
0×重量%Mn)−(35×重量%V)−(20×重量
%Cr)−(17×重量%Ni)−(10×重量%C
u)−(10×重量%Mo)−(5×重量%W)+(1
5×重量%Co)+(30×重量%Al) これにより、焼入れ時のマルテンサイト組織が顕著に現
われ、その調質効果と同時に寸法矯正を行なうことが有
効となる。
X = 550− (350 × weight% C) − (4
0 x wt% Mn)-(35 x wt% V)-(20 x wt% Cr)-(17 x wt% Ni)-(10 x wt% C)
u)-(10 x wt% Mo)-(5 x wt% W) + (1
5 ×% by weight Co) + (30 ×% by weight Al) As a result, a martensitic structure at the time of quenching appears remarkably, and it is effective to perform dimensional correction at the same time as its tempering effect.

【0017】なお、上式のXの値は、マルテンサイト変
態温度を表わし、Xの値が20より下回る場合は、常温
でもマルテンサイト組織にならないため、焼入れの効果
はない。
The value of X in the above equation represents the martensitic transformation temperature. If the value of X is lower than 20, no martensite structure is formed even at room temperature, so that there is no quenching effect.

【0018】上記局面において好ましくは、焼結体を金
型を用いて加工する工程は、焼結体を150℃以上25
0℃以下に加熱した状態で行なわれる。
Preferably, in the above aspect, the step of processing the sintered body by using a mold includes the step of:
It is carried out in a state where it is heated to 0 ° C. or less.

【0019】焼戻し温度が250℃を超え300℃付近
となった場合、脆性が生じ衝撃値が低下する。また15
0℃未満では、焼結体の軟化が十分ではなく、寸法を金
型で矯正する際の変形抵抗が大きいため寸法精度が低下
してしまう。この温度範囲の加熱により、焼戻し処理は
不要となるため、この温度範囲の加熱は経済的にも優れ
ている。
When the tempering temperature exceeds 250 ° C. and becomes around 300 ° C., brittleness occurs and the impact value decreases. Also 15
If the temperature is less than 0 ° C., the softening of the sintered body is not sufficient, and the dimensional accuracy is reduced due to a large deformation resistance when the dimensions are corrected by a mold. Heating in this temperature range makes tempering unnecessary, so heating in this temperature range is economically excellent.

【0020】上記局面において好ましくは、焼結体を金
型を用いて加工する際の金型の温度を目的温度の±5℃
の範囲内に制御し、かつ焼結体の加熱温度を目的温度の
±20℃の範囲内に制御する。
In the above aspect, preferably, the temperature of the mold when processing the sintered body using the mold is set to ± 5 ° C. of the target temperature.
And the heating temperature of the sintered body is controlled within a range of ± 20 ° C. of the target temperature.

【0021】加熱した焼結体を連続で圧縮する工程で
は、金型温度の上昇が懸念される。金型温度が所望温度
の±5℃を超えると金型の熱膨張収縮により寸法が変化
し、寸法の狙い値から大幅に外れる。また焼結体の温度
が所望温度の±20℃を超える場合、焼結体変形抵抗に
も差が生じ、圧縮時の変形量の違いから圧縮方向の寸法
精度が劣化する。
In the step of continuously compressing the heated sintered body, there is a concern that the mold temperature will increase. When the mold temperature exceeds the desired temperature ± 5 ° C., the dimensions change due to the thermal expansion and contraction of the mold, and the dimensions greatly deviate from the target values. If the temperature of the sintered body exceeds the desired temperature of ± 20 ° C., a difference occurs in the sintered body deformation resistance, and the dimensional accuracy in the compression direction deteriorates due to the difference in the amount of deformation during compression.

【0022】金型温度は室温〜500℃の範囲が好まし
く、500℃を超えると金型自体の強度が懸念されるた
め、高価な耐熱合金を使用する必要がある。また金型温
度は特に室温〜100℃の範囲が望ましい。金型温度が
100℃を超えて高温になるにつれて、金型剛性が低下
し、金型が変形しやすくなるため焼結体の寸法精度が劣
化する。また温度が高いほど作業性が低下する。また焼
結部品と型との潤滑が困難となり、焼き付きが生じやす
くなる。一方、室温から100℃までであれば、作業性
も良好である。また金型温度は、コストがかかるため常
温以下に冷却する必要はない。
The mold temperature is preferably in the range of room temperature to 500 ° C. If the temperature exceeds 500 ° C., the strength of the mold itself is concerned, so an expensive heat-resistant alloy must be used. The mold temperature is particularly preferably in the range of room temperature to 100 ° C. As the mold temperature exceeds 100 ° C. and becomes higher, the rigidity of the mold decreases, and the mold easily deforms, so that the dimensional accuracy of the sintered body deteriorates. The higher the temperature, the lower the workability. In addition, lubrication between the sintered component and the mold becomes difficult, and seizure easily occurs. On the other hand, if the temperature is from room temperature to 100 ° C., workability is good. In addition, since the mold temperature is expensive, it is not necessary to cool the mold below normal temperature.

【0023】上記局面において好ましくは、焼結体を金
型を用いて加工する際に焼結体に与える圧力は0.1t
on/cm2 以上10ton/cm2 以下である。
In the above aspect, preferably, the pressure applied to the sintered body when processing the sintered body using a mold is 0.1 t.
on / cm 2 or more and 10 ton / cm 2 or less.

【0024】金型による再圧縮や突き通す圧力について
は、10ton/cm2 を超えると、金型の消耗が激し
く破損しやすくなる。また0.1ton/cm2 未満で
あると、焼結体を十分に塑性変形させることが困難とな
る。
When the pressure for re-compression and piercing by the mold exceeds 10 ton / cm 2 , the mold is greatly consumed and easily broken. If it is less than 0.1 ton / cm 2 , it is difficult to sufficiently plastically deform the sintered body.

【0025】上記局面において好ましくは、焼結体を金
型内で圧縮する際に焼結体は金型内で1秒以上保持され
た後に金型から抜き出される。
In the above aspect, preferably, when the sintered body is compressed in the mold, the sintered body is held in the mold for one second or more, and then is extracted from the mold.

【0026】焼結体の金型内保持が1秒未満である場
合、焼結体内の表層部は金型温度近くに冷却されるが、
内部では冷却が不十分であり温度分布が大きい。焼結体
は、そのまま金型から抜き出されて空冷されるため、そ
の内外の温度差により熱収縮量が生じ精度が劣化する。
型内で保持する時間が1秒以上であれば内外の温度差が
小さくなるため、寸法精度への影響が小さい。なお、生
産性を考慮すると、長時間保持するのは好ましくないた
め、1秒以上5秒以下程度が望ましい。
If the holding of the sintered body in the mold is less than 1 second, the surface layer portion in the sintered body is cooled to near the mold temperature.
Cooling is insufficient inside and the temperature distribution is large. Since the sintered body is pulled out of the mold as it is and air-cooled, the temperature difference between the inside and outside of the sintered body causes the amount of heat shrinkage to deteriorate the accuracy.
If the holding time in the mold is 1 second or longer, the temperature difference between the inside and outside will be small, and the influence on the dimensional accuracy will be small. In view of the productivity, it is not preferable to hold for a long time, and therefore it is preferable to be about 1 second to 5 seconds.

【0027】[0027]

【実施例】以下、本発明の実施例について図に基づいて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0028】実施例1 図1は、本発明の実施例1における鉄系焼結部品の製造
方法を示す工程図である。
Embodiment 1 FIG. 1 is a process chart showing a method for manufacturing an iron-based sintered part according to Embodiment 1 of the present invention.

【0029】図1を参照して、重量%でニッケル(N
i)が4%、銅(Cu)が1.5%、モリブデン(M
o)が0.5%、マンガン(Mn)が0.2%、残部が
主成分鉄(Fe)となる鉄系予合金粉末に、0.5%の
黒鉛粉末および0.8%の潤滑材粉末を配合し、V型混
合機で30分間混合して原料粉末とした。この原料粉末
における上述のX(マルテンサイト変態温度)の値は2
79であった。
Referring to FIG. 1, nickel (N
i) 4%, copper (Cu) 1.5%, molybdenum (M
o) 0.5% graphite powder and 0.8% lubricant in iron-based pre-alloy powder of 0.5%, manganese (Mn) 0.2%, and the balance being iron (Fe) The powder was blended and mixed with a V-type mixer for 30 minutes to obtain a raw material powder. The value of X (martensite transformation temperature) in this raw material powder is 2
79.

【0030】上記粉末を図2(a)、(b)に示すφ5
0×φ40×10のリング形状で成形密度7.0g/c
3 となるように成形し、圧粉体とした(ステップ1:
S1)。この圧粉体をベルト式の焼結炉にて1150℃
で1時間、窒素雰囲気中で加熱焼結を行なった(ステッ
プ2:S2)後、850℃で1時間加熱し、80℃の焼
入れ油に投入し焼入れ処理を行なった(ステップ3:S
3)。この焼入れ処理を行なった試料を、以下の表1の
条件により加熱し、再圧縮を行なった(ステップ4:S
4)。再圧縮用の金型寸法は、それぞれの条件での焼結
体加熱時の熱膨張した寸法を狙い値とした。すべての条
件で金型の温度制御を行ない、金型温度を20±3℃の
条件とした。
[0030] The above-mentioned powder was used to obtain a powder having a diameter of φ5 shown in FIGS.
Molding density 7.0 g / c in a ring shape of 0 × φ40 × 10
m 3 to obtain a green compact (Step 1:
S1). This green compact is heated at 1150 ° C. in a belt type sintering furnace.
For 1 hour in a nitrogen atmosphere (Step 2: S2), and then heated at 850 ° C. for 1 hour, poured into quenching oil at 80 ° C., and quenched (Step 3: S2).
3). The quenched sample was heated and recompressed under the conditions shown in Table 1 below (step 4: S
4). The dimensions of the mold for recompression were set to the dimensions that were thermally expanded when the sintered body was heated under the respective conditions. The mold temperature was controlled under all conditions, and the mold temperature was set to 20 ± 3 ° C.

【0031】この再圧縮を行なった試料について表1に
示す各条件で50個ずつ試験を行ない、そのうち25個
をサンプリングして寸法精度および硬度測定を行なっ
た。
For each of the recompressed samples, 50 samples were tested under the conditions shown in Table 1, and 25 samples were sampled to measure dimensional accuracy and hardness.

【0032】寸法精度の評価方法は、1サンプルにつき
外径および内径を45°置きに4方向測定し、25サン
プルのデータ中の外径および内径それぞれの100デー
タ中の最大値から最小値を引いた差を外径および内径の
それぞれの寸法精度と定義した。その結果を表1に示
す。
The dimensional accuracy was evaluated by measuring the outer diameter and inner diameter of each sample in 45 directions at intervals of 45 °, and subtracting the minimum value from the maximum value in 100 data of each of the outer diameter and inner diameter in the data of 25 samples. The difference was defined as the dimensional accuracy of each of the outer diameter and the inner diameter. Table 1 shows the results.

【0033】なお表1の焼結素材とは、焼結工程までを
行なったワークのことであり、焼入れ素材とは焼入れ工
程までを行なったワークのことである。
The sintering material shown in Table 1 is a work that has been subjected to the sintering step, and the quenched material is a work that has been subjected to the quenching step.

【0034】[0034]

【表1】 [Table 1]

【0035】なお本製品形状において、機械加工省略の
目安である寸法精度は、外径公差±25μmである。つ
まり幅で50μmの範囲内であれば寸法精度が良好であ
る。
In this product shape, the dimensional accuracy, which is a standard for omitting machining, is an outer diameter tolerance of ± 25 μm. That is, if the width is within the range of 50 μm, the dimensional accuracy is good.

【0036】上記の結果より、寸法精度の観点からは、
本発明例であるイ〜サまでの条件が良好な範囲であるこ
とが判明した。つまり、焼結体を100℃以上550℃
以下に加熱した状態で金型を用いて加工することによ
り、寸法精度に優れた鉄系焼結部品が得られることが判
明した。
From the above results, from the viewpoint of dimensional accuracy,
It has been found that the conditions a to s of the examples of the present invention are in a favorable range. That is, the sintered body is kept at 100 ° C. or more and 550 ° C.
It has been found that an iron-based sintered part having excellent dimensional accuracy can be obtained by processing using a mold in a heated state below.

【0037】焼結体加熱温度が100℃未満であれば、
十分な変形能が得られず寸法精度向上の効果は小さかっ
た(条件ア)。また焼結体加熱温度が高温になるにつ
れ、型から抜き出した後のワーク温度も高温となり、抜
き出し後の熱収縮により寸法精度が劣化した。また加熱
温度の高温化により焼戻し効果で硬度が低下し、550
℃を超えると焼結素材と硬度とがあまり変わらず、焼入
れの効果が減少してしまった(条件シ、ス)。
If the sintered body heating temperature is less than 100 ° C.,
Sufficient deformability was not obtained, and the effect of improving dimensional accuracy was small (condition a). In addition, as the heating temperature of the sintered body became higher, the temperature of the work after being extracted from the mold also became higher, and the dimensional accuracy was deteriorated due to the heat shrinkage after the extraction. In addition, the hardness decreases due to the tempering effect due to the high heating temperature, and 550
When the temperature exceeds ℃, the sintering material and hardness did not change much, and the effect of quenching decreased (conditions S and S).

【0038】特に、加熱温度が150℃〜250℃の温
度範囲で高寸法精度および硬度低下の少ない最も良好な
製品が得られることも判明した。
In particular, it has also been found that the best product with high dimensional accuracy and little decrease in hardness can be obtained when the heating temperature is in the range of 150 ° C. to 250 ° C.

【0039】実施例2 実施例1の原料を用い、同条件で成形、焼結、焼入れを
施したワークを、以下の表2の条件により、加熱、再圧
縮を行なった。実施例1で良好であった加熱温度200
℃の条件を用い、圧縮圧力および加圧保持時間の条件を
変更し実験を行なった。
Example 2 Using the raw material of Example 1, a work which had been molded, sintered and quenched under the same conditions was heated and recompressed under the conditions shown in Table 2 below. Heating temperature 200 which was good in Example 1
The experiment was performed using the condition of ° C. and changing the conditions of the compression pressure and the pressure holding time.

【0040】[0040]

【表2】 [Table 2]

【0041】表2において試料セ〜ツまででプレス圧力
を変化させた。試料セの圧力0.08ton/cm2
は、圧力が不十分で、ワークを金型内に押し込むことが
できなかった。また試料ソ〜ツまでは、良好な寸法精度
が得られた。プレス圧力が10ton/cm2 を超える
と、金型破損や金型摩耗の危険が伴うため実用的ではな
い。
In Table 2, the press pressure was changed for each of the samples. At a sample cell pressure of 0.08 ton / cm 2 , the pressure was insufficient and the work could not be pushed into the mold. Good dimensional accuracy was obtained up to the sample source. If the pressing pressure exceeds 10 ton / cm 2 , there is a risk of mold breakage and mold wear, which is not practical.

【0042】試料テ〜ヌまでで圧縮保持時間を変化させ
た。これは、プレスの上パンチが最下点まで下降した状
態での保持時間である。試料テ〜ヌの全試料とも良好な
寸法精度であるが、保持時間0.5秒の試料テでは、試
料ト〜ヌに比較して寸法精度が劣った。これは、型内で
の保持時間が短いため抜き出し時のワーク温度が150
℃以上となり、熱収縮変形により精度劣化が生じたため
である。
The compression holding time was changed for the samples 10 to 10. This is a holding time in a state where the upper punch of the press is lowered to the lowest point. All of the samples テ to ヌ have good dimensional accuracy, but the dimensional accuracy of the sample の with a holding time of 0.5 seconds was inferior to that of the samples 〜 to ヌ. This is because the work temperature at the time of extraction is 150 ° C because the holding time in the mold is short.
° C or more, and precision deterioration was caused by heat shrinkage deformation.

【0043】実施例3 重量%で、銅(Cu)が2%、残部が主成分鉄(Fe)
となる鉄系予合金粉末に、0.8%の黒鉛粉末および
0.8%の潤滑材粉末を配合し、V型混合機で30分間
混合して原料粉末とした。この原料粉末における上述の
Xの値は242であった。
Example 3 3 % by weight of copper (Cu) 2%, balance iron (Fe)
0.8% of graphite powder and 0.8% of lubricant powder were blended with the iron-based pre-alloy powder to be used as a raw material powder by mixing with a V-type mixer for 30 minutes. The value of X described above in this raw material powder was 242.

【0044】上記粉末を、図3(a)、(b)に示す形
状で成形密度7.0g/cm3 となるように成形し圧粉
体とした。この圧粉体をベルト式の焼結炉にて1150
℃で1時間、窒素雰囲気中で加熱焼結を行なった後、8
50℃で1時間加熱し、60℃の焼入れ油に投入し焼入
れ処理を行なった。この後、以下の表3に示す条件で再
圧縮処理を行なった。
The above-mentioned powder was formed into a green compact in the shape shown in FIGS. 3A and 3B so as to have a molding density of 7.0 g / cm 3 . This green compact is 1150 in a belt type sintering furnace.
After heating and sintering in a nitrogen atmosphere for 1 hour at
The mixture was heated at 50 ° C. for 1 hour, poured into a quenching oil at 60 ° C., and quenched. Thereafter, recompression was performed under the conditions shown in Table 3 below.

【0045】表3に示す各条件で50個ずつ再圧縮を行
ない、そのうち25個をサンプリングし寸法精度および
硬度測定を行なった。寸法精度の評価方法は、1サンプ
ルにつき外周寸法を45°置きに4方向測定し、25サ
ンプルのデータ中の外周のそれぞれの最大値と最小値と
の差を外径および内径の寸法精度と定義した。その結果
を表3に示す。
Under the conditions shown in Table 3, 50 samples were recompressed, and 25 samples were sampled to measure dimensional accuracy and hardness. The evaluation method of dimensional accuracy is to measure the outer diameter of each sample in four directions at 45 ° intervals, and define the difference between the maximum and minimum values of the outer circumference in the data of 25 samples as the dimensional accuracy of the outer and inner diameters did. Table 3 shows the results.

【0046】なお条件ネでは、金型に水冷装置を用いて
温度を制御したところ金型温度を20℃±3℃に制御で
きたが、条件ノでは金型温度の制御を行なわなかった。
In the condition (4), the temperature of the mold was controlled by using a water cooling device, and the temperature of the mold could be controlled to 20 ° C. ± 3 ° C., but the condition was not controlled.

【0047】[0047]

【表3】 [Table 3]

【0048】上記の結果より、条件ネで最も良好な寸法
精度が得られた。
From the above results, the best dimensional accuracy was obtained under the conditions.

【0049】条件ノでは金型の温度制御を行なっていな
いため金型温度は初期温度20℃から50サンプルを再
圧縮した後では92℃まで上昇した。このため寸法精度
が低下した。
Under the condition (3), since the temperature of the mold was not controlled, the mold temperature rose from the initial temperature of 20 ° C. to 92 ° C. after recompression of 50 samples. For this reason, the dimensional accuracy was reduced.

【0050】実施例4 次の2種類の粉末を用い実験を行なった。上記2種類の
粉末における上述したXの値はそれぞれ括弧内の数値と
なった。
Example 4 An experiment was conducted using the following two kinds of powders. The above-mentioned values of X in the above two types of powders were numerical values in parentheses.

【0051】 (A) Fe−4Ni−1.5Cu−0.5Mo−0.5C (X=279) (B) Fe−5Ni−16Cr−2Mn−1Si−0.15C (X=18 ) 実施例2と同様に原料粉末を図3(a)、(b)の形状
で成形密度7.0g/cm3 となるように成形し圧粉体
とした。この圧粉体をバッチ式の焼結炉にて1250℃
で1時間、真空中で加熱焼結を行なった後、900℃で
1時間加熱し、60℃の焼入れ油に投入し焼入れ処理を
行なった。その後、金型温度20℃±3℃で7ton/
cm2 の圧力で再圧縮処理を行なった。サイジング時の
ワーク加熱温度は、条件ヒ、ヘでは常温のままとし、条
件ハ、フでは200℃とした。圧縮時の金型内保持時間
は1秒とした。寸法精度の評価方法は実施例2と同じで
ある。
(A) Fe-4Ni-1.5Cu-0.5Mo-0.5C (X = 279) (B) Fe-5Ni-16Cr-2Mn-1Si-0.15C (X = 18) Example 2 In the same manner as described above, the raw material powder was formed into a green compact in the shape shown in FIGS. 3A and 3B so as to have a molding density of 7.0 g / cm 3 . This green compact is 1250 ° C. in a batch type sintering furnace.
After heating and sintering in vacuum for 1 hour, the mixture was heated at 900 ° C. for 1 hour and poured into a quenching oil at 60 ° C. to perform a quenching treatment. After that, 7 ton /
A recompression treatment was performed at a pressure of cm 2 . The workpiece heating temperature at the time of sizing was kept at room temperature under the conditions (H) and (F), and was set at 200 ° C. under the conditions (H) and (F). The holding time in the mold during compression was 1 second. The method for evaluating the dimensional accuracy is the same as that of the second embodiment.

【0052】[0052]

【表4】 [Table 4]

【0053】条件フ、ヘでBの粉末を用いた場合、Ms
(マルテンサイト変態点)温度を表わすXが常温以下と
なるため、焼入れ時にマルテンサイト変態が生じず、焼
入れ処理後でも硬度が小さかった。そのため本発明のプ
ロセスを使用した条件フと、従来どおり常温でサイジン
グを行なった条件ヘとでは再圧縮後の寸法精度に大きな
差がなかった。これにより、本プロセスを、上述のX=
20未満の粉末に適用するのは意味がないことが判明し
た。
In the case where the powder of B is used in condition (f), Ms
(Martensite Transformation Point) Since the temperature X was below room temperature, no martensite transformation occurred during quenching and the hardness was low even after quenching. Therefore, there was no significant difference in dimensional accuracy after recompression between the condition using the process of the present invention and the condition where sizing was performed at room temperature as in the past. This allows the process to be described as X =
It has proven to be pointless to apply to less than 20 powders.

【0054】これに対し、X=279である原料Aを用
いた条件ハ、ヒにおいて、常温で再圧縮した条件ヒでは
寸法精度の向上が少なく、200℃にワークを加熱して
再圧縮した条件ハでは大幅に寸法精度が向上した。
On the other hand, in the conditions (c) and (h) in which the raw material A where X = 279 was used, the condition in which the work was recompressed at room temperature showed little improvement in dimensional accuracy. In C, the dimensional accuracy was greatly improved.

【0055】今回開示された実施例はすべての点で例示
であって制限的なものではないと考えられるべきであ
る。本発明の範囲は上記した説明ではなくて特許請求の
範囲によって示され、特許請求の範囲と均等の意味およ
び範囲内でのすべての変更が含まれることが意図され
る。
The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

【0056】[0056]

【発明の効果】以上説明したように、本発明の鉄系焼結
部品の製造方法では、焼結部品を焼入れ処理により高強
度化させた後に、100℃以上550℃以下の温度範囲
に加熱する。この加熱により、材料の変形抵抗を低下さ
せることができるため、容易に金型を用いて寸法矯正を
することが可能となる。またこの方法によれば、高周波
焼入れのような処理が不要であるため、複雑形状の鉄系
焼結部品を生産性よく製造することができる。
As described above, in the method for manufacturing an iron-based sintered part according to the present invention, after the sintered part is strengthened by quenching, it is heated to a temperature range of 100 ° C. to 550 ° C. . This heating can reduce the deformation resistance of the material, so that the dimension can be easily corrected using a mold. Further, according to this method, since a process such as induction hardening is not required, it is possible to manufacture an iron-based sintered part having a complicated shape with high productivity.

【0057】また加熱温度が100℃未満であると材質
の変形抵抗を下げることができず、加熱温度が550℃
を超えると冷却後の材質が軟化するため焼入れ処理の効
果は小さくなってしまう。
If the heating temperature is lower than 100 ° C., the deformation resistance of the material cannot be reduced, and the heating temperature is 550 ° C.
If the temperature exceeds the limit, the material after cooling is softened, so that the effect of the quenching treatment is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における鉄系焼結部品の製造
方法を示す工程図である。
FIG. 1 is a process chart showing a method for manufacturing an iron-based sintered part in Example 1 of the present invention.

【図2】鉄系焼結部品の具体的形状を示す図である。FIG. 2 is a view showing a specific shape of an iron-based sintered part.

【図3】鉄系焼結部品の具体的形状を示す図である。FIG. 3 is a view showing a specific shape of an iron-based sintered part.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 鉄を主成分とする粉末を原料とする粉末
焼結体に焼入れ処理を施した後、前記焼結体を100℃
以上550℃以下に加熱した状態で金型を用いて加工す
ることを特徴とする、鉄系焼結部品の製造方法。
After quenching a powder sintered body made of a powder mainly composed of iron as a raw material, the sintered body is heated to 100 ° C.
A method for producing an iron-based sintered part, characterized in that processing is performed using a mold while being heated to at least 550 ° C. or lower.
【請求項2】 前記焼結体を前記金型を用いて加工する
工程は、前記焼結体を前記金型内で圧縮する工程を有す
る、請求項1に記載の鉄系焼結部品の製造方法。
2. The manufacturing of an iron-based sintered part according to claim 1, wherein the step of processing the sintered body using the mold includes a step of compressing the sintered body in the mold. Method.
【請求項3】 前記焼結体を前記金型を用いて加工する
工程は、前記焼結体を金型ダイに通す工程を有する、請
求項1に記載の鉄系焼結部品の製造方法。
3. The method for manufacturing an iron-based sintered part according to claim 1, wherein the step of processing the sintered body using the mold includes a step of passing the sintered body through a mold die.
【請求項4】 前記焼結体を前記金型を用いて加工する
工程は、前記焼結体を内径金型に通す工程を有する、請
求項1に記載の鉄系焼結部品の製造方法。
4. The method for producing an iron-based sintered part according to claim 1, wherein the step of processing the sintered body using the mold includes a step of passing the sintered body through an inner diameter mold.
【請求項5】 主成分が鉄であり、次式で表わされるX
の値が20以上であることを満たす添加元素と不可避不
純物とからなる材料組成を使用することを特徴とする、
請求項1に記載の鉄系焼結部品の製造方法。 X=550−(350×重量%C)−(40×重量%M
n)−(35×重量%V)−(20×重量%Cr)−
(17×重量%Ni)−(10×重量%Cu)−(10
×重量%Mo)−(5×重量%W)+(15×重量%C
o)+(30×重量%Al)
5. The method according to claim 1, wherein the main component is iron, and
Characterized by using a material composition consisting of an additive element and an unavoidable impurity that satisfies a value of 20 or more,
A method for producing an iron-based sintered part according to claim 1. X = 550− (350 ×% by weight C) − (40 ×% by weight M)
n)-(35 x wt% V)-(20 x wt% Cr)-
(17 × wt% Ni) − (10 × wt% Cu) − (10
X weight% Mo)-(5 x weight% W) + (15 x weight% C)
o) + (30 x wt% Al)
【請求項6】 前記焼結体を前記金型を用いて加工する
工程は、前記焼結体を150℃以上250℃以下に加熱
した状態で行なわれる、請求項1に記載の鉄系焼結部品
の製造方法。
6. The iron-based sintering according to claim 1, wherein the step of processing the sintered body using the mold is performed while the sintered body is heated to 150 ° C. or more and 250 ° C. or less. The method of manufacturing the part.
【請求項7】 前記焼結体を前記金型を用いて加工する
際の前記金型の温度を目的温度の±5℃の範囲内に制御
し、かつ前記焼結体の加熱温度を目的温度の±20℃の
範囲内に制御する、請求項1に記載の鉄系焼結部品の製
造方法。
7. The temperature of the mold when processing the sintered body using the mold is controlled within a range of ± 5 ° C. of a target temperature, and the heating temperature of the sintered body is set to a target temperature. The method for producing an iron-based sintered part according to claim 1, wherein the control is performed within a range of ± 20 ° C.
【請求項8】 前記焼結体を前記金型を用いて加工する
際に前記焼結体に与える圧力は0.1ton/cm2
上10ton/cm2 以下である、請求項1に記載の鉄
系焼結部品の製造方法。
8. The iron according to claim 1, wherein a pressure applied to the sintered body when the sintered body is processed using the mold is 0.1 ton / cm 2 or more and 10 ton / cm 2 or less. Method for manufacturing sintered parts.
【請求項9】 前記焼結体を前記金型内で圧縮する際
に、前記焼結体を前記金型内で1秒以上保持した後に前
記金型から抜き出す、請求項2に記載の鉄系焼結部品の
製造方法。
9. The iron system according to claim 2, wherein, when compressing the sintered body in the mold, the sintered body is taken out of the mold after holding the sintered body in the mold for at least one second. Manufacturing method of sintered parts.
JP23709797A 1997-09-02 1997-09-02 Production of ferrous sintered parts Withdrawn JPH1180810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23709797A JPH1180810A (en) 1997-09-02 1997-09-02 Production of ferrous sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23709797A JPH1180810A (en) 1997-09-02 1997-09-02 Production of ferrous sintered parts

Publications (1)

Publication Number Publication Date
JPH1180810A true JPH1180810A (en) 1999-03-26

Family

ID=17010377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23709797A Withdrawn JPH1180810A (en) 1997-09-02 1997-09-02 Production of ferrous sintered parts

Country Status (1)

Country Link
JP (1) JPH1180810A (en)

Similar Documents

Publication Publication Date Title
US5613180A (en) High density ferrous power metal alloy
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
KR20120016660A (en) High strength low alloyed sintered steel
JP3504786B2 (en) Method for producing iron-based sintered alloy exhibiting quenched structure
KR20010052876A (en) Metallic powder molding material and its re-compression molded body and sintered body obtained from the re-compression molded body and production methods thereof
US20040115084A1 (en) Method of producing powder metal parts
US5562786A (en) Process for producing heat-treated sintered iron alloy part
US20060182648A1 (en) Austempering/marquenching powder metal parts
EP0917593B1 (en) Making metal powder articles by sintering, spheroidizing and warm forming
KR100464962B1 (en) Quenched & tempered steel wire with superior characteristics of cold forging
US4614544A (en) High strength powder metal parts
JP3869620B2 (en) Alloy steel powder molding material, alloy steel powder processed body, and manufacturing method of alloy steel powder molding material
JP3517916B2 (en) Manufacturing method of heat-treated iron-based sintered alloy parts
JPS6345306A (en) Production of sintered member
JP2006219706A (en) Heat-treated iron based sintered component and method for producing the same
JPH1180810A (en) Production of ferrous sintered parts
JP5073510B2 (en) Manufacturing method of sintered parts with excellent dimensional accuracy
KR100966266B1 (en) Manufacturing method of sinter hardening powder metal machine part
US20070048169A1 (en) Method of making powder metal parts by surface densification
KR100263956B1 (en) Process for producing heat treatment iron alloy parts
JPS61117203A (en) Production of sinter forged parts
CN114395738B (en) Die steel with high thermal diffusivity and preparation method thereof
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JP6228733B2 (en) Induction hardening method of iron-based sintered body
JP2018127650A (en) Ferrous powder metallurgical member and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102