JP2010040417A - Electron beam generating device - Google Patents

Electron beam generating device Download PDF

Info

Publication number
JP2010040417A
JP2010040417A JP2008204159A JP2008204159A JP2010040417A JP 2010040417 A JP2010040417 A JP 2010040417A JP 2008204159 A JP2008204159 A JP 2008204159A JP 2008204159 A JP2008204159 A JP 2008204159A JP 2010040417 A JP2010040417 A JP 2010040417A
Authority
JP
Japan
Prior art keywords
porous
electron beam
electrode
discharge
discharge anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008204159A
Other languages
Japanese (ja)
Other versions
JP5075052B2 (en
Inventor
Tamio Hara
民夫 原
Ryusuke Ichiki
龍大 市來
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Gauken
Original Assignee
Toyota Motor Corp
Toyota Gauken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Gauken filed Critical Toyota Motor Corp
Priority to JP2008204159A priority Critical patent/JP5075052B2/en
Publication of JP2010040417A publication Critical patent/JP2010040417A/en
Application granted granted Critical
Publication of JP5075052B2 publication Critical patent/JP5075052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a heat load of a porous plate-made electrode by devising a shape of the porous plate-made electrode to achieve the high densification of electron beam excited plasma and service life prolongation of the electrode. <P>SOLUTION: In the electron beam generating device 5, the outer shape of each electrode part 10 held at an electrode holding part of a cooling chamber, shows a rectangular shape. The electrode part 10 includes a porous discharge anode 15, a porous accelerating electrode 16, a first insulating plate 17, a second insulating plate 18, a lead wire 19, and a frame-like metal plate 20. The first insulating plate 17 and the second insulating plate 18 are constituted of a heat-conductive electric insulating material, having a thermal conductivity of 5W/(m×K) or higher. The heat load of the porous discharge anode 15 and the porous accelerating electrode 16 can be reduced, and efficient cooling of the center part of a first center porous part 151 of the porous discharge anode 15, that particularly becomes high temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電子ビーム発生装置に関し、詳しくは電子ビーム励起プラズマ発生装置、特に小型電子ビーム励起プラズマ発生装置に好適に用いることのできる電子ビーム発生装置に関する。   The present invention relates to an electron beam generator, and more particularly to an electron beam excited plasma generator, and more particularly to an electron beam generator that can be suitably used for a small electron beam excited plasma generator.

窒化処理等の各種金属材料の表面改質処理、シリコンウエハ等の微細ドライエッチング加工や、プラズマCVDやイオンプレーティング等の成膜処理等には、電子ビーム励起プラズマ(EBEP)発生装置が広く使用されている。   Electron beam excited plasma (EBEP) generators are widely used for surface modification of various metal materials such as nitriding, fine dry etching of silicon wafers, and film forming such as plasma CVD and ion plating. Has been.

電子ビーム励起プラズマ発生装置は、プラズマから電子ビームを発生させる電子ビーム発生室と、電子ビーム発生室から放出された電子ビームによりガスプラズマを発生させて被処理材を処理する反応室とを備える。電子ビーム発生室には、プラズマ発生用の放電陰極と、この放電陰極と対向する電子ビーム発生装置とが配設される。電子ビーム発生装置は、チャンバと、チャンバに保持された加速電極及び放電陽極並びに両電極を絶縁する絶縁板とを備える。チャンバは冷却媒体が通過する冷却通路を有する。冷却媒体の通過により冷却されたチャンバは加速電極及び放電陽極を冷却する。加速電極はチャンバに接して保持され、また放電陽極は絶縁板を介して加速電極に対向するように配設される。放電陽極は、放電陰極からの電子によりプラズマを発生させる。加速電極は、放電陽極の透孔から電子を引き出して加速する。加速電極の透孔から反応室に向けて放出された電子ビームは、反応室内でガスを解離、電離してガスプラズマを生成する。   The electron beam excitation plasma generator includes an electron beam generation chamber that generates an electron beam from plasma, and a reaction chamber that generates gas plasma by the electron beam emitted from the electron beam generation chamber and processes a material to be processed. In the electron beam generation chamber, a discharge cathode for generating plasma and an electron beam generator facing the discharge cathode are disposed. The electron beam generator includes a chamber, an acceleration electrode and a discharge anode held in the chamber, and an insulating plate that insulates both electrodes. The chamber has a cooling passage through which a cooling medium passes. The chamber cooled by the passage of the cooling medium cools the acceleration electrode and the discharge anode. The acceleration electrode is held in contact with the chamber, and the discharge anode is disposed so as to face the acceleration electrode through an insulating plate. The discharge anode generates plasma by electrons from the discharge cathode. The accelerating electrode accelerates by extracting electrons from the through hole of the discharge anode. The electron beam emitted from the through hole of the acceleration electrode toward the reaction chamber dissociates and ionizes the gas in the reaction chamber to generate gas plasma.

かかる構成を有する電子ビーム励起プラズマ発生装置においては、加速電極にかける電圧の大きさによって、反応室に向けて放出される電子ビームの速度を制御することができ、反応室内の気相中において特定の分子の解離とイオン化とを選択的に促進させることが可能となる。このため、電子ビーム励起プラズマ発生装置によれば、例えば結合エネルギーの大きい窒素分子であっても高効率で解離することができる。   In the electron beam excited plasma generator having such a configuration, the velocity of the electron beam emitted toward the reaction chamber can be controlled by the magnitude of the voltage applied to the acceleration electrode, and the specific pressure can be specified in the gas phase in the reaction chamber. It is possible to selectively promote the dissociation and ionization of the molecules. For this reason, according to the electron beam excitation plasma generator, even a nitrogen molecule having a large binding energy can be dissociated with high efficiency.

このような電子ビーム励起プラズマ発生装置として、多孔プレート製の放電陽極及び加速電極を用いて小型化を図ったものが知られている(例えば、特許文献1参照)。この多孔プレート製の放電陽極及び加速電極は、円板状を呈し、プラズマの電子を透過させる透孔が多数貫設された円形の中央多孔部と、中央多孔部の周縁に一体に設けられた枠状の周縁部とを有する。   As such an electron beam excited plasma generator, a device that is miniaturized using a discharge anode and an acceleration electrode made of a perforated plate is known (for example, see Patent Document 1). The discharge plate and the acceleration electrode made of this porous plate are formed in a disk shape, and are provided integrally with a circular central porous portion having a large number of through holes through which plasma electrons are transmitted, and at the periphery of the central porous portion. A frame-shaped peripheral edge.

ここに、例えば金属材料の表面を窒化処理する際、反応室の容積を大きくしようとすると、電子ビーム励起プラズマ生成時の投入パワーを増大させる必要がある。プラズマ源のパワーを増大させると、多孔プレート製の放電陽極及び加速電極の熱負荷が増大する。このため、定常的に引き出せる電子ビームの最大値及び電極寿命は多孔プレート製電極の熱負荷によって決定される。   Here, for example, when the surface of the metal material is nitrided, if the volume of the reaction chamber is increased, it is necessary to increase the input power when generating the electron beam excited plasma. Increasing the power of the plasma source increases the thermal load on the perforated plate discharge anode and acceleration electrode. For this reason, the maximum value of the electron beam that can be steadily extracted and the electrode life are determined by the thermal load of the perforated plate electrode.

ところが、従来の小型電子ビーム励起プラズマ発生装置においては、多孔プレート製電極の熱負荷を低減させるための工夫がなされていなかった。このため、4〜5A程度の電子ビーム電流での定常運転が限界であり、生成される電子ビーム励起プラズマの高密度化や電極の長寿命化を図ることにも限界があった。
特開平7−272894号公報
However, the conventional small electron beam excited plasma generator has not been devised to reduce the thermal load of the porous plate electrode. For this reason, the steady operation with an electron beam current of about 4 to 5 A is the limit, and there is a limit to increasing the density of the generated electron beam excited plasma and extending the life of the electrode.
JP-A-7-272894

本発明は上記実情に鑑みてなされたものであり、多孔プレート製電極の形状を工夫することにより、多孔プレート製電極の熱負荷を低減させ、電子ビーム励起プラズマの高密度化と電極の長寿命化を図ることを解決すべき技術課題とする。   The present invention has been made in view of the above circumstances, and by devising the shape of the electrode made of porous plate, the thermal load of the electrode made of porous plate is reduced, the density of the electron beam excited plasma is increased, and the electrode has a long life. It is a technical problem to be solved.

上記課題を解決する本発明の電子ビーム発生装置は、プラズマ発生用の放電陰極と対向するように電子ビーム励起プラズマ発生装置に配設される電子ビーム発生装置であって、複数の電極保持部と、各該電極保持部にそれぞれ設けられた複数の貫通孔と、冷却機構とを有するチャンバと、各前記電極保持部にそれぞれ保持されるとともに前記放電陰極からの電子によりプラズマを発生させ、発生した該プラズマの電子を透過するための第1透孔が複数貫設された第1中央多孔部と、該第1中央多孔部の周縁に一体に設けられた枠状の第1周縁部とを有する複数の多孔放電陽極と、各前記多孔放電陽極と対向するように各前記電極保持部にそれぞれ直に接して保持されるとともに該多孔放電陽極の前記第1透孔から前記電子を引き出して加速し、加速した該電子を透過するための複数の第2透孔が貫設された第2中央多孔部と、該第2中央多孔部の周縁に一体に設けられた枠状の第2周縁部とを有する複数の多孔加速電極と、各前記多孔放電陽極と各前記多孔加速電極との間に配設されて該多孔放電陽極及び該多孔加速電極間を絶縁し、該多孔放電陽極の前記第1中央多孔部及び該多孔加速電極の前記第2中央多孔部に対応した形状の通孔を有する複数の第1絶縁板と、各前記多孔放電陽極と各前記電極保持部との間に配設されて該多孔放電陽極及び該電極保持部間を絶縁する複数の第2絶縁板と、各前記多孔放電陽極に通電するための複数のリード線と、を備え、前記多孔放電陽極及び前記多孔加速電極の外形状における長手方向長さに対する短手方向長さの比が1未満であり、前記第1絶縁板及び前記第2絶縁板が5W/m・K以上の熱伝導率を有する熱伝導性電気絶縁材よりなることを特徴とする。   An electron beam generator of the present invention that solves the above problems is an electron beam generator disposed in an electron beam excited plasma generator so as to face a discharge cathode for plasma generation, and includes a plurality of electrode holding portions, A plurality of through-holes provided in each of the electrode holders, a chamber having a cooling mechanism, and plasma generated by electrons from the discharge cathodes and held by the electrode holders, respectively. A first central porous portion provided with a plurality of first through holes for transmitting electrons of the plasma; and a frame-shaped first peripheral portion integrally provided at the periphery of the first central porous portion. A plurality of porous discharge anodes are held in direct contact with the electrode holding portions so as to face the porous discharge anodes, and the electrons are extracted from the first through holes of the porous discharge anodes and accelerated. A second central porous portion having a plurality of second through holes for transmitting the accelerated electrons, and a frame-shaped second peripheral portion integrally provided at the periphery of the second central porous portion. A plurality of porous accelerating electrodes, disposed between each of the porous discharge anodes and each of the porous accelerating electrodes to insulate between the porous discharge anode and the porous accelerating electrode, and the first center of the porous discharge anode A plurality of first insulating plates having a through hole having a shape corresponding to the second central porous portion of the porous portion and the porous accelerating electrode, and each porous discharge anode and each electrode holding portion; A plurality of second insulating plates that insulate between the porous discharge anode and the electrode holding portion; and a plurality of lead wires for energizing each of the porous discharge anodes, and the porous discharge anode and the porous acceleration electrode The ratio of the lateral length to the longitudinal length in the outer shape is less than 1, and the front The first insulating plate and the second insulating plate is characterized by comprising from thermally conductive, electrically insulating material having a thermal conductivity of more than 5W / m · K.

多孔放電陽極の第1中央多孔部及び多孔加速電極の第2中央多孔部における中心部は、冷却されたチャンバから最も離れているため、冷却効率が最も劣る部分となる。例えば、従来の小型電子ビーム励起プラズマ発生装置における多孔放電陽極及び多孔加速電極のように円板状電極の場合は、円形の中央多孔部の中心部で冷却効率が最低となる。このため多孔放電陽極に流れる放電電流の増大に伴い、多孔放電陽極の第1中央多孔部の中心部に過大な熱負荷が加わるようになり、この中心部に熱損傷が生じやすくなる。   Since the central part of the first central porous part of the porous discharge anode and the second central porous part of the porous acceleration electrode are farthest from the cooled chamber, the cooling efficiency is inferior. For example, in the case of a disk-like electrode such as a porous discharge anode and a porous acceleration electrode in a conventional small electron beam excited plasma generator, the cooling efficiency is lowest at the center of the circular central porous portion. For this reason, as the discharge current flowing through the porous discharge anode increases, an excessive heat load is applied to the central portion of the first central porous portion of the porous discharge anode, and thermal damage is likely to occur in the central portion.

この点、本発明の電子ビーム発生装置では、多孔放電陽極及び多孔加速電極の外形状における長手方向長さに対する短手方向長さの比が1未満とされている。このため、多孔放電陽極の長手方向における中心部であっても、その中心部における第1中央多孔部の中心は、多孔放電陽極の外縁からはこの多孔放電陽極の短手方向長さの半分の長さ分しか離れていない。また、多孔放電陽極と多孔加速電極とを絶縁する第1絶縁板の熱伝導率、及び多孔放電陽極とチャンバの電極保持部とを絶縁する第2絶縁板の熱伝導率が5W/m・K以上と高い。一方、チャンバの電極保持部は冷却機構によって冷却される。また、チャンバの電極保持部に直に接して保持された多孔加速電極は、チャンバの電極保持部によって冷却される。したがって、多孔放電陽極の熱を、第1絶縁板を介して多孔加速電極に効率良く拡散させることができるとともに、第2絶縁板を介してチャンバの電極保持部に効率良く拡散させることができる。よって、多孔放電陽極及び多孔加速電極の熱負荷を低減させることが可能となり、特に高温となり易い多孔放電陽極の第1中央多孔部の中心部を効率良く冷却することが可能となる。   In this respect, in the electron beam generator of the present invention, the ratio of the length in the short direction to the length in the long direction in the outer shape of the porous discharge anode and the porous acceleration electrode is set to less than 1. For this reason, even if it is the central portion in the longitudinal direction of the porous discharge anode, the center of the first central porous portion in the central portion is half the short length of the porous discharge anode from the outer edge of the porous discharge anode. It ’s only a long distance away. The thermal conductivity of the first insulating plate that insulates the porous discharge anode from the porous acceleration electrode, and the thermal conductivity of the second insulating plate that insulates the porous discharge anode from the chamber electrode holder is 5 W / m · K. More than that. On the other hand, the electrode holder of the chamber is cooled by a cooling mechanism. Further, the porous acceleration electrode held in direct contact with the electrode holder of the chamber is cooled by the electrode holder of the chamber. Therefore, the heat of the porous discharge anode can be efficiently diffused to the porous acceleration electrode via the first insulating plate, and can be efficiently diffused to the electrode holding portion of the chamber via the second insulating plate. Therefore, it is possible to reduce the thermal load of the porous discharge anode and the porous acceleration electrode, and it is possible to efficiently cool the central portion of the first central porous portion of the porous discharge anode that is particularly likely to have a high temperature.

本発明の電子ビーム発生装置において、好ましくは、前記多孔放電陽極及び前記多孔加速電極の外形状が矩形状であり、かつ前記第1中央多孔部及び前記第2中央多孔部の外形状が矩形状である。   In the electron beam generator according to the present invention, preferably, the outer shapes of the porous discharge anode and the porous acceleration electrode are rectangular, and the outer shapes of the first central porous portion and the second central porous portion are rectangular. It is.

本発明の電子ビーム発生装置は、好ましくは、前記多孔放電陽極の前記第1周縁部に接して配設された枠状金属板をさらに備える。この場合、この枠状金属板は、前記多孔放電陽極を構成する材料よりも電気伝導率の高い金属よりなり、前記リード線が該枠状金属板に接続される。リード線が多孔放電陽極に接続されている場合は、多孔放電陽極において接続点に近い部分と遠い部分とで生じる電位差が大きくなりやすく、第1中央多孔部のうち接続点に近い部分に放電が集中して熱負荷も集中しやすい。この点、本発明の電子ビーム発生装置が高熱伝導率の枠状金属板をさらに備える場合は、枠状金属板へのリード線の接続位置にかかわらず、多孔放電陽極の第1中央多孔部の全体で均一に放電を発生させて熱負荷も第1中央多孔部の全体に分散させやすい。   The electron beam generator of the present invention preferably further comprises a frame-shaped metal plate disposed in contact with the first peripheral edge of the porous discharge anode. In this case, the frame-shaped metal plate is made of a metal having a higher electric conductivity than the material constituting the porous discharge anode, and the lead wire is connected to the frame-shaped metal plate. In the case where the lead wire is connected to the porous discharge anode, the potential difference generated between the portion near the connection point and the portion far from the connection point in the porous discharge anode tends to increase, and discharge occurs in the portion near the connection point in the first central porous portion. It is easy to concentrate and heat load. In this regard, when the electron beam generator of the present invention further includes a frame metal plate having a high thermal conductivity, the first central porous portion of the porous discharge anode regardless of the connection position of the lead wire to the frame metal plate. The discharge is uniformly generated as a whole, and the heat load is easily dispersed throughout the first central porous portion.

本発明の電子ビーム発生装置において、好ましくは、前記熱伝導性電気絶縁材が窒化系セラミックスである。   In the electron beam generator of the present invention, preferably, the heat conductive electrical insulating material is a nitride ceramic.

したがって、本発明の電子ビーム発生装置によると、多孔放電陽極に従来よりも大きな放電電流を流すことができ、電子ビーム励起プラズマの密度を従来よりも向上させることが可能となる。また、多孔放電陽極及び多孔加速電極の長寿命化を図ることができる。   Therefore, according to the electron beam generating apparatus of the present invention, a discharge current larger than that in the prior art can be passed through the porous discharge anode, and the density of the electron beam excited plasma can be improved as compared with the prior art. In addition, the life of the porous discharge anode and the porous acceleration electrode can be extended.

以下、本発明の電子ビーム発生装置の実施形態について詳しく説明する。なお、説明する実施形態は一実施形態にすぎず、本発明の電子ビーム発生装置は、下記実施形態に限定されるものではない。本発明の電子ビーム発生装置は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   Hereinafter, embodiments of the electron beam generator of the present invention will be described in detail. In addition, embodiment described is only one Embodiment, The electron beam generator of this invention is not limited to the following embodiment. The electron beam generator of the present invention can be implemented in various forms that have been modified or improved by those skilled in the art without departing from the scope of the present invention.

図1は、本実施形態の電子ビーム発生装置の要部を示す分解斜視図である。図2は、本実施形態の電子ビーム発生装置の斜視図である。図3は、本実施形態の電子ビーム発生装置を用いた小型電子ビーム励起プラズマ発生装置の全体構成を概略的に示す説明図である。   FIG. 1 is an exploded perspective view showing a main part of the electron beam generator of the present embodiment. FIG. 2 is a perspective view of the electron beam generator of the present embodiment. FIG. 3 is an explanatory view schematically showing the overall configuration of a small electron beam excited plasma generator using the electron beam generator of the present embodiment.

<小型電子ビーム励起プラズマ発生装置の概略構成>
この小型電子ビーム励起プラズマ発生装置は、図3に示されるように、プラズマから電子ビームを発生させる電子ビーム発生室1と、電子ビーム発生室1から放出された電子ビームによりガスプラズマを発生させて被処理材2を処理する反応室3とを備えている。電子ビーム発生室1には、プラズマ発生用の放電陰極4と、この放電陰極4と対向する電子ビーム発生装置5とが配設されている。放電陰極4と、電子ビーム発生装置5との間には、補助電極6が配設されている。
<Schematic configuration of small electron beam excited plasma generator>
As shown in FIG. 3, this small electron beam excited plasma generator generates an electron beam generating chamber 1 that generates an electron beam from plasma, and generates a gas plasma by an electron beam emitted from the electron beam generating chamber 1. And a reaction chamber 3 for processing the material 2 to be processed. In the electron beam generating chamber 1, a discharge cathode 4 for generating plasma and an electron beam generating device 5 facing the discharge cathode 4 are disposed. An auxiliary electrode 6 is disposed between the discharge cathode 4 and the electron beam generator 5.

放電陰極4及び補助電極6はいずれもタングステンよりなる。放電陰極4は直流電源7によりジュール加熱される。放電陰極4及び補助電極6は直流電源8に接続されており、放電陰極4と補助電極6との間において、直流電源8により直流放電が発生する。   Both the discharge cathode 4 and the auxiliary electrode 6 are made of tungsten. The discharge cathode 4 is Joule-heated by a DC power source 7. The discharge cathode 4 and the auxiliary electrode 6 are connected to a DC power supply 8, and a DC discharge is generated by the DC power supply 8 between the discharge cathode 4 and the auxiliary electrode 6.

<電子ビーム発生装置5の構成>
電子ビーム発生装置5は、水冷チャンバ9と、水冷チャンバ9に保持された複数(本実施形態では6個)の電極部10とを備えている。水冷チャンバ9は、冷却媒体としての冷却水が図示しない冷却水供給装置から供給されて通過する複数(本実施形態では3個)の冷却通路11を備えている。なお、冷却通路11は、本発明における冷却機構に含まれる。この冷却機構としての冷却通路11に冷却水を通過させることで、水冷チャンバ9の全体を冷却することができる。また、電極部10及び後述する電極保持部12や冷却通路11の数は特に限定されず、適宜設定可能である。冷却機構の構成も特に限定されず、冷却媒体として水の代わりにエチレングリコールや液体窒素等を利用してもよい。
<Configuration of electron beam generator 5>
The electron beam generator 5 includes a water cooling chamber 9 and a plurality (six in this embodiment) of electrode units 10 held in the water cooling chamber 9. The water cooling chamber 9 includes a plurality of (three in this embodiment) cooling passages 11 through which cooling water as a cooling medium is supplied from a cooling water supply device (not shown). The cooling passage 11 is included in the cooling mechanism in the present invention. By allowing the cooling water to pass through the cooling passage 11 as the cooling mechanism, the entire water cooling chamber 9 can be cooled. Moreover, the number of the electrode part 10 and the electrode holding part 12 and the cooling channel | path 11 mentioned later are not specifically limited, It can set suitably. The configuration of the cooling mechanism is not particularly limited, and ethylene glycol, liquid nitrogen, or the like may be used as a cooling medium instead of water.

水冷チャンバ9は、複数(本実施形態では6個)の電極保持部12を備えている。各電極保持部12は、凹部13と、この凹部13の底面に貫設された貫通孔14とを備えている。凹部13は64mm×22mの矩形状を呈し、凹部13の深さは8mmである。貫通孔14は、凹部13の中心部に配設され、42mm×8mmの矩形状を呈する。各電極保持部12にはそれぞれ電極部10が保持されている。   The water cooling chamber 9 includes a plurality (six in this embodiment) of electrode holders 12. Each electrode holding portion 12 includes a recess 13 and a through hole 14 penetrating the bottom surface of the recess 13. The recess 13 has a rectangular shape of 64 mm × 22 m, and the depth of the recess 13 is 8 mm. The through-hole 14 is arrange | positioned in the center part of the recessed part 13, and exhibits 42 mm x 8 mm rectangular shape. Each electrode holding portion 12 holds an electrode portion 10.

各電極部10は、多孔放電陽極15と、多孔加速電極16と、第1絶縁板17と、第2絶縁板18と、リード線19と、枠状金属板20とを備えている。多孔加速電極16、第1絶縁板17、多孔放電陽極15及び枠状金属板20は、この順で、電極保持部12の凹部13の底面に、セラミックス等の絶縁材料よりなる絶縁ネジ21により固定されている。   Each electrode portion 10 includes a porous discharge anode 15, a porous acceleration electrode 16, a first insulating plate 17, a second insulating plate 18, a lead wire 19, and a frame-shaped metal plate 20. The porous acceleration electrode 16, the first insulating plate 17, the porous discharge anode 15, and the frame-shaped metal plate 20 are fixed in this order on the bottom surface of the concave portion 13 of the electrode holding portion 12 with an insulating screw 21 made of an insulating material such as ceramics. Has been.

多孔放電陽極15は、第1中央多孔部151と、第1周縁部152とからなる。多孔放電陽極15は、厚さ1mmのグラファイト板よりなる。多孔放電陽極15の外形状は58mm×20mmの矩形状であり、第1中央多孔部151の外形状は42mm×8mmの矩形状である。多孔放電陽極15の第1中央多孔部151には、放電陰極4からの電子により発生したプラズマの電子を透過するための多数(本実施形態では241個)の第1透孔151aが貫設されている。この第1透孔151aは、第1中央多孔部151の全体に均一に分布している。第1透孔151aの直径は1mmであり、第1透孔151a同士の間隔(ピッチ)は1.2mmである。また、第1周縁部152には、絶縁ネジ21が挿通される5個のネジ穴152aが貫設されている。   The porous discharge anode 15 includes a first central porous portion 151 and a first peripheral edge 152. The porous discharge anode 15 is made of a graphite plate having a thickness of 1 mm. The outer shape of the porous discharge anode 15 is a rectangular shape of 58 mm × 20 mm, and the outer shape of the first central porous portion 151 is a rectangular shape of 42 mm × 8 mm. The first central porous portion 151 of the porous discharge anode 15 is provided with a large number (241 in this embodiment) of first through holes 151 a for transmitting plasma electrons generated by electrons from the discharge cathode 4. ing. The first through holes 151 a are uniformly distributed throughout the first central porous portion 151. The diameter of the first through holes 151a is 1 mm, and the interval (pitch) between the first through holes 151a is 1.2 mm. Further, five screw holes 152a through which the insulating screws 21 are inserted are provided in the first peripheral edge 152.

多孔加速電極16は、第2中央多孔部161と、第2周縁部162とからなる。この多孔加速電極16は冷却チャンバ9の電極保持部12に直に接して保持されている。詳しくは、多孔加速電極16の第2周縁部162と、電極保持部12の凹部13の底面とが接している。これにより、多孔加速電極16は水冷チャンバ9に導通し接地される。   The porous acceleration electrode 16 includes a second central porous portion 161 and a second peripheral edge portion 162. The porous acceleration electrode 16 is held in direct contact with the electrode holding portion 12 of the cooling chamber 9. Specifically, the second peripheral edge 162 of the porous acceleration electrode 16 is in contact with the bottom surface of the recess 13 of the electrode holding part 12. Thereby, the porous acceleration electrode 16 is conducted to the water cooling chamber 9 and grounded.

多孔加速電極16は、厚さ1mmのグラファイト板よりなる。多孔加速電極16の外形状は58mm×20mmの矩形状であり、第2中央多孔部161の外形状は42mm×8mmの矩形状である。多孔加速電極16の第2中央多孔部161には、多孔放電陽極15の第1透孔151aから引き出したプラズマの電子を透過するための多数(本実施形態では241個)の第2透孔161aが貫設されている。この第2透孔161aは、第2中央多孔部161の全体に均一に分布している。第2透孔161aの直径は1mmであり、第2透孔161a同士の間隔(ピッチ)は1.2mmである。また、第2周縁部162には絶縁ネジ21が挿通される5個のネジ穴162aが貫設されている。   The porous acceleration electrode 16 is made of a graphite plate having a thickness of 1 mm. The outer shape of the porous acceleration electrode 16 is a rectangular shape of 58 mm × 20 mm, and the outer shape of the second central porous portion 161 is a rectangular shape of 42 mm × 8 mm. The second central porous portion 161 of the porous accelerating electrode 16 has a large number (241 in the present embodiment) of second through holes 161 a for transmitting plasma electrons extracted from the first through holes 151 a of the porous discharge anode 15. Is penetrated. The second through holes 161 a are uniformly distributed throughout the second central porous portion 161. The diameter of the second through holes 161a is 1 mm, and the interval (pitch) between the second through holes 161a is 1.2 mm. In addition, five screw holes 162a through which the insulating screws 21 are inserted are provided in the second peripheral edge 162.

第1絶縁板17は、多孔放電陽極15と多孔加速電極16との間に配設されている。第1絶縁板17の中央には、多孔放電陽極15の第1中央多孔部151及び多孔加速電極16の第2中央多孔部161に対応した形状、すなわち第1中央多孔部151及び第2中央多孔部161の外形状と同一形状(同一の矩形状)の通孔171が貫設されている。第1絶縁板17の周縁部172には、絶縁ネジ21が挿通される5個のネジ穴172aが貫設されている。第1絶縁板17の外形状は58mm×20mmの矩形状で、第1絶縁板17の厚さは0.7mmである。また、第1絶縁板17の通孔171の形状は42mm×8mmの矩形状である。   The first insulating plate 17 is disposed between the porous discharge anode 15 and the porous acceleration electrode 16. In the center of the first insulating plate 17, the shape corresponding to the first central porous portion 151 of the porous discharge anode 15 and the second central porous portion 161 of the porous acceleration electrode 16, that is, the first central porous portion 151 and the second central porous portion. A through hole 171 having the same shape (same rectangular shape) as the outer shape of the portion 161 is provided. Five screw holes 172a through which the insulating screws 21 are inserted are provided through the peripheral edge portion 172 of the first insulating plate 17. The outer shape of the first insulating plate 17 is a rectangular shape of 58 mm × 20 mm, and the thickness of the first insulating plate 17 is 0.7 mm. The shape of the through hole 171 of the first insulating plate 17 is a rectangular shape of 42 mm × 8 mm.

第2絶縁板18は、多孔放電陽極15、多孔加速電極16及び枠状金属板20と冷却チャンバ9の電極保持部12との間に配設され、多孔放電陽極15及び枠状金属板20と冷却チャンバ9の電極保持部12との間を絶縁する。第2絶縁板18の高さは8mm、第2絶縁板18の厚さは1mmである。   The second insulating plate 18 is disposed between the porous discharge anode 15, the porous acceleration electrode 16 and the frame-shaped metal plate 20 and the electrode holder 12 of the cooling chamber 9. It insulates from the electrode holding part 12 of the cooling chamber 9. The height of the second insulating plate 18 is 8 mm, and the thickness of the second insulating plate 18 is 1 mm.

第1絶縁板17及び第2絶縁板18は、いずれも5W/m・K以上の熱伝導率を有する熱伝導性電気絶縁材よりなる。具体的には、第1絶縁板17及び第2絶縁板18は、いずれも窒化系セラミックスとしての窒化アルミニウムよりなる。窒化アルミニウムの熱伝導率は80〜100W/m・K程度である。   Both the first insulating plate 17 and the second insulating plate 18 are made of a heat conductive electrical insulating material having a thermal conductivity of 5 W / m · K or more. Specifically, both the first insulating plate 17 and the second insulating plate 18 are made of aluminum nitride as a nitride ceramic. The thermal conductivity of aluminum nitride is about 80 to 100 W / m · K.

ここに、第1絶縁板17及び第2絶縁板18に用いることのできる5W/m・K以上の熱伝導率を有する熱伝導性電気絶縁材として、窒化アルミニウムの他に、窒化ホウ素、炭化珪素やアルミナ等を挙げることができる。これらの中では、50W/m・K以上の熱伝導率を有する窒化アルミニウム、窒化ホウ素及び炭化珪素が好ましい。また、高熱伝導性と高電気抵抗率の観点より、第1絶縁板17及び第2絶縁板18の材料として窒化アルミニウムや窒化ホウ素を採用することが好ましい。   Here, as a heat conductive electrical insulating material having a thermal conductivity of 5 W / m · K or more that can be used for the first insulating plate 17 and the second insulating plate 18, in addition to aluminum nitride, boron nitride, silicon carbide. And alumina. Among these, aluminum nitride, boron nitride and silicon carbide having a thermal conductivity of 50 W / m · K or more are preferable. In addition, from the viewpoint of high thermal conductivity and high electrical resistivity, it is preferable to employ aluminum nitride or boron nitride as the material of the first insulating plate 17 and the second insulating plate 18.

リード線19は、銅製の電流導入端子191を有する。このリード線19の電流導入端子191は、セラミックス等の絶縁材料よりなる絶縁ネジ21により枠状金属板20に接続されている。冷却チャンバ9に導通された多孔加速電極16と、リード線19の電流導入端子191とは、直流電源22に接続されている。   The lead wire 19 has a copper current introduction terminal 191. The current introduction terminal 191 of the lead wire 19 is connected to the frame-shaped metal plate 20 by an insulating screw 21 made of an insulating material such as ceramics. The porous acceleration electrode 16 conducted to the cooling chamber 9 and the current introduction terminal 191 of the lead wire 19 are connected to a DC power source 22.

枠状金属板20は、多孔放電陽極15の第1周縁部152に直に接して配設されている。枠状金属板20と多孔放電陽極15とは導通しているため、リード線19の電流導入端子191を介して、多孔放電陽極15を接地に対して−50V〜−200Vにバイアスする。   The frame-shaped metal plate 20 is disposed in direct contact with the first peripheral edge 152 of the porous discharge anode 15. Since the frame-shaped metal plate 20 and the porous discharge anode 15 are electrically connected, the porous discharge anode 15 is biased to −50 V to −200 V with respect to the ground via the current introduction terminal 191 of the lead wire 19.

枠状金属板20は、多孔放電陽極15を構成する材料よりも電気伝導率の高い金属よりなる。具体的には、枠状金属板20は銅よりなる。なお、枠状金属板18を構成する金属の種類としては、多孔放電陽極15を構成する材料よりも電気伝導率の高い金属であれば特に限定されず、銀や金等であってもよいが、コスト面より銅を採用することが好ましい。   The frame-shaped metal plate 20 is made of a metal having a higher electrical conductivity than the material constituting the porous discharge anode 15. Specifically, the frame-shaped metal plate 20 is made of copper. In addition, as a kind of metal which comprises the frame-shaped metal plate 18, if it is a metal whose electric conductivity is higher than the material which comprises the porous discharge anode 15, it will not specifically limit, Although silver, gold | metal | money, etc. may be sufficient. From the viewpoint of cost, it is preferable to employ copper.

枠状金属板20の中央には、多孔放電陽極15の第1中央多孔部151及び多孔加速電極16の第2中央多孔部161にほぼ対応した形状の通孔201が貫設されている。枠状金属板20の周縁部202には、絶縁ネジ21が挿通される5個のネジ穴202aが貫設されている。枠状金属板20の外形状は58mm×20mmの矩形状で、枠状金属板20の厚さは0.5mmである。また、枠状金属板20の通孔201の形状は45mm×13mmの矩形状である。すなわち、枠状金属板20の通孔201は、多孔放電陽極15の第1中央多孔部151及び多孔加速電極16の第2中央多孔部161と比べて、長手方向長さ及び短手方向長さがいずれも少し長い矩形状とされている。   A through-hole 201 having a shape substantially corresponding to the first central porous portion 151 of the porous discharge anode 15 and the second central porous portion 161 of the porous acceleration electrode 16 is provided in the center of the frame-shaped metal plate 20. Five screw holes 202a through which the insulating screws 21 are inserted are provided through the peripheral edge portion 202 of the frame-shaped metal plate 20. The outer shape of the frame-shaped metal plate 20 is a rectangular shape of 58 mm × 20 mm, and the thickness of the frame-shaped metal plate 20 is 0.5 mm. Moreover, the shape of the through-hole 201 of the frame-shaped metal plate 20 is a 45 mm × 13 mm rectangular shape. That is, the through-hole 201 of the frame-shaped metal plate 20 is longer in the longitudinal direction and shorter in the lateral direction than the first central porous portion 151 of the porous discharge anode 15 and the second central porous portion 161 of the porous acceleration electrode 16. These are all rectangular shapes that are a little longer.

なお、反応室3内には、石英チャンバ31と、被処理材2が載置される石英台32とが配設されている。また、石英チャンバ31内は、外部ヒータ33により所定温度に保たれる。   In the reaction chamber 3, a quartz chamber 31 and a quartz table 32 on which the material to be processed 2 is placed are disposed. Further, the inside of the quartz chamber 31 is maintained at a predetermined temperature by the external heater 33.

上記構成を有する本実施形態の電子ビーム発生装置5では、多孔放電陽極15及び多孔加速電極16の外形状が矩形状とされており、かつ多孔放電陽極15の第1中央多孔部151及び多孔加速電極16の第2中央多孔部161の外形状が矩形状とされている。このため、多孔放電陽極15の第2中央多孔部151の長手方向における中心部であっても、その中心部における第1中央多孔部151の中心は、多孔放電陽極15の外縁からこの多孔放電陽極15の短手方向長さの半分の長さ分しか離れていない。また、多孔放電陽極15と多孔加速電極16とを絶縁する第1絶縁板17、及び多孔放電陽極15と冷却チャンバ9の電極保持部12とを絶縁する第2絶縁板18が、窒化アルミニウムよりなる。この窒化アルミニウムの熱伝導率は80〜100W/m・K程度と極めて高い。一方、冷却チャンバ9の電極保持部12は冷却通路11内を流れる冷却水によって冷却される。また、冷却チャンバ9の電極保持部12に直に接して保持された多孔加速電極16は、冷却チャンバ9の電極保持部12によって直接冷却される。したがって、多孔放電陽極15の熱を、第1絶縁板17を介して多孔加速電極16に効率良く拡散させることができるとともに、第2絶縁板18を介して冷却チャンバ9の電極保持部12に効率良く拡散させることができる。なお、多孔加速電極16の熱は、冷却チャンバ9の電極保持部12に効率良く拡散される。よって、多孔放電陽極15及び多孔加速電極16の熱負荷を低減させることが可能となり、特に高温となり易い多孔放電陽極15の第1中央多孔部151の中心部を効率良く冷却することが可能となる。   In the electron beam generator 5 of the present embodiment having the above-described configuration, the outer shapes of the porous discharge anode 15 and the porous acceleration electrode 16 are rectangular, and the first central porous portion 151 and the porous acceleration of the porous discharge anode 15 are formed. The outer shape of the second central porous portion 161 of the electrode 16 is rectangular. For this reason, even if it is the central portion in the longitudinal direction of the second central porous portion 151 of the porous discharge anode 15, the center of the first central porous portion 151 in the central portion is from the outer edge of the porous discharge anode 15 to the porous discharge anode 15. The distance is only half the length of the fifteen short direction. The first insulating plate 17 that insulates the porous discharge anode 15 and the porous acceleration electrode 16 and the second insulating plate 18 that insulates the porous discharge anode 15 and the electrode holding part 12 of the cooling chamber 9 are made of aluminum nitride. . This aluminum nitride has a very high thermal conductivity of about 80 to 100 W / m · K. On the other hand, the electrode holding part 12 of the cooling chamber 9 is cooled by the cooling water flowing in the cooling passage 11. Further, the porous acceleration electrode 16 held in direct contact with the electrode holding unit 12 of the cooling chamber 9 is directly cooled by the electrode holding unit 12 of the cooling chamber 9. Therefore, the heat of the porous discharge anode 15 can be efficiently diffused to the porous accelerating electrode 16 through the first insulating plate 17, and the heat is efficiently transmitted to the electrode holder 12 of the cooling chamber 9 through the second insulating plate 18. Can diffuse well. The heat of the porous acceleration electrode 16 is efficiently diffused to the electrode holding part 12 of the cooling chamber 9. Therefore, it is possible to reduce the thermal load on the porous discharge anode 15 and the porous acceleration electrode 16, and it is possible to efficiently cool the central portion of the first central porous portion 151 of the porous discharge anode 15 that is particularly likely to be at a high temperature. .

また、本実施形態の電子ビーム発生装置5では、多孔放電陽極15の第1周縁部152に枠状金属板20が直に接して配設されている。そして、この枠状金属板20にリード線19が接続されている。ここに、この枠状金属板20は、多孔放電陽極15を構成する材料よりも電気伝導率の高い銅よりなる。このため、多孔放電陽極15において、リード線19の接続点に近い部分と遠い部分とで生じる電位差を小さくすることができる。したがって、枠状金属板20へのリード線19の接続位置にかかわらず、多孔放電陽極15の第1中央多孔部151の全体でほぼ均一に放電を発生させることができ、第1中央多孔部151における熱負荷も第1中央多孔部151のほぼ全体に分散させることができる。   Further, in the electron beam generator 5 of the present embodiment, the frame-shaped metal plate 20 is disposed in direct contact with the first peripheral edge 152 of the porous discharge anode 15. A lead wire 19 is connected to the frame-shaped metal plate 20. Here, the frame-shaped metal plate 20 is made of copper having a higher electric conductivity than the material constituting the porous discharge anode 15. For this reason, in the porous discharge anode 15, the potential difference generated between the portion close to the connection point of the lead wire 19 and the portion far from it can be reduced. Therefore, regardless of the connection position of the lead wire 19 to the frame-shaped metal plate 20, the discharge can be generated almost uniformly in the entire first central porous portion 151 of the porous discharge anode 15, and the first central porous portion 151. The heat load at can also be distributed over substantially the entire first central porous portion 151.

よって、本実施形態の電子ビーム発生装置5によると、多孔放電陽極15に従来よりも大きな放電電流を流すことができ、電子ビーム励起プラズマの密度を従来よりも向上させることが可能となる。また、多孔放電陽極15及び多孔加速電極16の長寿命化を図ることができる。さらに、電極保持部12及び電極部10の外形状が矩形状であるため、電極保持部12及び電極部10の外形状が例えば円形状である場合と比較して、各電極部10に接続されるリード線19の配置や、冷却チャンバ9内における冷却通路11の配置の自由度が高くなる。   Therefore, according to the electron beam generator 5 of the present embodiment, a discharge current larger than that in the conventional case can be passed through the porous discharge anode 15, and the density of the electron beam excited plasma can be improved as compared with the conventional case. Moreover, the lifetime of the porous discharge anode 15 and the porous acceleration electrode 16 can be extended. Furthermore, since the outer shape of the electrode holding part 12 and the electrode part 10 is rectangular, it is connected to each electrode part 10 as compared with the case where the outer shape of the electrode holding part 12 and the electrode part 10 is circular, for example. The degree of freedom of the arrangement of the lead wires 19 and the arrangement of the cooling passages 11 in the cooling chamber 9 is increased.

以下、前記実施形態で説明した電子ビーム発生装置5を備えた小型電子ビーム励起プラズマ発生装置を用いて、被処理材2としての鉄鋼材(工具鋼鋼材、JIS SKD61)の表面を窒化処理した例について説明する。   Hereinafter, an example in which the surface of a steel material (tool steel material, JIS SKD61) as the material to be processed 2 is nitrided using the small electron beam excitation plasma generator provided with the electron beam generator 5 described in the above embodiment. Will be described.

ポート1aから放電用アルゴンガスを電子ビーム発生室1に供給し、直流電源7によりジュール加熱された放電陰極4と補助電極6との間において、直流電源8により直流放電を起こした。その後、直流電源23により、多孔放電陽極15に放電を誘導するとともに、放電陰極4と多孔放電陽極15との間で生成されたプラズマから、多孔加速電極16により電子を引き出して電子ビームを生成し、この電子ビームを反応室3内に放出した。このときの電子ビームエネルギーは、直流電源23の電圧より制御した。反応室3内に放出された電子ビームは、ポート3aから供給されて石英チャンバ31中に導入された窒素ガスと衝突して、窒素プラズマを生成した。石英チャンバ31内の圧力は、排気口3bからの排気により調製した。また、石英チャンバ31内の温度は、外部ヒータ33により500℃程度に保った。   A discharge argon gas was supplied from the port 1 a to the electron beam generation chamber 1, and a DC discharge was generated by the DC power supply 8 between the discharge cathode 4 and the auxiliary electrode 6 that were Joule-heated by the DC power supply 7. Thereafter, the DC power source 23 induces discharge in the porous discharge anode 15, and electrons are extracted from the plasma generated between the discharge cathode 4 and the porous discharge anode 15 by the porous acceleration electrode 16 to generate an electron beam. The electron beam was emitted into the reaction chamber 3. The electron beam energy at this time was controlled by the voltage of the DC power source 23. The electron beam emitted into the reaction chamber 3 collided with nitrogen gas supplied from the port 3a and introduced into the quartz chamber 31 to generate nitrogen plasma. The pressure in the quartz chamber 31 was adjusted by exhaust from the exhaust port 3b. The temperature in the quartz chamber 31 was kept at about 500 ° C. by the external heater 33.

電子ビーム励起プラズマ生成時の条件を、電子ビームエネルギー:80eV、電子ビーム電流:10A、窒素ガス分圧:0.12Pa、アルゴンガス分圧:0.14Paとしたところ、多孔放電陽極15の第1中央多孔部151のほぼ全体に亘って僅かな赤熱が認められたが、第1中央多孔部151の一部のみが極端に赤熱することはなかった。すなわち、電子ビーム電流10Aでの定常運転が可能であることが認められた。   The conditions at the time of generating the electron beam excited plasma were as follows: electron beam energy: 80 eV, electron beam current: 10 A, nitrogen gas partial pressure: 0.12 Pa, argon gas partial pressure: 0.14 Pa. Although slight red heat was recognized over almost the entire central porous portion 151, only a part of the first central porous portion 151 was not extremely red hot. That is, it was confirmed that steady operation with an electron beam current of 10 A is possible.

これに対し、前記実施形態で説明した電子ビーム発生装置5における枠状金属板20を省くとともに、リード線19の電流導入端子191を多孔放電陽極15に接続して、上記と同様の条件で窒化処理した場合は、リード線19の電流導入端子191の接続点に近い部分のみが選択的に大きく赤熱し、その部分的な熱消耗も大きかった。これにより、枠状金属板20を設けることにより、多孔放電陽極15の第1中央多孔部151の全体でほぼ均一に放電を発生させて、第1中央多孔部151における熱負荷を第1中央多孔部151のほぼ全体に分散させることが可能になることが確認できた。   On the other hand, the frame-shaped metal plate 20 in the electron beam generator 5 described in the above embodiment is omitted, and the current introduction terminal 191 of the lead wire 19 is connected to the porous discharge anode 15 and is nitrided under the same conditions as described above. When the treatment was performed, only the portion of the lead wire 19 near the connection point of the current introduction terminal 191 was selectively greatly red-hot, and the partial heat consumption was also large. Thus, by providing the frame-shaped metal plate 20, discharge is generated almost uniformly throughout the first central porous portion 151 of the porous discharge anode 15, and the heat load in the first central porous portion 151 is changed to the first central porous portion 151. It was confirmed that it was possible to disperse almost the entire portion 151.

また、前記実施形態で説明した電子ビーム発生装置5を備えた実施例の小型電子ビーム励起プラズマ発生装置を用いて、電子ビーム励起プラズマ生成時の条件を、電子ビームエネルギー:80eV、窒素ガス分圧:0.12Pa、アルゴンガス分圧:0.14Paとし、電子ビーム電流を2〜10Aの範囲で種々変更したときに、生成される電子ビーム励起プラズマのプラズマ密度を調べた。その結果を図4に示す。   In addition, using the small electron beam excitation plasma generation apparatus of the example provided with the electron beam generation apparatus 5 described in the above embodiment, the conditions for generating the electron beam excitation plasma are as follows: electron beam energy: 80 eV, nitrogen gas partial pressure : 0.12 Pa, argon gas partial pressure: 0.14 Pa, and when the electron beam current was variously changed in the range of 2 to 10 A, the plasma density of the generated electron beam excited plasma was examined. The result is shown in FIG.

比較のため、従来の電子ビーム発生装置を備えた比較例1の小型電子ビーム励起プラズマ発生装置を用いた場合について、同様に電子ビーム電流と、電子ビーム励起プラズマのプラズマ密度との関係を調べた。その結果を図4に併せて示す。なお、ここで用いた従来の電子ビーム発生装置では、多孔放電陽極及び第1中央多孔部の外形状、並びに多孔加速電極及び第2中央多孔部の外形状を円形状とし、また枠状金属板20を省くとともにリード線19の電流導入端子191を多孔放電陽極に接続した。   For comparison, the relationship between the electron beam current and the plasma density of the electron beam excited plasma was similarly examined in the case of using the small electron beam excited plasma generator of Comparative Example 1 equipped with the conventional electron beam generator. . The results are also shown in FIG. In the conventional electron beam generator used here, the outer shape of the porous discharge anode and the first central porous portion and the outer shape of the porous acceleration electrode and the second central porous portion are circular, and the frame-shaped metal plate 20 was omitted and the current introduction terminal 191 of the lead wire 19 was connected to the porous discharge anode.

図4において、□で示すのが実施例のデータであり、●で示すのが比較例1のデータである。図4から明らかなように、実施例のデータでは、電子ビーム電流を10Aまで増大させた場合であっても、電子ビーム電流の増大に伴って、生成される電子ビーム励起プラズマのプラズマ密度も増大した。これに対し、比較例1のデータにおいては、電子ビーム電流2〜6A程度の範囲でのみ、電子ビーム電流の増大に伴って、生成される電子ビーム励起プラズマのプラズマ密度が増大したが、電子ビーム電流6A〜10Aの範囲では、電子ビーム電流を増大させても、生成される電子ビーム励起プラズマのプラズマ密度は増大しなかった。   In FIG. 4, the square indicates the data of the example, and the black circle indicates the data of Comparative Example 1. As is clear from FIG. 4, in the data of the example, even when the electron beam current is increased to 10 A, the plasma density of the generated electron beam excited plasma increases as the electron beam current increases. did. On the other hand, in the data of Comparative Example 1, the plasma density of the generated electron beam excited plasma increased with the increase of the electron beam current only in the range of about 2 to 6 A of the electron beam current. In the current range of 6A to 10A, even if the electron beam current was increased, the plasma density of the generated electron beam excited plasma did not increase.

さらに、前記実施形態で説明した電子ビーム発生装置5を備えた実施例の小型電子ビーム励起プラズマ発生装置を用いて、電子ビーム励起プラズマ生成時の条件を、電子ビームエネルギー:80eV、窒素ガス分圧:0.12Pa、アルゴンガス分圧:0.14Pa、試料バイアス電圧:−50V、電子ビーム電流:8A、プラズマ密度:1.7×1010cm−3として窒化処理したところ、3時間という短い処理時間で、工具鋼鋼材の表面から60μmの深さ範囲までをHv1100以上のビッカース硬さとすることができた。 Further, using the small-sized electron beam excitation plasma generation apparatus of the example provided with the electron beam generation apparatus 5 described in the above embodiment, the conditions for generating the electron beam excitation plasma are as follows: electron beam energy: 80 eV, nitrogen gas partial pressure : Nitrogen treatment with 0.12 Pa, argon gas partial pressure: 0.14 Pa, sample bias voltage: −50 V, electron beam current: 8 A, plasma density: 1.7 × 10 10 cm −3 , short treatment of 3 hours From time to time, the Vickers hardness of Hv 1100 or higher was able to be obtained from the surface of the tool steel material to a depth range of 60 μm.

これに対し、前記従来の電子ビーム発生装置を備えた比較例1の小型電子ビーム励起プラズマ発生装置を用いて、電子ビーム励起プラズマ生成時の条件を、電子ビームエネルギー:80eV、窒素ガス分圧:0.12Pa、アルゴンガス分圧:0.14Pa、試料バイアス電圧:−50V、電子ビーム電流:5A、プラズマ密度:1.3×1010cm−3として窒化処理したところ、6時間と処理時間を長くしても、ビッカース硬さがHv1100以上となったのは工具鋼鋼材の表面から50μmの深さ範囲までだけであった。 On the other hand, using the small electron beam excitation plasma generator of Comparative Example 1 equipped with the conventional electron beam generator, the conditions at the time of generating the electron beam excitation plasma are as follows: electron beam energy: 80 eV, nitrogen gas partial pressure: Nitriding was performed at 0.12 Pa, argon gas partial pressure: 0.14 Pa, sample bias voltage: −50 V, electron beam current: 5 A, plasma density: 1.3 × 10 10 cm −3 , and the processing time was 6 hours. Even if it was made longer, the Vickers hardness was Hv 1100 or higher only from the surface of the tool steel material to a depth range of 50 μm.

加えて、前記実施形態で説明した電子ビーム発生装置5を備えた実施例の小型電子ビーム励起プラズマ発生装置において、電子ビームエネルギー:80eV、放電電圧:43V、アルゴンガス分圧:0.15Paとし、電子ビーム電流を時間の経過とともに1.9A、3.3A、4.5A、5.6A、6.7A、7.6A、8.4と徐々に増大させて、多孔放電陽極15の温度を測定した。なお、この電極温度の測定では、多孔放電陽極15の第1中央多孔部151の温度であって、第1中央多孔部151の端(リード線19の接続点に近い側の端)から4mm離れた位置の温度を測定した。その結果を図5に示す。   In addition, in the small electron beam excitation plasma generator of the example provided with the electron beam generator 5 described in the above embodiment, electron beam energy: 80 eV, discharge voltage: 43 V, argon gas partial pressure: 0.15 Pa, The temperature of the porous discharge anode 15 is measured by gradually increasing the electron beam current to 1.9 A, 3.3 A, 4.5 A, 5.6 A, 6.7 A, 7.6 A, and 8.4 over time. did. In this measurement of the electrode temperature, the temperature of the first central porous portion 151 of the porous discharge anode 15 is 4 mm away from the end of the first central porous portion 151 (the end closer to the connection point of the lead wire 19). The temperature at the selected position was measured. The result is shown in FIG.

比較のため、第1絶縁板17及び第2絶縁板18の材料として、窒化アルミニウムの代わりにアルミナとシリカとの複合セラミックス(マシナブルセラミックス)を採用したこと以外は、実施例の小型電子ビーム励起プラズマ発生装置と同様の比較例2の小型電子ビーム励起プラズマ発生装置について、実施例と同様に電極温度を測定した。その結果を図5に併せて示す。なお、このマシナブルセラミックスの熱伝導率は2W/m・Kである。   For comparison, the small-sized electron beam excitation of the example is used except that a composite ceramic (a machinable ceramic) of alumina and silica is used instead of aluminum nitride as the material of the first insulating plate 17 and the second insulating plate 18. For the small electron beam excited plasma generator of Comparative Example 2 similar to the plasma generator, the electrode temperature was measured in the same manner as in the example. The results are also shown in FIG. The machinable ceramic has a thermal conductivity of 2 W / m · K.

図5から明らかなように、第1絶縁板17及び第2絶縁板18の材料として窒化アルミニウムを採用することにより、電極温度を最大で200℃近く低下させることができた。   As is apparent from FIG. 5, the electrode temperature could be lowered by about 200 ° C. at the maximum by using aluminum nitride as the material of the first insulating plate 17 and the second insulating plate 18.

実施形態に係る電子ビーム発生装置の要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of the electron beam generator which concerns on embodiment. 実施形態に係る電子ビーム発生装置の斜視図である。It is a perspective view of the electron beam generator concerning an embodiment. 実施形態に係る電子ビーム発生装置を用いた小型電子ビーム励起プラズマ発生装置の全体構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the whole structure of the small electron beam excitation plasma generator using the electron beam generator which concerns on embodiment. 実施例と比較例1とにおいて、電子ビーム電流と、電子ビーム励起プラズマのプラズマ密度との関係を示すグラフである。In an Example and the comparative example 1, it is a graph which shows the relationship between an electron beam current and the plasma density of electron beam excitation plasma. 実施例と比較例2とにおいて、電子ビーム電流と電極温度との関係を示すグラフである。In an Example and the comparative example 2, it is a graph which shows the relationship between an electron beam current and electrode temperature.

符号の説明Explanation of symbols

4…放電陰極 5…電子ビーム発生装置
9…冷却チャンバ 10…電極部
11…冷却通路 12…電極保持部
13…凹部 14…貫通孔
15…多孔放電陽極 16…多孔加速電極
17…第1絶縁板 18…第2絶縁板
19…リード線 20…枠状金属板
21…絶縁ネジ 151…第1中央多孔部
152…第1周縁部 151a…第1透孔
161…第2中央多孔部 162…第2周縁部
162a…第2透孔 171…通孔
DESCRIPTION OF SYMBOLS 4 ... Discharge cathode 5 ... Electron beam generator 9 ... Cooling chamber 10 ... Electrode part 11 ... Cooling passage 12 ... Electrode holding part 13 ... Recessed part 14 ... Through-hole 15 ... Porous discharge anode 16 ... Porous acceleration electrode 17 ... 1st insulating board DESCRIPTION OF SYMBOLS 18 ... 2nd insulating board 19 ... Lead wire 20 ... Frame-shaped metal plate 21 ... Insulating screw 151 ... 1st center porous part 152 ... 1st peripheral part 151a ... 1st through-hole 161 ... 2nd center porous part 162 ... 2nd Peripheral portion 162a ... second through hole 171 ... through hole

Claims (4)

プラズマ発生用の放電陰極と対向するように電子ビーム励起プラズマ発生装置に配設される電子ビーム発生装置であって、
複数の電極保持部と、各該電極保持部にそれぞれ設けられた複数の貫通孔と、冷却機構とを有するチャンバと、
各前記電極保持部にそれぞれ保持されるとともに前記放電陰極からの電子によりプラズマを発生させ、発生した該プラズマの電子を透過するための第1透孔が複数貫設された第1中央多孔部と、該第1中央多孔部の周縁に一体に設けられた枠状の第1周縁部とを有する複数の多孔放電陽極と、
各前記多孔放電陽極と対向するように各前記電極保持部にそれぞれ直に接して保持されるとともに該多孔放電陽極の前記第1透孔から前記電子を引き出して加速し、加速した該電子を透過するための複数の第2透孔が貫設された第2中央多孔部と、該第2中央多孔部の周縁に一体に設けられた枠状の第2周縁部とを有する複数の多孔加速電極と、
各前記多孔放電陽極と各前記多孔加速電極との間に配設されて該多孔放電陽極及び該多孔加速電極間を絶縁し、該多孔放電陽極の前記第1中央多孔部及び該多孔加速電極の前記第2中央多孔部に対応した形状の通孔を有する複数の第1絶縁板と、
各前記多孔放電陽極と各前記電極保持部との間に配設されて該多孔放電陽極及び該電極保持部間を絶縁する複数の第2絶縁板と、
各前記多孔放電陽極に通電するための複数のリード線と、を備え、
前記多孔放電陽極及び前記多孔加速電極の外形状における長手方向長さに対する短手方向長さの比が1未満であり、
前記第1絶縁板及び前記第2絶縁板が5W/m・K以上の熱伝導率を有する熱伝導性電気絶縁材よりなることを特徴とする電子ビーム発生装置。
An electron beam generator disposed in an electron beam excited plasma generator so as to face a discharge cathode for plasma generation,
A chamber having a plurality of electrode holding portions, a plurality of through holes provided in each of the electrode holding portions, and a cooling mechanism;
A first central porous portion that is held by each of the electrode holding portions, generates plasma by electrons from the discharge cathode, and includes a plurality of first through holes for transmitting the generated electrons of the plasma; A plurality of porous discharge anodes having a frame-shaped first peripheral portion integrally provided at the periphery of the first central porous portion;
The electrodes are held in direct contact with the electrode holding portions so as to face the porous discharge anodes, and are accelerated by extracting the electrons from the first through holes of the porous discharge anodes, and transmitting the accelerated electrons. A plurality of porous accelerating electrodes having a second central porous portion through which a plurality of second through holes are formed, and a frame-shaped second peripheral portion integrally provided at the periphery of the second central porous portion When,
The porous discharge anode and the porous acceleration electrode are disposed between the porous discharge anode and the porous acceleration electrode to insulate the porous discharge anode and the porous acceleration electrode, and the first central porous portion of the porous discharge anode and the porous acceleration electrode A plurality of first insulating plates having through holes in a shape corresponding to the second central porous portion;
A plurality of second insulating plates disposed between each of the porous discharge anodes and each of the electrode holding portions to insulate between the porous discharge anode and the electrode holding portions;
A plurality of lead wires for energizing each of the porous discharge anodes,
The ratio of the lateral length to the longitudinal length in the outer shape of the porous discharge anode and the porous acceleration electrode is less than 1,
The electron beam generator according to claim 1, wherein the first insulating plate and the second insulating plate are made of a thermally conductive electrical insulating material having a thermal conductivity of 5 W / m · K or more.
前記多孔放電陽極及び前記多孔加速電極の外形状が矩形状であり、かつ前記第1中央多孔部及び前記第2中央多孔部の外形状が矩形状である請求項1に記載の電子ビーム発生装置。   2. The electron beam generator according to claim 1, wherein outer shapes of the porous discharge anode and the porous acceleration electrode are rectangular, and outer shapes of the first central porous portion and the second central porous portion are rectangular. . 前記多孔放電陽極の前記第1周縁部に接して配設された枠状金属板をさらに備え、
前記枠状金属板が前記多孔放電陽極を構成する材料よりも電気伝導率の高い金属よりなり、前記リード線が該枠状金属板に接続される請求項1又は2に記載の電子ビーム発生装置。
A frame-shaped metal plate disposed in contact with the first peripheral edge of the porous discharge anode;
The electron beam generator according to claim 1 or 2, wherein the frame-shaped metal plate is made of a metal having a higher electric conductivity than the material constituting the porous discharge anode, and the lead wire is connected to the frame-shaped metal plate. .
前記熱伝導性電気絶縁材が窒化系セラミックスである請求項1〜3のいずれか一つに記載の電子ビーム発生装置。   The electron beam generator according to any one of claims 1 to 3, wherein the thermally conductive electrical insulating material is a nitride ceramic.
JP2008204159A 2008-08-07 2008-08-07 Electron beam generator Active JP5075052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204159A JP5075052B2 (en) 2008-08-07 2008-08-07 Electron beam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204159A JP5075052B2 (en) 2008-08-07 2008-08-07 Electron beam generator

Publications (2)

Publication Number Publication Date
JP2010040417A true JP2010040417A (en) 2010-02-18
JP5075052B2 JP5075052B2 (en) 2012-11-14

Family

ID=42012736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204159A Active JP5075052B2 (en) 2008-08-07 2008-08-07 Electron beam generator

Country Status (1)

Country Link
JP (1) JP5075052B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148082B1 (en) 2010-11-15 2012-05-24 한국표준과학연구원 Plasma generation apparatus and generation method of the same
JPWO2012153767A1 (en) * 2011-05-09 2014-07-31 学校法人トヨタ学園 Nitriding processing method and nitriding processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190299A (en) * 1987-01-31 1988-08-05 東京エレクトロン株式会社 Plasma apparatus
JPH06176889A (en) * 1992-12-02 1994-06-24 Ishikawajima Harima Heavy Ind Co Ltd Ion source electrode
JPH06302291A (en) * 1993-04-14 1994-10-28 Rikagaku Kenkyusho Electron beam source
JPH117900A (en) * 1997-06-13 1999-01-12 Kawasaki Heavy Ind Ltd Electron beam stimulated plasma generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190299A (en) * 1987-01-31 1988-08-05 東京エレクトロン株式会社 Plasma apparatus
JPH06176889A (en) * 1992-12-02 1994-06-24 Ishikawajima Harima Heavy Ind Co Ltd Ion source electrode
JPH06302291A (en) * 1993-04-14 1994-10-28 Rikagaku Kenkyusho Electron beam source
JPH117900A (en) * 1997-06-13 1999-01-12 Kawasaki Heavy Ind Ltd Electron beam stimulated plasma generating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148082B1 (en) 2010-11-15 2012-05-24 한국표준과학연구원 Plasma generation apparatus and generation method of the same
JPWO2012153767A1 (en) * 2011-05-09 2014-07-31 学校法人トヨタ学園 Nitriding processing method and nitriding processing apparatus

Also Published As

Publication number Publication date
JP5075052B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
RU2013123930A (en) ELECTRON BEAM GENERATION DEVICE
JPS6128960B2 (en)
SE521904C2 (en) Hybrid Plasma Treatment Device
JP4593652B2 (en) Microwave plasma processing equipment
JP5075052B2 (en) Electron beam generator
CN108475606B (en) Indirectly heated cathode ion source and apparatus for use therewith
US4847476A (en) Ion source device
US8642917B2 (en) Highly ordered structure pyrolitic graphite or carbon-carbon composite cathodes for plasma generation in carbon containing gases
CN109600895B (en) High density hot cathode plasma source
US8961888B2 (en) Plasma generator
JP2019009306A (en) Power feeding member and substrate processing device
IL170401A (en) Plasma emitter and method utilizing the same
TW201923809A (en) Ion source and ion implantation apparatus
US4531077A (en) Ion source with improved primary arc collimation
CN109841470B (en) Apparatus for ion implantation and method for generating ions during ion implantation
JP2015187951A (en) Plasma processing device and antenna unit for the same
JP2008235288A (en) Device for plasma processing, and wave retardation plate
JP4984285B2 (en) High density plasma processing equipment
JP2003077904A5 (en)
JP3140636B2 (en) Plasma generator
JP2001210245A (en) Ion source and ion extracting electrode
Chernov The powerful high-voltage glow discharge electron gun and power unit on its base
JPH0272544A (en) Ion source and ion generating method
JP2860253B2 (en) Electron beam excited plasma generator
CN217062011U (en) Field emission electron source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R151 Written notification of patent or utility model registration

Ref document number: 5075052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250