JPH1180063A - Production of ethers - Google Patents

Production of ethers

Info

Publication number
JPH1180063A
JPH1180063A JP9256083A JP25608397A JPH1180063A JP H1180063 A JPH1180063 A JP H1180063A JP 9256083 A JP9256083 A JP 9256083A JP 25608397 A JP25608397 A JP 25608397A JP H1180063 A JPH1180063 A JP H1180063A
Authority
JP
Japan
Prior art keywords
alkali metal
palladium
tertiary
group
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9256083A
Other languages
Japanese (ja)
Other versions
JP2920522B2 (en
Inventor
Masato Tanaka
正人 田中
Prabakaru Redii Nagaveri
プラバカル レディー ナガヴェリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9256083A priority Critical patent/JP2920522B2/en
Publication of JPH1180063A publication Critical patent/JPH1180063A/en
Application granted granted Critical
Publication of JP2920522B2 publication Critical patent/JP2920522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and safely obtain the subject compound for synthesizing medicines, agrochemicals and dyes by reacting an alkali metal butoxide with a chloride in the presence of a palladium catalyst and an alkali metal alkoxide. SOLUTION: This method for producing an ether of the formula: t-BuOR comprises reacting an alkali metal tertiary butoxide of the formula: t-BuOM (t-Bu is tertiary butyl; M is an alkali metal) with a chloride of the formula RC1 (R is an aryl, a heteroaryl) in the presence of a palladium catalyst, preferably a complex containing a tertiary phosphine as ligands [e.g. dichlorobis(triethylphosphine) palladium, dichloro(trimethylphosphine) palladium], and an alkali metal alkoxide, if necessary, in a solvent (e.g. a hydrocarbon solvent, an etheric solvent) preferably in the atmosphere of an inactive gas (e.g. nitrogen, argon, methane) at 80-220 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ金属アル
コキシドと芳香族系塩化物との反応による第3級ブチル
エーテル類の新規な製造法に関するものである。
TECHNICAL FIELD The present invention relates to a novel method for producing tertiary butyl ethers by reacting an alkali metal alkoxide with an aromatic chloride.

【0002】本発明により提供される第3級ブチルエー
テル類は、それ自身または第3級ブチル基を脱保護して
得られるフェノール誘導体として、医薬・農薬類、染料
等の合成に用いられる有用な物質である。
The tertiary butyl ethers provided by the present invention are useful as phenol derivatives obtained by deprotecting the tertiary butyl group by themselves or useful as compounds used in the synthesis of pharmaceuticals, agricultural chemicals, dyes and the like. It is.

【0003】[0003]

【従来の技術】芳香族系塩化物をアルカリ金属アルコキ
シドでエーテル化することからなる第3級ブチルエーテ
ル類の合成は容易でなく、穏和な条件下に進行する例は
知られていない。
2. Description of the Related Art The synthesis of tertiary butyl ethers comprising etherifying an aromatic chloride with an alkali metal alkoxide is not easy, and there is no known example of proceeding under mild conditions.

【0004】[0004]

【発明が解決しようとする課題】本発明は、アルカリ金
属第3級ブトキシドと芳香族系塩化物との反応による第
3級ブチルエーテル類の新規かつ効率的な製造方法を提
供することを目標とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel and efficient method for producing tertiary butyl ethers by reacting an alkali metal tertiary butoxide with an aromatic chloride. Things.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記目的
を達するために鋭意研究の結果、パラジウム触媒および
アルカリ金属第3級ブトキシドの存在下において、芳香
族系塩化物のエーテル化が容易に進行し、酸素原子に芳
香族系の基が結合した第3級ブチルエーテルが得られる
という新規な事実を見いだし、それに基づいて本発明を
完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and have found that etherification of an aromatic chloride can be easily performed in the presence of a palladium catalyst and an alkali metal tertiary butoxide. The present inventors have found a novel fact that a tertiary butyl ether in which an aromatic group is bonded to an oxygen atom is obtained, and based on this, have completed the present invention.

【0006】すなわち、本発明によれば、芳香族系塩化
物とアルカリ金属第3級ブトキシドの反応による第3級
ブチルエーテルの新規かつ効率的な製造法が提供され
る。
That is, the present invention provides a novel and efficient method for producing tertiary butyl ether by reacting an aromatic chloride with an alkali metal tertiary butoxide.

【0007】本発明において原料の一つとして用いるア
ルカリ金属第3級ブトキシドは、一般式 t−BuOM (I) (式中t−Buは第3級ブチル基を示し、Mはアルカリ
金属を示す。)で表されるものである。Mの具体例とし
ては、リチウム、ナトリウム、カリウム、ルビジウム、
セシウム、フランシウムが挙げられるが、反応性および
入手性の観点からカリウムの場合が最も好ましい。
The alkali metal tertiary butoxide used as one of the raw materials in the present invention is represented by the general formula t-BuOM (I) (where t-Bu represents a tertiary butyl group and M represents an alkali metal). ). Specific examples of M include lithium, sodium, potassium, rubidium,
Cesium and francium are mentioned, but potassium is most preferable from the viewpoint of reactivity and availability.

【0008】一方、本発明の反応において用いられる芳
香族系塩化物は、一般式 RCl (II) (式中Rはアリール基またはヘテロアリール基を示す)
で表されるものである。これらのアリール基またはヘテ
ロアリール基はアルキル基、アラルキル基、シクロアル
キル基、アリール基等の炭化水素基で置換されていても
良く、また、これらのアリール基またはヘテロアリール
基、およびその置換基であるアルキル基、アラルキル
基、シクロアルキル基、アリール基等の炭化水素基は、
アルコキシ基、シアノ基、ジアルキルアミノ基、シリル
基等の官能基で置換されていても良い。具体例として
は、フェニル基、ナフチル基、チエニル基、フリル基、
シアノフェニル基、トリル基等を挙げることができる。
On the other hand, the aromatic chloride used in the reaction of the present invention has a general formula RCl (II) (wherein R represents an aryl group or a heteroaryl group)
It is represented by These aryl groups or heteroaryl groups may be substituted with a hydrocarbon group such as an alkyl group, an aralkyl group, a cycloalkyl group, and an aryl group, and the aryl group or the heteroaryl group, and a substituent thereof. Certain alkyl groups, aralkyl groups, cycloalkyl groups, hydrocarbon groups such as aryl groups,
It may be substituted with a functional group such as an alkoxy group, a cyano group, a dialkylamino group and a silyl group. Specific examples include a phenyl group, a naphthyl group, a thienyl group, a furyl group,
Examples include a cyanophenyl group and a tolyl group.

【0009】用いるアルカリ金属アルコキシドと芳香族
系塩化物の比率は、モル比で1:1ないし3:1の範囲
が好ましい。
The molar ratio of the alkali metal alkoxide to the aromatic chloride is preferably in the range of 1: 1 to 3: 1.

【0010】本発明の反応の生起には、パラジウム触媒
の使用は必須であり、触媒が存在しない場合には、第3
級ブチルエーテルは全く生成しない。パラジウム触媒と
しては種々の構造のものを用いることが出来るが、好適
なものは、いわゆる低原子価のパラジウム錯体であり、
特に3級ホスフィンを配位子とする錯体が好ましく、具
体的には、ジクロロビス(トリエチルホスフィン)パラ
ジウム、ジクロロ(トリメチルホスフィン)パラジウ
ム、ジクロロビス(トリシクロヘキシルホスフィン)パ
ラジウム、ジブロモ(トリイソプロピルホスフィン)パ
ラジウム、ジクロロビス(フェニルジシクロヘキシルホ
スフィン)パラジウム等が例示される。また、第3級ホ
スフィンを配位子として含まない錯体と3級ホスフィン
を反応系中で混合し、第3級ホスフィンを配位子とする
パラジウム錯体を発生させてそのまま触媒として用いる
方法も好ましい態様である。この方法で有利な性能を発
揮する第3級ホスフィンを例示すると、トリメチルホス
フィン、トリエチルホスフィン、ジフェニルシクロヘキ
シルホスフィン、フェニルジシクロヘキシルホスフィ
ン、トリシクロヘキシルホスフィン、トリイソプロピル
ホスフィン、ジtert−ブチルフェンニルホスフィン
等が挙げられる。これに組み合わせて用いられる、第3
級ホスフィンを配位子として含まない錯体としては、酢
酸パラジウム、塩化パラジウム、ジクロロ(1,5−シ
クロオクタジエン)パラジウム、ビス(ジベンジリデン
アセトン)パラジウム、トリス(ジベンジリデンアセト
ン)二パラジウム、ジクロロビス(ベンゾニトリル)パ
ラジウム、ジブロモビス(ベンゾニトリル)パラジウ
ム、ジクロロビス(アセトニトリル)パラジウム、ジ-
μ-クロロビス(π-アリル)二パラジウム、ジクロロビ
ス(ピリジン)パラジウム等が例示される。
In order for the reaction of the present invention to occur, the use of a palladium catalyst is essential.
No butyl ether is formed. Although various structures can be used as the palladium catalyst, preferred are so-called low-valent palladium complexes,
Particularly, a complex having a tertiary phosphine as a ligand is preferable. Specifically, dichlorobis (triethylphosphine) palladium, dichloro (trimethylphosphine) palladium, dichlorobis (tricyclohexylphosphine) palladium, dibromo (triisopropylphosphine) palladium, dichlorobis (Phenyldicyclohexylphosphine) palladium and the like. Further, a preferred embodiment is a method in which a complex containing no tertiary phosphine as a ligand and a tertiary phosphine are mixed in a reaction system to generate a palladium complex having a tertiary phosphine as a ligand and to be used as a catalyst as it is. It is. Examples of tertiary phosphines that exhibit advantageous performance in this method include trimethylphosphine, triethylphosphine, diphenylcyclohexylphosphine, phenyldicyclohexylphosphine, tricyclohexylphosphine, triisopropylphosphine, ditert-butylfenylphosphine, and the like. . The third used in combination with this
Complexes that do not contain primary phosphine as a ligand include palladium acetate, palladium chloride, dichloro (1,5-cyclooctadiene) palladium, bis (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) dipalladium, dichlorobis ( Benzonitrile) palladium, dibromobis (benzonitrile) palladium, dichlorobis (acetonitrile) palladium, di-
Examples thereof include μ-chlorobis (π-allyl) dipalladium and dichlorobis (pyridine) palladium.

【0011】これらのパラジウム錯体の使用量はいわゆ
る触媒量で良く、アルカリ金属第3級ブトキシドに対し
て20モル%以下であり、一般的には5モル%以下で十
分である。
The amount of the palladium complex used may be a so-called catalytic amount, which is 20 mol% or less, and generally 5 mol% or less, based on the alkali metal tertiary butoxide.

【0012】反応は特に溶媒を用いなくてもよいが、必
要に応じて溶媒中で実施することもできる。溶媒として
は、炭化水素系もしくはエーテル系の溶媒が一般的に用
いられる。反応温度は、芳香族系塩化物の構造によるが
一般には50℃以上に加熱するのが好ましく、通常は8
0〜2200℃の範囲から選ばれる。本反応の中間体は
酸素に敏感であり、反応の実施は、窒素やアルゴン、メ
タン等の不活性ガス雰囲気で行うのが好ましい。反応混
合物からの精製物の分離は、クロマトグラフィー、蒸留
または再結晶によって容易に達成される。
The reaction does not need to use a solvent, but can be carried out in a solvent if necessary. As the solvent, a hydrocarbon-based or ether-based solvent is generally used. The reaction temperature depends on the structure of the aromatic chloride, but it is generally preferable to heat it to 50 ° C. or higher, and usually to 8 ° C.
The temperature is selected from the range of 0 to 2200 ° C. The intermediate of this reaction is sensitive to oxygen, and the reaction is preferably performed in an atmosphere of an inert gas such as nitrogen, argon, or methane. Separation of the purified product from the reaction mixture is easily achieved by chromatography, distillation or recrystallization.

【0013】[0013]

【実施例】本発明を以下の実施例によってさらに具体的
に説明するが、実施態様は実施例に限定されるものでは
ない。
The present invention will be described more specifically with reference to the following examples, but the embodiments are not limited to the examples.

【0014】実施例1 クロロベンゼン(0.5mmol)、カリウム第3級ブ
トキシド(0.7mmol)、ジクロロビス(トリエチ
ルホスフィン)パラジウム(0.02mmol)、およ
び、トルエン(1ml)の混合物を、窒素雰囲気下、1
20℃で48時間撹拌した。反応液のNMR測定によ
り、第3級ブチルフェニルエーテルが74%の収率で生
成していることが判明した。
Example 1 A mixture of chlorobenzene (0.5 mmol), potassium tertiary butoxide (0.7 mmol), dichlorobis (triethylphosphine) palladium (0.02 mmol) and toluene (1 ml) was placed in a nitrogen atmosphere. 1
Stirred at 20 ° C. for 48 hours. NMR measurement of the reaction solution revealed that tertiary butyl phenyl ether was produced in a yield of 74%.

【0015】実施例2 p−クロロトルエン(0.5mmol)、カリウム第3
級ブトキシド(0.7mmol)、ジクロロビス(トリ
エチルホスフィン)パラジウム(0.02mmol)、
および、トルエン(1ml)の混合物を、窒素雰囲気
下、120℃で48時間撹拌した。反応液のNMR測定に
より、第3級ブチルトリルエーテルが50%の収率で生
成していることが判明した。
Example 2 p-chlorotoluene (0.5 mmol), potassium tertiary
Butoxide (0.7 mmol), dichlorobis (triethylphosphine) palladium (0.02 mmol),
Then, a mixture of toluene (1 ml) was stirred at 120 ° C. for 48 hours under a nitrogen atmosphere. NMR measurement of the reaction solution revealed that tertiary butyl tolyl ether was produced in a yield of 50%.

【0016】実施例3 p−クロロアニソール(0.5mmol)、カリウム第
3級ブトキシド(0.7mmol)、ジクロロビス(ト
リエチルホスフィン)パラジウム(0.02mmo
l)、および、トルエン(1ml)の混合物を、窒素雰
囲気下、120℃で48時間撹拌した。反応液のNMR測
定により、第3級ブチルアニシルエーテルが55%の収
率で生成していることが判明した。
Example 3 p-Chloroanisole (0.5 mmol), potassium tert-butoxide (0.7 mmol), dichlorobis (triethylphosphine) palladium (0.02 mmol)
l) and a mixture of toluene (1 ml) was stirred at 120 ° C for 48 hours under a nitrogen atmosphere. NMR measurement of the reaction solution revealed that tertiary butyl anisyl ether was produced in a yield of 55%.

【0017】[0017]

【発明の効果】本発明の方法により、医薬・農薬・染料
の合成に有用な第3級ブチルエーテル類を、アルカリ金
属第3級ブトキシドおよび芳香族系塩化物から効率的か
つ安全に製造でき、その分離精製も容易である。従っ
て、本発明は工業的に多大の効果をもたらす。
According to the method of the present invention, tertiary butyl ethers useful for the synthesis of medicines, agricultural chemicals and dyes can be produced efficiently and safely from alkali metal tertiary butoxide and aromatic chlorides. Separation and purification are also easy. Therefore, the present invention has a great effect industrially.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 パラジウム触媒およびアルカリ金属アル
コキシドの存在下において、一般式 t−BuOM (I) (式中t−Buは第3級ブチル基を示し、Mはアルカリ
金属を示す。)で表されるアルカリ金属第3級ブトキシ
ドを、一般式 RCl (II) (式中Rはアリール基またはヘテロアリール基を示す)
で表される塩化物と反応させることを特徴とする一般式 t−BuOR (III) (Rは、前記一般式IIで示されるものと同じ。)で表さ
れる第3級ブチルエーテル類の製造法。
1. In the presence of a palladium catalyst and an alkali metal alkoxide, represented by the general formula t-BuOM (I) (where t-Bu represents a tertiary butyl group and M represents an alkali metal). An alkali metal tertiary butoxide represented by the general formula RCl (II) (wherein R represents an aryl group or a heteroaryl group)
A method for producing a tertiary butyl ether represented by the general formula t-BuOR (III) (R is the same as that represented by the general formula II), characterized by reacting with a chloride represented by the following formula: .
JP9256083A 1997-09-04 1997-09-04 Method for producing ethers Expired - Lifetime JP2920522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9256083A JP2920522B2 (en) 1997-09-04 1997-09-04 Method for producing ethers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9256083A JP2920522B2 (en) 1997-09-04 1997-09-04 Method for producing ethers

Publications (2)

Publication Number Publication Date
JPH1180063A true JPH1180063A (en) 1999-03-23
JP2920522B2 JP2920522B2 (en) 1999-07-19

Family

ID=17287663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9256083A Expired - Lifetime JP2920522B2 (en) 1997-09-04 1997-09-04 Method for producing ethers

Country Status (1)

Country Link
JP (1) JP2920522B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923587B2 (en) 2004-07-23 2011-04-12 Polnox Corporation Anti-oxidant macromonomers and polymers and methods of making and using the same
US8691933B2 (en) 2004-12-03 2014-04-08 Polnox Corporation Stabilized polyolefin compositions
US8927472B2 (en) 2005-12-02 2015-01-06 Polnox Corporation Lubricant oil compositions
US9193675B2 (en) 2006-07-06 2015-11-24 Polnox Corporation Macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US9388120B2 (en) 2005-02-22 2016-07-12 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US10294423B2 (en) 2013-11-22 2019-05-21 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
US11578285B2 (en) 2017-03-01 2023-02-14 Polnox Corporation Macromolecular corrosion (McIn) inhibitors: structures, methods of making and using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923587B2 (en) 2004-07-23 2011-04-12 Polnox Corporation Anti-oxidant macromonomers and polymers and methods of making and using the same
US8691933B2 (en) 2004-12-03 2014-04-08 Polnox Corporation Stabilized polyolefin compositions
US8846847B2 (en) 2004-12-03 2014-09-30 Polnox Corporation Macromolecular antioxidants based on sterically hindered phenols and phosphites
US9388120B2 (en) 2005-02-22 2016-07-12 Polnox Corporation Nitrogen and hindered phenol containing dual functional macromolecular antioxidants: synthesis, performances and applications
US8927472B2 (en) 2005-12-02 2015-01-06 Polnox Corporation Lubricant oil compositions
US9523060B2 (en) 2005-12-02 2016-12-20 Polnox Corporation Lubricant oil compositions
US9193675B2 (en) 2006-07-06 2015-11-24 Polnox Corporation Macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US9950990B2 (en) 2006-07-06 2018-04-24 Polnox Corporation Macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same
US10294423B2 (en) 2013-11-22 2019-05-21 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
US10683455B2 (en) 2013-11-22 2020-06-16 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
US11060027B2 (en) 2013-11-22 2021-07-13 Polnox Corporation Macromolecular antioxidants based on dual type moiety per molecule: structures, methods of making and using the same
US11578285B2 (en) 2017-03-01 2023-02-14 Polnox Corporation Macromolecular corrosion (McIn) inhibitors: structures, methods of making and using the same

Also Published As

Publication number Publication date
JP2920522B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
Caddick et al. An improved synthesis of bis (1, 3-di-N-tert-butylimidazol-2-ylidene) palladium (0) and its use in C–C and C–N coupling reactions
US6057456A (en) Transition metal-catalyzed process for preparing alpha-arylated carbonyl-containing compounds
US6248892B1 (en) Process for preparing arylpyridines
JP2920522B2 (en) Method for producing ethers
Warad et al. Synthesis, spectroscopic characterization and catalytic significance of Palladium (II) complexes derived from 1, 1 bis (diphenylphosphinomethyl) ethane
ES2283850T3 (en) NEW CARBEN-NICKEL COMPLEXES, -PALADIO AND -PLATINO, ITS PRODUCTION AND USE IN CATALYTIC REACTIONS.
US7485744B2 (en) Iron-catalyzed allylic alkylation
Munir et al. Synthesis of new Pro-PYE ligands as co-catalysts toward Pd-catalyzed Heck–Mizoroki cross coupling reactions
Mendoza et al. Trialkylsilyl triflimides as easily tunable organocatalysts for allylation and benzylation of silyl carbon nucleophiles with non-genotoxic reagents
US20020016512A1 (en) Heterogeneously catalyzed process for cross coupling aryl chlorides with aryl boronic acids
JP2002020396A (en) Immobilized palladium complex
Yiğit et al. Synthesis of silver (I) and palladium (II) N-heterocyclic carbene complexes and their use as catalysts for the direct C5 arylation of heteroaromatic compounds
Correa-Ayala et al. Dipalladium (I) complexes of ortho-and para-functionalized 1, 3-bis (aryl) triazenide ligands: Synthesis, structure and catalytic activity
OCHIAI et al. Umpolung of Reactivity of Allylsilane, Allylgermane, and Allylstannane: Allylation of Aromatic Compounds with Allylmetal and Arylthallium Bis (trifluoroacetate)
JP2003183187A (en) N-heterocyclic carbene complex and its use
CN111423351A (en) Chiral copper compound and preparation method and application thereof
Li et al. N-Heterocyclic carbene adducts of cyclopalladated ferrocenylimines: Synthesis, characterization and catalytic activity for the Suzuki–Miyaura reaction
US20020128478A1 (en) Process for a carbon-carbon coupling reaction of aryl halides with olefins by heterogeneous catalysts
JP2017132738A (en) Manufacturing method of bipyridyl compound
CN109320538B (en) Synthesis method of 3-bromo-5-aryl-2- (trimethylsilyl) -1- (N, N-dimethyl sulfonamide) pyrrole
CN111116666A (en) Preparation and application of triphenylphosphine allyl palladium halide compound and derivative thereof
JPH10218830A (en) Production of carboxylic acid ester or carboxylic acid
CN110003062B (en) N-phenyl-N-p-toluenesulfonyl difluoroacetamide and application thereof
CN113754544B (en) Preparation method of polysubstituted (E) -trifluoromethyl olefin
JPH115769A (en) Production of tertiary amines

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term