JPH117900A - Electron beam stimulated plasma generating device - Google Patents
Electron beam stimulated plasma generating deviceInfo
- Publication number
- JPH117900A JPH117900A JP9172855A JP17285597A JPH117900A JP H117900 A JPH117900 A JP H117900A JP 9172855 A JP9172855 A JP 9172855A JP 17285597 A JP17285597 A JP 17285597A JP H117900 A JPH117900 A JP H117900A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- electron beam
- plasma
- electrode
- bottleneck
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010894 electron beam technology Methods 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000010453 quartz Substances 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 6
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 6
- 239000011810 insulating material Substances 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims abstract description 5
- 230000001133 acceleration Effects 0.000 claims description 31
- 238000000605 extraction Methods 0.000 claims description 15
- 230000005284 excitation Effects 0.000 claims 1
- 239000012495 reaction gas Substances 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000012212 insulator Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- -1 aB 6 Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- ing And Chemical Polishing (AREA)
- Electron Sources, Ion Sources (AREA)
- Drying Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Plasma Technology (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電子ビーム励起プ
ラズマ発生装置の電子ビーム発生部の構造に関し、特に
放電室からの電子引き出し隘路の構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of an electron beam generator of an electron beam excited plasma generator, and more particularly to the structure of a bottleneck for extracting electrons from a discharge chamber.
【0002】[0002]
【従来の技術】プラズマプロセシング装置、すなわちプ
ラズマイオンプレーティング装置、プラズマCVD装
置、プラズマスパッタリング装置、プラズマエッチング
装置等に用いるプラズマガンとして各種の電子ビーム励
起プラズマ発生装置が開発されている。電子ビーム励起
プラズマ装置は、電子ビームを発生する電子ビーム発生
装置とその電子ビームで励起してプラズマを発生させ各
種の反応を起こさせるプラズマプロセス室とを備える。2. Description of the Related Art Various electron beam excited plasma generators have been developed as plasma guns used in plasma processing apparatuses, that is, plasma ion plating apparatuses, plasma CVD apparatuses, plasma sputtering apparatuses, plasma etching apparatuses, and the like. The electron beam excited plasma apparatus includes an electron beam generator that generates an electron beam, and a plasma process chamber that generates plasma by exciting with the electron beam to cause various reactions.
【0003】電子ビーム発生装置はカソードと中間電極
と放電陽極と加速電極の順に配置され、カソードと放電
電極の間に放電用電圧を印加するとカソードで放出され
た熱電子がカソード部に供給される不活性ガスに作用し
てプラズマを発生し、中間電極と放電陽極の間の放電室
に充満する。放電陽極と加速電極の間に加速電圧を印加
すると、放電陽極の中心に開けた引き出し隘路を介して
プラズマから電子が引き出されて加速され大電流の電子
ビームがプラズマプロセス室に供給される。電子ビーム
はプラズマプロセス室に供給されるガスをプラズマ化
し、ターゲット基板に対して各種のプロセス処理を行
う。An electron beam generator is arranged in the order of a cathode, an intermediate electrode, a discharge anode and an accelerating electrode. When a discharge voltage is applied between the cathode and the discharge electrode, thermions emitted from the cathode are supplied to the cathode portion. The plasma acts on the inert gas to generate plasma and fills the discharge chamber between the intermediate electrode and the discharge anode. When an accelerating voltage is applied between the discharge anode and the accelerating electrode, electrons are extracted from the plasma through a draw-out path opened at the center of the discharge anode, accelerated, and a large current electron beam is supplied to the plasma process chamber. The electron beam converts a gas supplied to the plasma process chamber into plasma, and performs various kinds of processing on the target substrate.
【0004】従来は、カソードと中間電極と放電陽極と
加速電極は同軸上に一直線に配設され、導電性物質で形
成した電子引き出し口を放電陽極として用い、電子ビー
ムが各電極の中心位置に形成された連通孔を通り直線的
にプラズマプロセス室に貫入して内部のガスと反応する
ようにされていた。このような直線配置は、形成された
プラズマから電子ビームを引き出してこれを加速する過
程を考えるとごく自然である。しかし、プラズマを生成
するための放電陽極に直接孔を開けてそこから電子ビー
ムを取り出すため、プラズマ中のイオンが高速で放電陽
極の表面に衝突する。Conventionally, a cathode, an intermediate electrode, a discharge anode, and an accelerating electrode are coaxially arranged in a straight line, an electron outlet formed of a conductive material is used as a discharge anode, and an electron beam is focused at the center of each electrode. It was designed to linearly penetrate into the plasma process chamber through the formed communication hole and react with the gas inside. Such a linear arrangement is very natural considering the process of extracting an electron beam from the formed plasma and accelerating it. However, since holes are directly formed in the discharge anode for generating plasma and an electron beam is extracted therefrom, ions in the plasma collide with the surface of the discharge anode at high speed.
【0005】また、電子ビーム励起プラズマ発生装置に
おいて電子ビームで生成されるプロセス用プラズマ内は
ほぼ等電位であり、この等電位範囲はプロセス室から加
速電極、さらに引き出し隘路を通って僅かに放電室内部
に侵入した外殻形状を有し、その電位は加速電極の電位
とほぼ等しい。従来のプラズマ装置では引き出し隘路部
分の電位が放電陽極と同じ値になっており、引き出し隘
路内のプラズマの外殻と引き出し隘路の間の極めて短い
距離で大きな電位差を発生するため、例えば100Vの
加速電圧を与えた場合には引き出し隘路内プラズマ中の
イオンが約100eVの大きなエネルギで引き出し隘路
部分に衝突していた。このような衝突により陽極の損耗
が生ずるばかりでなく、膜生成プロセスに使用する場合
などには衝突で囓り取られた陽極物質が不純物となって
生成膜に混入するため、良質な膜を生成することが難し
かった。また、絶縁を必要とする箇所に堆積し、絶縁不
良を引き起こし、放電が不安定になる問題があった。In a process plasma generated by an electron beam in an electron beam-excited plasma generator, the inside of a process plasma is substantially equipotential, and this equipotential range is slightly increased from a process chamber through an accelerating electrode, and further through a discharge passage. It has an outer shell shape penetrating inside, and its potential is almost equal to the potential of the accelerating electrode. In the conventional plasma apparatus, the potential of the draw-out bottle has the same value as that of the discharge anode, and a large potential difference is generated at a very short distance between the outer shell of the plasma in the draw-out narrow passage and the draw-out narrow passage. When a voltage was applied, the ions in the plasma in the extraction bottleneck collided with the extraction bottleneck with a large energy of about 100 eV. Such collisions not only cause the anode to be worn out, but also when used in a film formation process, the anode material removed by the collisions becomes impurities and mixes into the formed film, so that a high-quality film is formed. It was difficult to do. In addition, there is a problem that it is deposited at a place where insulation is required, causes insulation failure, and makes discharge unstable.
【0006】なお、特開平4−58445号公報には、
放電陽極に対応する加速陰極の貫通孔の加速電極に対応
する加速陽極に対向する側の周囲に絶縁体で被覆した例
が開示されているが、貫通孔の壁は金属電極が露出した
状態であり、しかもカソードから放電陽極、さらに加速
電極まで同軸上に並んでいる。したがって、カソードか
らの電子が貫通孔付近に直接衝突、流入して電極を痛め
る上に、プラズマ体中のイオンが貫通孔の電極面を直接
アタックして損耗させ、囓り取られた電極物質が形成す
る薄膜の不純物になることは変わらない。Japanese Patent Application Laid-Open No. 4-58445 discloses that
An example is disclosed in which the periphery of the side facing the acceleration anode corresponding to the acceleration electrode of the through hole of the acceleration cathode corresponding to the discharge anode is covered with an insulator, but the wall of the through hole is exposed in a state where the metal electrode is exposed. In addition, they are arranged coaxially from the cathode to the discharge anode to the acceleration electrode. Therefore, electrons from the cathode directly collide with and flow into the vicinity of the through-hole, causing damage to the electrode.In addition, ions in the plasma body directly attack and damage the electrode surface of the through-hole, and the scraped-off electrode material is removed. It will still be an impurity in the thin film to be formed.
【0007】[0007]
【発明が解決しようとする課題】そこで、本発明の解決
しようとする課題は、中間電極と放電陽極の間に形成さ
れる放電部から電子を引き出す開口部における損耗を防
止し、開口部を構成する物質が反応室に混入してプラズ
マプロセスに悪影響を及ぼすことを防止するようにした
電子ビーム励起プラズマ発生装置を提供することにあ
る。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an opening for preventing electrons from being drawn out from a discharge portion formed between an intermediate electrode and a discharge anode and extracting electrons from a discharge portion. It is an object of the present invention to provide an electron beam excited plasma generator configured to prevent a substance to be mixed from entering a reaction chamber and adversely affecting a plasma process.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するた
め、カソードと中間電極と放電陽極と加速電極の順に配
置された本発明の電子ビーム励起プラズマ発生装置は、
中間電極と放電陽極の間に形成される放電部から電子ビ
ームを引き出す引き出し隘路が各電極と電気的に絶縁さ
れていることを特徴とする。本発明のプラズマ発生装置
では、引き出し隘路が放電陽極と絶縁されているため、
引き出し隘路と隘路近辺に生成するプラズマとの電位差
が緩和されて、プラズマ中のイオンが引き出し隘路に高
速で衝突することがなくなり、囓り取られた隘路部材が
プロセス室中に混入して生ずるコンタミネーションを抑
制することができる。In order to solve the above-mentioned problems, an electron beam excited plasma generator according to the present invention, which is arranged in the order of a cathode, an intermediate electrode, a discharge anode and an acceleration electrode, comprises:
A draw-out path for extracting an electron beam from a discharge portion formed between the intermediate electrode and the discharge anode is electrically insulated from each electrode. In the plasma generator of the present invention, since the draw-out bottleneck is insulated from the discharge anode,
The potential difference between the drawing bottleneck and the plasma generated in the vicinity of the bottleneck is reduced, so that ions in the plasma do not collide with the drawing bottleneck at a high speed, and contamination generated when the scraped bottle member enters the process chamber. Nation can be suppressed.
【0009】なお、引き出し隘路は他の電極と絶縁され
た金属板であってもよいが、絶縁材で形成することもで
きる。また、引き出し隘路に用いる絶縁材をアルミナで
形成することが好ましい。さらに窒化アルミもしくは石
英で形成することがより好ましい。絶縁体で引き出し隘
路を形成した場合は、放電陽極との絶縁が容易であるか
ら放電室の構造が簡単になり、特にアルミナ(Al
2O3)で形成した場合は耐熱性、脱ガス特性に優れ、ま
た窒化アルミ(AlN)で形成した場合はさらに熱伝導
性、耐熱衝撃性がより良好になり、また石英(Si
O2)で形成した場合はイオンによるスパッタリング率
が小さいため寿命が長く保全が容易な電子ビーム励起プ
ラズマ発生装置とすることができる。The draw-out path may be a metal plate insulated from other electrodes, but may be formed of an insulating material. Further, it is preferable that the insulating material used for the drawing bottleneck is formed of alumina. Further, it is more preferable to use aluminum nitride or quartz. When a draw-out bottleneck is formed by an insulator, the structure of the discharge chamber is simplified since insulation with the discharge anode is easy, and particularly, alumina (Al
2 O 3 ) is excellent in heat resistance and degassing properties, and when formed of aluminum nitride (AlN), thermal conductivity and thermal shock resistance are further improved, and quartz (Si)
In the case of O 2 ), an electron beam excited plasma generator having a long life and easy maintenance can be provided because the sputtering rate by ions is small.
【0010】上記課題を解決するため、カソードと中間
電極と放電陽極と加速電極の順に配置された本発明の電
子ビーム励起プラズマ発生装置は、中間電極と放電陽極
の間に形成される放電部からの電子引き出し隘路が中間
電極と放電陽極を結ぶ方向に対して例えば90度など角
度を持った方向に設けられていることを特徴とする。引
き出し隘路が放電による電子の軌跡とずれた位置に配置
されていれば、引き出し隘路部分に電子が直接流入しな
いので、隘路を形成する材料がプロセス用プラズマ近く
に遊離して存在する事態が発生しない。従って、プラズ
マプロセス室内に混入する不純物が減少する効果があ
る。In order to solve the above problems, an electron beam excited plasma generator of the present invention, which is arranged in the order of a cathode, an intermediate electrode, a discharge anode and an acceleration electrode, comprises a discharge part formed between the intermediate electrode and the discharge anode. Is characterized by being provided in a direction having an angle of, for example, 90 degrees with respect to a direction connecting the intermediate electrode and the discharge anode. If the drawing bottleneck is arranged at a position deviated from the trajectory of the electrons due to the discharge, electrons do not directly flow into the drawing bottleneck portion, so that the material forming the bottleneck is not separated and present near the process plasma. . Therefore, there is an effect that impurities mixed in the plasma process chamber are reduced.
【0011】なお、引き出し隘路を放電陽極等と電気的
に絶縁させることが好ましい。放電陽極等と絶縁させる
ことにより、プラズマ中のイオンが引き出し隘路に衝突
しにくくなり、プラズマ中に混入する隘路形成材料がさ
らに抑制されて、良好なプラズマプロセスを行わせるこ
とができる。通常は、放電室における真空度が0.05
Torrから0.5Torr、加速室で0.1mTorrから1mTo
rr程度で運転されるが、この範囲では引き出し隘路の内
径は4mm以上8mm以下、また長さは1mm以上20
mm以下とすることが好ましい。It is preferable that the draw-out path is electrically insulated from the discharge anode and the like. Insulation from the discharge anode or the like makes it difficult for ions in the plasma to collide with the extraction bottleneck, and further reduces the bottleneck material mixed into the plasma, thereby enabling a favorable plasma process to be performed. Usually, the degree of vacuum in the discharge chamber is 0.05
Torr to 0.5 Torr, 0.1 mTorr to 1 mTo in the acceleration chamber
rr, but within this range, the inner diameter of the draw-out bottleneck is 4 mm or more and 8 mm or less, and the length is 1 mm or more and 20 mm or less.
mm or less.
【0012】引き出し隘路の開口面積が大きすぎると、
電子ビームを取り出すための放電室内のプラズマの密度
が不足して電子引き出し効率が低下する。一方開口面積
が小さすぎると、放電室とプラズマプロセス室の圧力差
が大きくなって引き出し隘路部分で発生するプラズマの
ため放電室内のプラズマとプラズマプロセス室内のプラ
ズマとがつながって電子の加速が困難になったり、放電
室のガス圧力が高すぎて加速後の電子ビームエネルギー
がプロセス室内に入る前に引き出し隘路でロスしてしま
いプラズマ反応室のプラズマ密度が低くなり、同じ害が
生ずる。また、熱集中が生じるため、隘路に絶縁材を使
用した場合はその絶縁スリーブの内面が剥離を起こした
り、隘路に金属を使用した場合は赤熱してベーパライズ
を引き起こし損耗したり反応室内でのコンタミネーショ
ンを引き起こし、プロセスへ悪影響を及ぼす。なお、引
き出し隘路が長すぎると電子の引き出しおよび加速が困
難になり、短かすぎると隘路部分の厚さが不足して強度
的に圧力差に耐えられなくなる。上記の寸法範囲内であ
れば、このような事態が発生しない。If the opening area of the drawing bottleneck is too large,
The density of the plasma in the discharge chamber for extracting the electron beam is insufficient, and the electron extraction efficiency is reduced. On the other hand, if the opening area is too small, the pressure difference between the discharge chamber and the plasma process chamber increases, and the plasma generated in the draw-out path connects the plasma in the discharge chamber with the plasma in the plasma process chamber, making it difficult to accelerate electrons. Or the gas pressure in the discharge chamber is too high, so that the electron beam energy after acceleration is lost in the draw-out path before entering the process chamber, and the plasma density in the plasma reaction chamber decreases, causing the same harm. Also, since heat concentration occurs, the inner surface of the insulating sleeve will peel off when an insulating material is used in the bottleneck, and if metal is used in the bottleneck, it will glow due to red heat causing vaporization and contamination in the reaction chamber. Cause cations and adversely affect the process. If the drawing bottleneck is too long, it is difficult to extract and accelerate electrons. If the drawing bottleneck is too short, the thickness of the bottleneck portion becomes insufficient, and the strength cannot withstand a pressure difference. Such a situation does not occur within the above dimensional range.
【0013】また、本発明の電子ビーム励起プラズマ発
生装置は、放電部に磁場印加機構を設けて、放電陽極と
平行に磁力線を形成させることができる。放電部に注入
される電子が吸収される放電陽極面に平行な磁力線内で
電子が螺旋運動を起こすので、放電部中の滞留時間が増
加してアルゴン等の不活性ガス分子との衝突確率が増大
して効率が向上する効果がある。Further, in the electron beam excited plasma generating apparatus of the present invention, a magnetic field applying mechanism is provided in the discharge part, so that lines of magnetic force can be formed in parallel with the discharge anode. Electrons spiral into the lines of magnetic force parallel to the surface of the discharge anode where electrons injected into the discharge part are absorbed, so that the residence time in the discharge part increases and the probability of collision with inert gas molecules such as argon increases. This has the effect of increasing efficiency and improving efficiency.
【0014】[0014]
【発明の実施の形態】以下、本発明に係る電子ビーム励
起プラズマ発生装置を、図面を用い実施例に基づいて詳
細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an electron beam excited plasma generator according to the present invention will be described in detail with reference to the drawings.
【0015】[0015]
【実施例1】図1は本発明の電子ビーム励起プラズマ発
生装置の第1実施例の原理を説明するブロック図であ
る。本実施例の電子ビーム励起プラズマ発生装置は、カ
ソード1と中間電極2と放電陽極3と加速電極4と試料
台5がこの順に配置されている。電子ビーム励起プラズ
マ発生装置は、中間電極2により仕切られるカソード室
6、中間電極2と放電陽極3の間の放電室7、放電陽極
3と加速電極4の間の加速室8、加速電極4で仕切られ
るプラズマ処理室9に分けられる。中間電極2と加速電
極4は、それぞれ中心に貫通孔が設けられている。ま
た、放電陽極3の中心部には中心に貫通孔が設けられた
アルミナあるいは窒化アルミあるいは石英等のセラミッ
クでできた絶縁体円盤10がはめ込まれている。FIG. 1 is a block diagram for explaining the principle of a first embodiment of an electron beam excited plasma generating apparatus according to the present invention. In the electron beam excited plasma generator of this embodiment, a cathode 1, an intermediate electrode 2, a discharge anode 3, an acceleration electrode 4, and a sample stage 5 are arranged in this order. The electron beam excited plasma generator includes a cathode chamber 6 partitioned by the intermediate electrode 2, a discharge chamber 7 between the intermediate electrode 2 and the discharge anode 3, an acceleration chamber 8 between the discharge anode 3 and the acceleration electrode 4, and an acceleration electrode 4. The plasma processing chamber 9 is divided. Each of the intermediate electrode 2 and the acceleration electrode 4 has a through hole at the center. An insulator disk 10 made of ceramic such as alumina, aluminum nitride, or quartz and having a through hole at the center is fitted into the center of the discharge anode 3.
【0016】カソード室6にはガスノズル11が設けら
れアルゴンガスAr等の不活性ガスが供給され、加速室
8には真空装置に接続された排気口12が設けられてい
る。カソード1にはフィラメントが内蔵され加熱用電源
13が接続されている。カソード1は6硼化ランタンL
aB6やタングステンWなど適当な材料からなるディス
クを備え、放電用の直流電源14の陰極に接続されてい
る。また、中間電極2は抵抗器15を介し、放電陽極3
は直接的に、放電用電源14の陽極に接続されている。
また、放電陽極3と加速電極4の間には加速電位を与え
るための加速電源16が接続されている。The cathode chamber 6 is provided with a gas nozzle 11 to which an inert gas such as argon gas Ar is supplied, and the acceleration chamber 8 is provided with an exhaust port 12 connected to a vacuum device. A heating power supply 13 is connected to the cathode 1 with a built-in filament. Cathode 1 is lanthanum hexaboride L
comprising a disk made of a suitable material such as aB 6, tungsten W, and is connected to the cathode of the DC power supply 14 for discharge. The intermediate electrode 2 is connected to the discharge anode 3 via the resistor 15.
Is directly connected to the anode of the discharge power supply 14.
An acceleration power supply 16 for applying an acceleration potential is connected between the discharge anode 3 and the acceleration electrode 4.
【0017】カソード室6にはプラズマ種となるアルゴ
ンガスが1Torr弱の圧力になるように供給される。カソ
ード1に加熱用電源13からの電流が流れると周囲に熱
電子が放出され、放電陽極3に放電用電源14の電圧が
かかると中間電極2の間に生じる初期放電を仲介として
カソード1と放電陽極3の間に放電が生じる。この放電
により不活性ガスがプラズマ化されてアルゴンプラズマ
17が放電室7に充満する。放電室7における真空度は
0.05Torrから0.5Torrの範囲の適当な値に保持す
る。An argon gas serving as a plasma species is supplied to the cathode chamber 6 at a pressure of less than 1 Torr. When a current flows from the heating power supply 13 to the cathode 1, thermoelectrons are emitted to the surroundings, and when a voltage of the discharge power supply 14 is applied to the discharge anode 3, the discharge between the cathode 1 and the intermediate discharge electrode 2 is mediated. Discharge occurs between the anodes 3. This discharge turns the inert gas into a plasma, and the argon plasma 17 fills the discharge chamber 7. The degree of vacuum in the discharge chamber 7 is maintained at an appropriate value in the range of 0.05 Torr to 0.5 Torr.
【0018】なお、加速室8における真空度は0.1m
Torrから1mTorr程度で運転されることから、放電室7
の真空度を所定の値に維持するためには、引き出し隘路
3の内径は4mm以上8mm以下、また長さは1mm以
上20mm以下とすることが好ましい。本実施例の放電
陽極3は引き出し隘路を有する絶縁体円盤10の周囲に
配設されるので、放電電流は引き出し隘路の部分を避け
て流れる。このため、大電流の電子が流入して電極表面
から何かが飛び出たとしても、後工程に混入する心配が
少ない。反応ガスはプラズマプロセス室9に設けられた
反応ガス供給口29から供給され、その大部分は排気口
30から排出される。プラズマプロセス室9内の圧力は
図示しない圧力調整機構により成膜中一定に保たれる。The degree of vacuum in the acceleration chamber 8 is 0.1 m
Since the operation is performed at about 1 mTorr to 1 mTorr, the discharge chamber 7
In order to maintain the degree of vacuum at a predetermined value, it is preferable that the inner diameter of the draw-out path 3 is 4 mm or more and 8 mm or less, and the length is 1 mm or more and 20 mm or less. Since the discharge anode 3 of this embodiment is disposed around the insulator disk 10 having a draw-out narrow path, the discharge current flows avoiding the draw-out narrow path. For this reason, even if a large current of electrons flows in and something jumps out of the electrode surface, there is little fear that it will be mixed in a subsequent process. The reaction gas is supplied from a reaction gas supply port 29 provided in the plasma process chamber 9, and most of the reaction gas is exhausted from an exhaust port 30. The pressure in the plasma process chamber 9 is kept constant during film formation by a pressure adjusting mechanism (not shown).
【0019】放電陽極3と加速電極4の間に加速用電源
16の電圧を印加すると、放電室7内のプラズマ17か
ら電子流が引き出されて、加速されて高速化し加速室8
を通ってプラズマプロセス室9に到達して室内のガス分
子を電離・解離しプラズマ状にして反応ガスプラズマ1
8を生成する。プラズマ化したガスはそれぞれの目的に
応じて処理され、試料台5に搭載された試料19と反応
して製品を形成する。なお、加速室8は排気口12から
真空排気されて、放電室7の不活性ガスとプラズマプロ
セス室9内の反応ガスが混合しないようにしている。反
応ガスプラズマ18内はほぼ等電位であり、この等電位
範囲はプロセス室9から加速電極4,さらに引き出し隘
路を通って僅かに放電室7の内部に進入した外殻形状を
有しており、その電位は加速電極4の電位とほぼ等し
い。When a voltage of an accelerating power supply 16 is applied between the discharge anode 3 and the accelerating electrode 4, an electron flow is extracted from the plasma 17 in the discharge chamber 7, accelerated and accelerated to increase the speed, and accelerated.
To the plasma process chamber 9 to ionize and dissociate gas molecules in the chamber to form a plasma, thereby forming a reaction gas plasma 1
8 is generated. The plasma gas is processed according to each purpose, and reacts with the sample 19 mounted on the sample stage 5 to form a product. The acceleration chamber 8 is evacuated from the exhaust port 12 so that the inert gas in the discharge chamber 7 and the reaction gas in the plasma process chamber 9 are not mixed. The inside of the reaction gas plasma 18 is substantially equipotential, and this equipotential range has an outer shell shape that slightly enters the inside of the discharge chamber 7 from the process chamber 9 through the accelerating electrode 4 and the draw-out path, The potential is substantially equal to the potential of the acceleration electrode 4.
【0020】引き出し隘路が放電陽極3と同じ電位であ
ると、約1mm厚さの非常に薄い境界膜を挟んで高電圧
差が生ずるのでプラズマ中の高いエネルギを持った陽イ
オンが高速で引き出し隘路に衝突して損傷を与えること
になるが、本実施例の構成では引き出し隘路が絶縁体に
なっているので、電圧勾配が急峻でなく高速の高エネル
ギイオンの衝突を有効に避けることができる。なお、引
き出し隘路が他の電極から電気的に絶縁されて浮動電位
におかれた導体である場合も同じような効果が得られ
る。If the extraction bottleneck has the same potential as the discharge anode 3, a high voltage difference is generated across a very thin boundary film having a thickness of about 1 mm, so that cations having high energy in the plasma are extracted at high speed. However, in the configuration of the present embodiment, since the draw-out path is made of an insulator, the collision of high-energy ions with a steep voltage gradient and high speed can be effectively avoided. A similar effect can be obtained when the drawing bottleneck is a conductor which is electrically insulated from other electrodes and is at a floating potential.
【0021】引き出し隘路の表面がアルミナや窒化アル
ミあるいは石英でできていると、プラズマの高温にも耐
え、特に運転時の急激な立ち上がりなど熱履歴に基づく
熱衝撃にもよく耐える上、高真空下で熱を受けても内部
から発生するガスが少ないため、不純物の少ない良質な
反応ガスプラズマを得ることができる。さらに窒化アル
ミはセラミックでありながら熱伝導性が高く、排熱を促
進するので装置の変形や熱応力による不具合を避けるこ
とができる。また、石英はイオンによるスパッタリング
率が極めて小さいため損耗を最小にすることができる。When the surface of the draw-out path is made of alumina, aluminum nitride, or quartz, it withstands high temperature of plasma, especially withstands thermal shock based on thermal history such as sudden rise during operation, and under high vacuum. Therefore, a high-quality reaction gas plasma with few impurities can be obtained because the amount of gas generated from the inside is small even when receiving heat. Further, aluminum nitride is a ceramic, but has a high thermal conductivity and promotes heat dissipation, so that problems due to deformation of the apparatus and thermal stress can be avoided. Also, quartz has a very low sputtering rate due to ions, so that wear can be minimized.
【0022】なお本実施例では、引き出し隘路部材10
を放電陽極3にはめ込んだものとしたが、隘路より大き
な孔を有する放電陽極3を引き出し隘路部材10の上流
側の面に同心に貼り合わせるようにしてもよい。このよ
うな構成でも引き出し隘路部分に電子が流入することが
なく、また発生するプラズマ中のイオンが高速で衝突す
ることもない。なお、中間電極2の貫通口、引き出し隘
路、加速電極4における電子の通過を容易にするために
空芯コイルまたは永久磁石等からなる磁場印加機構を設
けることも可能である。In this embodiment, the draw-out path member 10
Is fitted in the discharge anode 3, but the discharge anode 3 having a hole larger than the bottleneck may be concentrically bonded to the upstream surface of the bottleneck member 10. Even with such a configuration, electrons do not flow into the draw-out bottleneck, and ions in the generated plasma do not collide at high speed. It is also possible to provide a magnetic field applying mechanism composed of an air-core coil or a permanent magnet in order to facilitate the passage of electrons through the through-hole of the intermediate electrode 2, the draw-out path, and the acceleration electrode 4.
【0023】[0023]
【実施例2】図2は、本発明の 電子ビーム励起プラズ
マ発生装置の第2実施例の原理を説明するブロック図で
ある。本実施例の電子ビーム励起プラズマ発生装置は、
放電室7のすぐ後方にプロセス室9を配置しプロセス室
壁面31を加速用電源16に接続して加速電極としてい
ることが実施例1と異なる。この余の事項は実施例1の
対応要素と同じ作用効果を生じる。特に引き出し隘路1
0の役割は実施例1のものと異なることはない。このよ
うな配置により装置の設置スペースが小さくなり、かつ
プロセス室内のプラズマの分布が均等化して試料台5上
の試料19との反応が均質化する効果がある。Embodiment 2 FIG. 2 is a block diagram for explaining the principle of a second embodiment of the electron beam excited plasma generator according to the present invention. The electron beam excited plasma generator of the present embodiment
The third embodiment is different from the first embodiment in that the process chamber 9 is disposed immediately behind the discharge chamber 7 and the wall surface 31 of the process chamber is connected to the power source 16 for acceleration to form an acceleration electrode. The remaining items have the same effects as the corresponding elements of the first embodiment. In particular, bottleneck 1
The role of 0 is not different from that of the first embodiment. With such an arrangement, the installation space for the apparatus is reduced, and the distribution of plasma in the process chamber is equalized, and the reaction with the sample 19 on the sample stage 5 is homogenized.
【0024】[0024]
【実施例3】図3は、本発明の電子ビーム励起プラズマ
発生装置の第3実施例の原理を説明するブロック図であ
る。本実施例の電子ビーム励起プラズマ発生装置は、放
電室の側壁を放電陽極とすることにより、放電による電
子の軌跡とずれた位置に引き出し隘路を配置した点が第
1実施例と異なる。そこで、図3に図1のものと異なる
部分だけ表して説明する。Third Embodiment FIG. 3 is a block diagram for explaining the principle of a third embodiment of the electron beam excited plasma generator according to the present invention. The electron beam excited plasma generator of the present embodiment differs from the first embodiment in that the side wall of the discharge chamber is formed as a discharge anode, and a draw-out path is arranged at a position shifted from the trajectory of electrons due to discharge. Thus, FIG. 3 shows only parts different from those in FIG.
【0025】図3を参照すると、絶縁体で形成される引
き出し隘路20がカソード1と中間電極2を結ぶ直線の
延長上に配置されている。一方、放電室7の側壁が中間
電極2と絶縁された金属で形成され、放電電源に接続さ
れて放電陽極21となる。なお本実施例では、放電陽極
21の外側に電磁コイル22を設けて放電陽極21に平
行な磁力線を形成させるようにした。Referring to FIG. 3, a draw-out path 20 formed of an insulator is arranged on an extension of a straight line connecting the cathode 1 and the intermediate electrode 2. On the other hand, the side wall of the discharge chamber 7 is formed of a metal insulated from the intermediate electrode 2 and is connected to a discharge power supply to form a discharge anode 21. In the present embodiment, the electromagnetic coil 22 is provided outside the discharge anode 21 to form magnetic lines of force parallel to the discharge anode 21.
【0026】本実施例の電子ビーム励起プラズマ発生装
置によれば、放電電流がカソード1と放電室7の側壁で
ある放電陽極21の間に流れて、引き出し隘路部分に電
子が直接流入しない。なお、放電陽極21の表面に平行
な磁力線が存在するため放電陽極21に向かって来る電
子が磁力線にまとわりつき螺旋運動を起こすので、放電
部7中の電子の滞留時間が増加し不活性ガス分子との衝
突確率が増大して、プラズマ化の効率が向上する効果が
ある。According to the electron beam excited plasma generator of the present embodiment, the discharge current flows between the cathode 1 and the discharge anode 21 which is the side wall of the discharge chamber 7, so that the electrons do not flow directly into the draw-out path. In addition, since the magnetic field lines parallel to the surface of the discharge anode 21 exist, the electrons coming toward the discharge anode 21 cling to the magnetic field lines and cause a spiral motion, so that the residence time of the electrons in the discharge part 7 increases, and the inert gas molecules and This has the effect of increasing the probability of collision and increasing the efficiency of plasma conversion.
【0027】このようにして形成された電子ビーム取り
出し用プラズマ23は放電室7に充満し、図外の加速電
極の働きにより引き出し隘路20から電子ビームが取り
出されて加速されプロセス室に供給される反応ガスをプ
ラズマ化して反応ガスプラズマ24を形成する。反応ガ
スプラズマ24の外殻は引き出し隘路20に近接する
が、引き出し隘路20の電位は反応ガスプラズマ24の
電位に引きずられて大きな電位差が生じないので、反応
ガスプラズマ24中のイオンが引き出し隘路20の表面
に激突して囓り取った隘路形成物質がプラズマ中に不純
物として含まれることを抑制することができる。The plasma 23 for taking out the electron beam formed in this way fills the discharge chamber 7, and the electron beam is taken out from the draw-out path 20 by the action of an acceleration electrode (not shown), accelerated, and supplied to the process chamber. The reaction gas is turned into plasma to form a reaction gas plasma 24. Although the outer shell of the reaction gas plasma 24 is close to the extraction bottleneck 20, the potential of the extraction bottleneck 20 is dragged by the potential of the reaction gas plasma 24 so that a large potential difference does not occur. It is possible to suppress the inclusion of a bottle-path forming substance which has crashed into the surface of the substrate as impurities in the plasma.
【0028】[0028]
【実施例4】図4は、本発明の電子ビーム励起プラズマ
発生装置の第4実施例の原理を説明するブロック図であ
る。本実施例の電子ビーム励起プラズマ発生装置は、放
電室の側壁に引き出し隘路を設けることにより、放電電
子の軌跡とずれた位置に引き出し隘路を配置した点が第
1実施例と異なる。そこで、図4には図1のものと異な
る部分だけ表して説明する。Fourth Embodiment FIG. 4 is a block diagram for explaining the principle of a fourth embodiment of the electron beam excited plasma generator according to the present invention. The electron beam excited plasma generator of the present embodiment is different from the first embodiment in that the extraction bottleneck is provided at a position shifted from the trajectory of the discharge electrons by providing the extraction bottleneck on the side wall of the discharge chamber. Therefore, FIG. 4 illustrates only parts different from those in FIG.
【0029】図4を参照すると、大きな面積を有する放
電陽極25がカソード1と中間電極2を結ぶ直線の延長
上に配置されている。中間電極2と放電陽極25に挟ま
れて放電室7が形成されるが、放電陽極25には貫通孔
がない。一方、絶縁体で形成される引き出し隘路26が
カソード1から中間電極2の貫通孔を通って放電陽極2
5に達する直線に対して垂直の方向に配置されている。
引き出し隘路26より下流の構成は第1実施例と同じで
ある。Referring to FIG. 4, a discharge anode 25 having a large area is arranged on an extension of a straight line connecting the cathode 1 and the intermediate electrode 2. Although the discharge chamber 7 is formed between the intermediate electrode 2 and the discharge anode 25, the discharge anode 25 has no through hole. On the other hand, a draw-out narrow passage 26 formed of an insulator passes from the cathode 1 through the through hole of the intermediate electrode 2 to the discharge anode 2.
5 in a direction perpendicular to the straight line.
The configuration downstream of the draw-out path 26 is the same as in the first embodiment.
【0030】本実施例の電子ビーム励起プラズマ発生装
置によれば、放電電流がカソード1と対向する放電陽極
25の間に流れて、引き出し隘路26に電子が直接流入
しない。電子ビームにより形成された電子ビーム取り出
し用プラズマ27は放電室7に充満し、加速電極4の働
きにより電子ビーム取り出し用プラズマ27から電子ビ
ームが引き出し隘路26を通って加速室8に取り出され
て加速され、プロセス室で反応ガスをプラズマ化して反
応ガスプラズマ28を形成する。本実施例の装置におい
ても、放電陽極25の損耗が防止でき、また反応ガスプ
ラズマ28中のイオンが引き出し隘路26の表面を囓り
取っってプラズマ中に不純物として含まれることを抑制
することができる。According to the electron beam excited plasma generator of this embodiment, the discharge current flows between the discharge anode 25 facing the cathode 1 and the electrons do not flow directly into the draw-out path 26. The plasma 27 for taking out the electron beam formed by the electron beam fills the discharge chamber 7, and by the action of the accelerating electrode 4, the electron beam is taken out of the plasma 27 for taking out the electron beam through the narrow path 26 to the acceleration chamber 8 and accelerated. Then, the reaction gas is turned into plasma in the process chamber to form a reaction gas plasma 28. Also in the apparatus of the present embodiment, it is possible to prevent the discharge anode 25 from being worn, and to suppress the ions in the reaction gas plasma 28 from scraping the surface of the extraction bottleneck 26 to be included as impurities in the plasma. it can.
【0031】[0031]
【発明の効果】以上詳細に説明した通り、本発明の電子
ビーム励起プラズマ発生装置は、放電陽極の損耗が少な
く、開口部を構成する物質が反応室に混入してプラズマ
プロセスに悪影響を及ぼすことを防止して、質のよいプ
ラズマプロセスを行うことができる。As described in detail above, the electron beam excited plasma generating apparatus of the present invention has a small discharge anode wear, and the substance constituting the opening is mixed into the reaction chamber and adversely affects the plasma process. And a high quality plasma process can be performed.
【図1】本発明の電子ビーム励起プラズマ発生装置の第
1実施例のブロック図である。FIG. 1 is a block diagram of a first embodiment of an electron beam excited plasma generator according to the present invention.
【図2】本発明の第2実施例を表すブロック図である。FIG. 2 is a block diagram showing a second embodiment of the present invention.
【図3】本発明の第3実施例の要部を表すブロック図で
ある。FIG. 3 is a block diagram showing a main part of a third embodiment of the present invention.
【図4】本発明の第4実施例の要部を表すブロック図で
ある。FIG. 4 is a block diagram showing a main part of a fourth embodiment of the present invention.
1 カソード 2 中間電極 3、21、25 放電陽極 4、31 加速電極 5 試料台 6 カソード室 7 放電室 8 加速室 9 プラズマプロセス室 10 引き出し隘路を備える絶縁体円盤 11 ガス供給口 12 排気口 13 加熱用電源 14 放電用電源 15 抵抗器 16 加速用電源 17、23、27 電流引き出し用プラズマ 18、24、28 反応ガスプラズマ 19 試料 20、26 引き出し隘路 22 電磁コイル 29 反応ガス供給口 30 排気口 DESCRIPTION OF SYMBOLS 1 Cathode 2 Intermediate electrode 3, 21, 25 Discharge anode 4, 31 Acceleration electrode 5 Sample table 6 Cathode chamber 7 Discharge chamber 8 Acceleration chamber 9 Plasma process chamber 10 Insulator disk with a draw-out path 11 Gas supply port 12 Exhaust port 13 Heating Power supply 14 Discharge power supply 15 Resistor 16 Acceleration power supply 17, 23, 27 Current extraction plasma 18, 24, 28 Reactive gas plasma 19 Sample 20, 26 Extraction path 22 Electromagnetic coil 29 Reaction gas supply port 30 Exhaust port
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/203 H01L 21/203 Z 21/3065 H05H 1/46 A H05H 1/46 H01L 21/302 B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/203 H01L 21/203 Z 21/3065 H05H 1/46 A H05H 1/46 H01L 21/302 B
Claims (8)
極の順に配置され、中間電極と放電陽極の間に形成され
る放電部から引き出し隘路を介して電子を引き出し加速
電極により加速して隘路の外にあるプロセス室中のガス
をプラズマ化する電子ビーム励起プラズマ装置におい
て、前記引き出し隘路が各電極と電気的に絶縁されてい
ることを特徴とする電子ビーム励起プラズマ発生装置。1. A cathode, an intermediate electrode, a discharge anode, and an accelerating electrode are arranged in this order, and electrons are extracted from a discharge portion formed between the intermediate electrode and the discharge anode via an extraction bottleneck, accelerated by the acceleration electrode, and accelerated by the acceleration electrode. An electron beam excited plasma generator for converting a gas in an outside process chamber into a plasma, wherein the draw-out path is electrically insulated from each electrode.
いることを特徴とする請求項1記載の電子ビーム励起プ
ラズマ発生装置。2. An electron beam excited plasma generator according to claim 1, wherein said draw-out path is formed of an insulating material.
ミまたは石英のいずれかであることを特徴とする請求項
2記載の電子ビーム励起プラズマ発生装置。3. The electron beam excited plasma generator according to claim 2, wherein the material of said insulating material is one of alumina, aluminum nitride and quartz.
極の順に配置され、中間電極と放電陽極の間に形成され
る放電部から引き出し隘路を介して電子を引き出し加速
電極により加速して隘路の外にあるプロセス室中のガス
をプラズマ化する電子ビーム励起プラズマ装置におい
て、前記引き出し隘路が中間電極と放電陽極を結ぶ方向
と角度を持った方向に設けられていることを特徴とする
電子ビーム励起プラズマ発生装置。4. A cathode, an intermediate electrode, a discharge anode, and an accelerating electrode are arranged in this order, and electrons are extracted from a discharge portion formed between the intermediate electrode and the discharge anode via an extraction bottleneck and accelerated by the acceleration electrode to form a bottleneck. An electron beam excitation plasma apparatus for converting a gas in a process chamber outside into an electron beam, wherein the extraction bottleneck is provided in a direction at an angle to a direction connecting an intermediate electrode and a discharge anode. Plasma generator.
縁されていることを特徴とする請求項4記載の電子ビー
ム励起プラズマ発生装置。5. An electron beam excited plasma generator according to claim 4, wherein said draw-out path is electrically insulated from each electrode.
下の径を有することを特徴とする請求項1から5のいず
れかに記載の電子ビーム励起プラズマ発生装置。6. The electron beam excited plasma generator according to claim 1, wherein the drawing narrow path has a diameter of 4 mm or more and 8 mm or less.
以下の長さを有することを特徴とする請求項1から6の
いずれかに記載の電子ビーム励起プラズマ発生装置。7. The drawing bottleneck is 1 mm or more and 20 mm or more.
The electron beam excited plasma generator according to any one of claims 1 to 6, having the following length.
前記放電陽極と平行に磁力線が形成されるようにしたこ
とを特徴とする請求項1から7のいずれかに記載の電子
ビーム励起プラズマ発生装置。8. A magnetic field application mechanism is provided in the discharge unit,
8. The electron beam excited plasma generator according to claim 1, wherein magnetic lines of force are formed in parallel with the discharge anode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17285597A JP3260103B2 (en) | 1997-06-13 | 1997-06-13 | Electron beam excited plasma generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17285597A JP3260103B2 (en) | 1997-06-13 | 1997-06-13 | Electron beam excited plasma generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH117900A true JPH117900A (en) | 1999-01-12 |
JP3260103B2 JP3260103B2 (en) | 2002-02-25 |
Family
ID=15949552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17285597A Expired - Fee Related JP3260103B2 (en) | 1997-06-13 | 1997-06-13 | Electron beam excited plasma generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3260103B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005146363A (en) * | 2003-11-17 | 2005-06-09 | Toshio Goto | Apparatus for supplying metal ions and method therefor |
US7382098B2 (en) | 2002-03-26 | 2008-06-03 | Semiconductor Energy Laboratory Co., Ltd. | Plasma producing apparatus and doping apparatus |
JP2010040417A (en) * | 2008-08-07 | 2010-02-18 | Toyota Motor Corp | Electron beam generating device |
JP2010053443A (en) * | 2008-07-31 | 2010-03-11 | Canon Anelva Corp | Plasma generating apparatus, deposition apparatus, deposition method, and method of manufacturing display device |
JP2019003899A (en) * | 2017-06-19 | 2019-01-10 | 三重富士通セミコンダクター株式会社 | Ion generating device and ion generation method |
CN109302792A (en) * | 2018-11-22 | 2019-02-01 | 中国科学院空间应用工程与技术中心 | Space small microwave ecr plasma electron beam generating apparatus and method |
-
1997
- 1997-06-13 JP JP17285597A patent/JP3260103B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7382098B2 (en) | 2002-03-26 | 2008-06-03 | Semiconductor Energy Laboratory Co., Ltd. | Plasma producing apparatus and doping apparatus |
JP2005146363A (en) * | 2003-11-17 | 2005-06-09 | Toshio Goto | Apparatus for supplying metal ions and method therefor |
JP4578798B2 (en) * | 2003-11-17 | 2010-11-10 | 俊夫 後藤 | Metal ion supply device |
JP2010053443A (en) * | 2008-07-31 | 2010-03-11 | Canon Anelva Corp | Plasma generating apparatus, deposition apparatus, deposition method, and method of manufacturing display device |
JP2010040417A (en) * | 2008-08-07 | 2010-02-18 | Toyota Motor Corp | Electron beam generating device |
JP2019003899A (en) * | 2017-06-19 | 2019-01-10 | 三重富士通セミコンダクター株式会社 | Ion generating device and ion generation method |
CN109302792A (en) * | 2018-11-22 | 2019-02-01 | 中国科学院空间应用工程与技术中心 | Space small microwave ecr plasma electron beam generating apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
JP3260103B2 (en) | 2002-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2648235B2 (en) | Ion gun | |
US6899054B1 (en) | Device for hybrid plasma processing | |
EP1825491B1 (en) | Ion source with substantially planar design | |
JP2000223299A (en) | Plasma source | |
US4894546A (en) | Hollow cathode ion sources | |
US20060284105A1 (en) | Ion source | |
US5252892A (en) | Plasma processing apparatus | |
JP3260103B2 (en) | Electron beam excited plasma generator | |
JPH0641739A (en) | High-vacuum and high-speed ion treatment device | |
US5168197A (en) | Ion beam generating apparatus, film-forming apparatus, and method for formation of film | |
JPH0357191B2 (en) | ||
JP3140636B2 (en) | Plasma generator | |
JPH08102278A (en) | Device and method for generating ion beam | |
JP2000090844A (en) | Ion source | |
JP3186777B2 (en) | Plasma source | |
JPH0752635B2 (en) | Ion source device | |
JP3143016B2 (en) | Plasma generator | |
JP2586836B2 (en) | Ion source device | |
JP2794602B2 (en) | Electron beam excited ion source | |
JP3032380B2 (en) | Plasma electron gun | |
JPH0585633B2 (en) | ||
JPH09259781A (en) | Ion source device | |
JPH0228597Y2 (en) | ||
JPH097795A (en) | Ecr processing device | |
JP2571894Y2 (en) | Ion source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091214 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111214 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111214 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121214 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121214 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131214 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |