JPH1178836A - Driving force control device for four-wheel drive vehicle - Google Patents
Driving force control device for four-wheel drive vehicleInfo
- Publication number
- JPH1178836A JPH1178836A JP25284297A JP25284297A JPH1178836A JP H1178836 A JPH1178836 A JP H1178836A JP 25284297 A JP25284297 A JP 25284297A JP 25284297 A JP25284297 A JP 25284297A JP H1178836 A JPH1178836 A JP H1178836A
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- vehicle
- amount
- calculated
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Regulating Braking Force (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、四輪駆動車に係
り、更に詳細には四輪駆動車の駆動力制御装置に係る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a four-wheel drive vehicle, and more particularly, to a driving force control device for a four-wheel drive vehicle.
【0002】[0002]
【従来の技術】四輪駆動車の駆動力制御装置の一つとし
て、例えば本願出願人の一方の出願にかかる特願平9−
23695号明細書及び図面に記載されている如く、前
後若しくは左右の車輪間の車輪速度差を演算し、該車輪
速度差に基づき駆動スリップが生じている車輪に制動力
を与えるよう構成された駆動力制御装置が既に提案され
ている。2. Description of the Related Art One of the driving force control devices for a four-wheel drive vehicle is disclosed in, for example, Japanese Patent Application No. Hei.
As described in US Pat. No. 23,695 and drawings, a drive configured to calculate a wheel speed difference between front and rear or left and right wheels and to apply a braking force to a wheel having a drive slip based on the wheel speed difference. Force controllers have already been proposed.
【0003】かかる駆動力制御装置によれば、駆動スリ
ップが生じている車輪を自動的に制動しその車輪速度を
適正な値に低減することにより、前後若しくは左右の車
輪間の車輪速度差が過剰になることを防止することがで
き、デフロック機構の如き専用の差動制限機構を設ける
ことなく各輪の実駆動力を高くすることができる。According to such a driving force control device, a wheel having a driving slip is automatically braked and its wheel speed is reduced to an appropriate value, so that a wheel speed difference between front and rear or left and right wheels becomes excessive. And the actual driving force of each wheel can be increased without providing a dedicated differential limiting mechanism such as a differential lock mechanism.
【0004】[0004]
【発明が解決しようとする課題】しかし上述の如き駆動
力制御装置に於いては、何らかの要因により何れかの車
輪の車輪速度が低下すると、他の車輪が駆動スリップ状
態にあると判定されてしまい、そのため他の車輪が不必
要に制動されることによって車輌が減速されてしまうと
いう問題がある。However, in the driving force control device as described above, if the wheel speed of any one of the wheels decreases for some reason, it is determined that the other wheels are in the driving slip state. Therefore, there is a problem that the vehicle is decelerated due to unnecessary braking of other wheels.
【0005】また車輌の旋回時に生じる旋回内外輪の車
輪速度差に起因して不必要な駆動スリップ制御が行われ
ることを防止する必要があるので、左右の車輪間の差動
目標値を小さく設定することができず、そのため悪路走
破性(スタック脱出性能)や旋回時の回頭性能を十分に
向上させることができないという問題がある。Further, it is necessary to prevent unnecessary drive slip control from being performed due to a difference in wheel speed between the inner and outer wheels during turning of the vehicle. Therefore, a small differential target value between the left and right wheels is set. Therefore, there is a problem that it is impossible to sufficiently improve running performance on a rough road (stack escape performance) and turning performance at the time of turning.
【0006】本発明は、前後若しくは左右の車輪間の車
輪速度差に基づき車輪の制動力を制御して各輪の差動回
転を抑制するよう構成された四輪駆動車の駆動力制御装
置に於ける上述の如き問題に鑑みてなされたものであ
り、本発明の主要な課題は、車輌の基準位置に於ける車
体速度及び各輪の車輪速度に基づき各輪の駆動スリップ
の大きさを求めると共に、各輪間の駆動スリップの大き
さの差に基づき車輪を制動することにより、何れかの車
輪の車輪速度の低下時に他の車輪が不必要に制動される
ことを防止すると共に、各輪の差動回転を良好に抑制し
つつ車輌の悪路走破性や旋回性能を十分に向上させるこ
とである。The present invention relates to a driving force control apparatus for a four-wheel drive vehicle configured to control the braking force of the wheels based on the wheel speed difference between the front and rear or left and right wheels to suppress the differential rotation of each wheel. SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-described problems, and a main object of the present invention is to obtain a magnitude of a drive slip of each wheel based on a vehicle speed at a reference position of the vehicle and a wheel speed of each wheel. At the same time, by braking the wheels based on the difference in the magnitude of the drive slip between the wheels, it is possible to prevent unnecessary braking of the other wheels when the wheel speed of any of the wheels decreases, and The objective of the present invention is to sufficiently improve the vehicle's ability to travel on rough roads and the turning performance while favorably suppressing the differential rotation of the vehicle.
【0007】[0007]
【課題を解決するための手段】上述の主要な課題は、本
発明によれば、請求項1の構成、即ち各輪の実車輪速度
を検出する手段と、車輌の基準位置に於ける車体速度を
基準車輪速度として推定する手段と、前記基準位置に於
ける各輪の実車輪速度を推定する手段と、前記基準位置
に於ける各輪の実車輪速度と基準車輪速度とに基づき各
輪の駆動スリップの大きさを演算する手段と、各輪間の
前記駆動スリップの大きさの差に基づき各輪の制動目標
量を演算する手段とを有する四輪駆動車の駆動力制御装
置によって達成される。SUMMARY OF THE INVENTION According to the present invention, there is provided, in accordance with the present invention, a structure according to claim 1, namely, means for detecting the actual wheel speed of each wheel, and the vehicle speed at a reference position of the vehicle. Means for estimating the actual wheel speed of each wheel at the reference position, and means for estimating the actual wheel speed of each wheel at the reference position. This is achieved by a four-wheel drive vehicle driving force control device having means for calculating the magnitude of the driving slip and means for calculating the braking target amount for each wheel based on the difference in the magnitude of the driving slip between the wheels. You.
【0008】上述の請求項1の構成によれば、車輌の基
準位置に於ける車体速度が基準車輪速度として推定さ
れ、基準位置に於ける各輪の実車輪速度が推定され、基
準位置に於ける各輪の実車輪速度と基準車輪速度とに基
づき各輪の駆動スリップの大きさが演算され、各輪間の
駆動スリップの大きさの差に基づき各輪の制動目標量が
演算されるので、何らかの要因により何れかの車輪の車
輪速度が低下しても、他の車輪が駆動スリップ状態にあ
ると判定されず、従って車輪が不必要に制動されること
もない。According to the configuration of the first aspect, the vehicle speed at the reference position of the vehicle is estimated as the reference wheel speed, and the actual wheel speed of each wheel at the reference position is estimated. The magnitude of the drive slip of each wheel is calculated based on the actual wheel speed of each wheel and the reference wheel speed, and the braking target amount of each wheel is calculated based on the difference in the magnitude of the drive slip between the wheels. Even if the wheel speed of one of the wheels decreases due to some factor, it is not determined that the other wheels are in the drive slip state, and therefore, the wheels are not unnecessarily braked.
【0009】また車輌の旋回時に必要な旋回内外輪の車
輪速度差が基準車輪速度に反映されるので、左右の車輪
間の差動目標値を小さく設定することができ、従って旋
回内外輪の車輪速度差に起因して不必要な駆動スリップ
制御が行われることを防止しつつ、車輌の悪路走破性や
旋回性能を十分に向上させることが可能になる。Further, since the difference in wheel speed between the inner and outer wheels required for turning of the vehicle is reflected in the reference wheel speed, the differential target value between the left and right wheels can be set to be small. It is possible to sufficiently improve the vehicle's ability to travel on rough roads and turn performance while preventing unnecessary drive slip control from being performed due to the speed difference.
【0010】[0010]
【課題解決手段の好ましい態様】本発明の一つの好まし
い態様によれば、上述の請求項1の構成に於て、車輌の
基準位置は各輪の位置であり、基準位置に於ける車体速
度を基準車輪速度として推定する手段は各輪の実車輪速
度に基づき車輌の特定の位置に於ける車体速度を推定
し、特定の位置に於ける車体速度に基づき各輪の位置に
於ける車体速度を演算することにより推定するよう構成
される(好ましい態様1)。According to a preferred aspect of the present invention, in the above-described structure of the first aspect, the reference position of the vehicle is the position of each wheel, and the vehicle speed at the reference position is determined. The means for estimating the reference wheel speed estimates the vehicle speed at a specific position of the vehicle based on the actual wheel speed of each wheel, and calculates the vehicle speed at each wheel position based on the vehicle speed at the specific position. It is configured to estimate by calculation (preferred mode 1).
【0011】また本発明の他の一つの好ましい態様によ
れば、上述の好ましい態様1の構成に於て、車輌の特定
の位置は車輌の重心に設定されるよう構成される(好ま
しい態様2)。According to another preferred embodiment of the present invention, in the above-mentioned preferred embodiment 1, the specific position of the vehicle is set at the center of gravity of the vehicle (preferred embodiment 2). .
【0012】また本発明の他の一つの好ましい態様によ
れば、上述の請求項1の構成に於て、各輪間の駆動スリ
ップの大きさの差は左右輪間の駆動スリップの大きさの
差及び左右前輪の駆動スリップの大きさの平均値と左右
後輪の駆動スリップの大きさの平均値との差の線形和で
あるよう構成される(好ましい態様3)。According to another preferred embodiment of the present invention, in the above-mentioned configuration of the first aspect, the difference in the magnitude of the drive slip between the respective wheels is determined by the magnitude of the magnitude of the drive slip between the left and right wheels. It is configured to be a linear sum of the difference and the difference between the average value of the drive slip magnitudes of the left and right front wheels and the average value of the drive slip magnitudes of the left and right rear wheels (preferred embodiment 3).
【0013】[0013]
【発明の実施の形態】以下に添付の図を参照しつつ、本
発明を好ましい実施形態について詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
【0014】図1は本発明による四輪駆動車の駆動力制
御装置の一つの実施形態を示す概略構成図である。FIG. 1 is a schematic diagram showing one embodiment of a driving force control apparatus for a four-wheel drive vehicle according to the present invention.
【0015】図1に於いて、10はエンジンを示してお
り、エンジン10の駆動力はトルクコンバータ12及び
トランスミッション14を介して出力軸16へ伝達さ
れ、出力軸16の駆動力はセンタディファレンシャル1
8により前輪用プロペラシャフト20及び後輪用プロペ
ラシャフト22へ伝達される。尚周知の如く、エンジン
10の出力は運転者により操作される図1には示されて
いないアクセルペダルの踏み込み量に応じて制御され
る。In FIG. 1, reference numeral 10 denotes an engine. The driving force of the engine 10 is transmitted to an output shaft 16 via a torque converter 12 and a transmission 14, and the driving force of the output shaft 16 is a center differential 1.
The power is transmitted to the front wheel propeller shaft 20 and the rear wheel propeller shaft 22 by 8. As is well known, the output of the engine 10 is controlled in accordance with the depression amount of an accelerator pedal (not shown in FIG. 1) operated by the driver.
【0016】前輪用プロペラシャフト20の駆動力は前
輪ディファレンシャル24により左前輪車軸26L 及び
右前輪車軸26R へ伝達され、これにより左右の前輪2
8FL及び28FRが回転駆動される。同様に後輪用プロペ
ラシャフト22の駆動力は後輪ディファレンシャル30
により左後輪車軸32L 及び右後輪車軸32R へ伝達さ
れ、これにより左右の後輪34RL及び34RRが回転駆動
される。The driving force of the front wheel propeller shaft 20 is transmitted to the left front wheel axle 26L and the right front wheel axle 26R by the front wheel differential 24.
8FL and 28FR are rotationally driven. Similarly, the driving force of the rear wheel propeller shaft 22 is the rear wheel differential 30
To the left rear wheel axle 32L and the right rear wheel axle 32R, whereby the left and right rear wheels 34RL and 34RR are rotationally driven.
【0017】左右の前輪28FL、28FR及び左右の後輪
34RL、34RRの制動力は制動装置36の油圧回路38
により対応するホイールシリンダ40FL、40FR、40
RL、40RRの制動圧が制御されることによって制御され
る。図には示されていないが、油圧回路38はリザー
バ、オイルポンプ、種々の弁装置等を含み、各ホイール
シリンダの制動圧は通常時には運転者によるブレーキペ
ダル42の踏み込み操作に応じて駆動されるマスタシリ
ンダ44により制御され、また必要に応じて後に詳細に
説明する如く電気式制御装置44により制御される。The braking force of the left and right front wheels 28FL, 28FR and the left and right rear wheels 34RL, 34RR is controlled by a hydraulic circuit 38 of a braking device 36.
Corresponding wheel cylinders 40FL, 40FR, 40
It is controlled by controlling the braking pressure of RL and 40RR. Although not shown in the drawing, the hydraulic circuit 38 includes a reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is normally driven in response to the driver's depression operation of the brake pedal 42. It is controlled by a master cylinder 44 and, if necessary, by an electric control unit 44 as will be described in detail later.
【0018】電気式制御装置44には車輪速度センサ4
6fr、46fl、46rr、46rlより左右前輪及び左右後
輪の車輪速度Vfr、Vfl、Vrr、Vrlを示す信号、ヨー
レートセンサ48より車輌のヨーレートγを示す信号、
前後加速度センサ50及び横加速度センサ52よりそれ
ぞれ車輌の前後加速度Gx 及び横加速度Gy を示す信
号、車速センサ54より車速Vを示す信号、操舵角セン
サ56より操舵角θを示す信号が入力されるようになっ
ている。尚ヨーレートセンサ48、横加速度センサ52
及び操舵角センサ56は車輌の左旋回方向を正として横
加速度等を検出し、前後加速度センサ50は車輌の加速
方向を正として前後加速度を検出するようになってい
る。The electric control unit 44 includes a wheel speed sensor 4
Signals indicating the wheel speeds Vfr, Vfl, Vrr, Vrl of the left and right front wheels and left and right rear wheels from 6fr, 46fl, 46rr, 46rl, a signal indicating the yaw rate γ of the vehicle from the yaw rate sensor 48,
A signal indicating the longitudinal acceleration Gx and a lateral acceleration Gy of the vehicle from the longitudinal acceleration sensor 50 and the lateral acceleration sensor 52, a signal indicating the vehicle speed V from the vehicle speed sensor 54, and a signal indicating the steering angle θ from the steering angle sensor 56 are input. It has become. The yaw rate sensor 48, the lateral acceleration sensor 52
The steering angle sensor 56 detects lateral acceleration and the like with the left turning direction of the vehicle as positive, and the longitudinal acceleration sensor 50 detects longitudinal acceleration with the acceleration direction of the vehicle as positive.
【0019】後に詳細に説明する如く、電気式制御装置
44は各輪の車輪速度Vwi(i=fr、fl、rr、rl)に基
づき車輌の重心に於ける車体速度Vb を演算し、車体速
度Vb に基づき各輪の位置に於ける車体速度として各輪
の基準車輪速度Vbiを演算し、実車輪速度Vwiと基準車
輪速度Vbiとの差として各輪のスリップ量SLi を演算
し、各輪のスリップ量SLi に基づき各輪の制御基準量
ΔVwiを演算し、車速V及び横加速度Gy に基づき制御
目標量ΔVt を演算し、制御基準量ΔVwiと制御目標量
ΔVt との差に基づき各輪の目標制御量BPi を演算
し、目標制御量BPi に基づき各輪の増減圧制御弁のデ
ューティ比DRi を演算し、デューティ比DRi に基づ
き各輪の増減圧制御弁を制御して各輪の制動圧を目標制
御量BPiに対応する値に制御し、これにより各輪の不
必要な差動回転を抑制する。As will be described later in detail, the electric controller 44 calculates the vehicle speed Vb at the center of gravity of the vehicle based on the wheel speed Vwi (i = fr, fl, rr, rl) of each wheel, and calculates the vehicle speed. Based on Vb, the reference wheel speed Vbi of each wheel is calculated as the vehicle speed at the position of each wheel, and the slip amount SLi of each wheel is calculated as the difference between the actual wheel speed Vwi and the reference wheel speed Vbi. The control reference amount ΔVwi for each wheel is calculated based on the slip amount SLi, the control target amount ΔVt is calculated based on the vehicle speed V and the lateral acceleration Gy, and the target value for each wheel is calculated based on the difference between the control reference amount ΔVwi and the control target amount ΔVt. The control amount BPi is calculated, the duty ratio DRi of the pressure increase / decrease control valve of each wheel is calculated based on the target control amount BPi, and the pressure increase / decrease control valve of each wheel is controlled based on the duty ratio DRi to reduce the braking pressure of each wheel. Control to a value corresponding to the target control amount BPi, More suppress unwanted differential rotation of each wheel.
【0020】尚電気式制御装置44は実際には例えばC
PU、ROM、RAM、入出力装置を含む一つのマイク
ロコンピュータ及び駆動回路にて構成されていてよい。
また電気式制御装置44は例えば各輪の制駆動力を制御
することにより車輌の挙動を安定化させる挙動制御装置
の一部であってもよい。Note that the electric control device 44 is actually, for example, C
It may be constituted by one microcomputer including a PU, a ROM, a RAM, and an input / output device and a drive circuit.
The electric control device 44 may be a part of a behavior control device that stabilizes the behavior of the vehicle by controlling, for example, the braking / driving force of each wheel.
【0021】次に図2に示されたフローチャートを参照
して実施形態に於ける各輪の駆動力制御のメインルーチ
ンについて説明する。尚図2に示されたフローチャート
による制御は図には示されていないイグニッションスイ
ッチの閉成により開始され、例えば、右前輪、左前輪、
右後輪、左後輪の順に所定の時間毎に繰返し実行され
る。Next, the main routine of the driving force control of each wheel in the embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 2 is started by closing an ignition switch (not shown). For example, the right front wheel, the left front wheel,
It is repeatedly executed at predetermined time intervals in the order of the right rear wheel and the left rear wheel.
【0022】まずステップ10に於いては車輪速度セン
サ46fr〜46rlにより検出された各輪の車輪速度Vwi
を示す信号等の読み込みが行われ、ステップ20に於い
ては図3に示されたフローチャートに従って各車輪速度
Vwi等に基づき車輌の特定の位置としての重心に於ける
車体速度Vb が演算される。First, in step 10, the wheel speed Vwi of each wheel detected by the wheel speed sensors 46fr to 46rl.
Is read, and in step 20, the vehicle speed Vb at the center of gravity as a specific position of the vehicle is calculated based on the wheel speeds Vwi and the like in accordance with the flowchart shown in FIG.
【0023】ステップ30に於いては横加速度Gy と車
体速度Vb 及びヨーレートγの積Vb ・γとの偏差Gy
−Vb ・γとして横加速度の偏差、即ち車輌の横滑り加
速度Vydが演算され、この横加速度の偏差Vydが積分さ
れることにより車体の横滑り速度Vy が演算され、車体
速度Vb に対する車体の横滑り速度Vy の比Vy /Vb
として車輌の重心に於ける車体のスリップ角βが演算さ
れる。In step 30, the deviation Gy between the lateral acceleration Gy and the product Vb.γ of the vehicle speed Vb and the yaw rate γ is calculated.
The deviation of the lateral acceleration, ie, the side slip acceleration Vyd of the vehicle is calculated as −Vb · γ, and the side slip speed Vy of the vehicle body is calculated by integrating the deviation Vyd of the lateral acceleration. Ratio Vy / Vb
Is calculated as the slip angle β of the vehicle body at the center of gravity of the vehicle.
【0024】ステップ40に於いてはNsgをステアリン
グギヤ比として下記の数1に従って前輪の舵角δが演算
され、またLf を重心と前輪の車軸との間の距離とし、
Tを車輌のトレッドとして下記の数2に従って車体速度
Vb に基づく各輪の基準車輪速度Vbi(i=fr、fl、r
r、rl)が演算される。In step 40, the steering angle δ of the front wheels is calculated according to the following equation 1 using Nsg as the steering gear ratio, and Lf is the distance between the center of gravity and the axle of the front wheels.
T is the tread of the vehicle, and the reference wheel speed Vbi (i = fr, fl, r
r, rl) are calculated.
【0025】[0025]
【数1】δ=θ/NsgΔ = θ / Nsg
【数2】Vbfr =Vb ・ cos(δ−β)−γ(T/2)
cosδ+γ・ sinδ・Lf Vbfl =Vb ・ cos(δ−β)+γ(T/2) cosδ+
γ・ sinδ・Lf Vbrr =Vb ・ cosβ+γ・T/2 Vbrl =Vb ・ cosβ−γ・T/2## EQU2 ## Vbfr = Vb.cos (δ-β) -γ (T / 2)
cosδ + γ · sinδ · Lf Vbfl = Vb · cos (δ−β) + γ (T / 2) cosδ +
γ · sin δ · Lf Vbrr = Vb · cosβ + γ · T / 2 Vbrl = Vb · cosβ−γ · T / 2
【0026】ステップ50に於いては各輪の実車輪速度
Vwiと基準車輪速度Vbiの偏差として下記の数3に従っ
て各輪のスリップ量SLi (i=fr、fl、rr、rl)が演
算され、ステップ60に於いては各輪のスリップ量SL
i が正であるか否かの判別が行われ、否定判別が行われ
たときにはステップ10へ戻り、肯定判別が行われたと
きにはステップ70へ進む。In step 50, the slip amount SLi (i = fr, fl, rr, rl) of each wheel is calculated as the deviation between the actual wheel speed Vwi of each wheel and the reference wheel speed Vbi according to the following equation (3). In step 60, the slip amount SL of each wheel
It is determined whether or not i is positive. If a negative determination is made, the process returns to step 10, and if an affirmative determination is made, the process proceeds to step 70.
【数3】SLi =Vwi−Vbi## EQU3 ## SLi = Vwi-Vbi
【0027】ステップ70に於いては図4に示されたフ
ローチャートに従って各輪の制御基準量ΔVwi(i=f
r、fl、rr、rl)が演算され、ステップ80に於いては
車速V及び車輌の横加速度Gy の絶対値に基づき図5に
示されたグラフに対応するマップより制御目標量ΔVt
が演算される。尚車速Vは車体速度Vb に置き換えられ
てもよい。In step 70, the control reference amount ΔVwi (i = f) for each wheel is set in accordance with the flowchart shown in FIG.
r, fl, rr, rl) are calculated, and in step 80, the control target amount ΔVt is obtained from the map corresponding to the graph shown in FIG. 5 based on the vehicle speed V and the absolute value of the lateral acceleration Gy of the vehicle.
Is calculated. The vehicle speed V may be replaced with the vehicle speed Vb.
【0028】ステップ90に於いてはKa を1よりも小
さく且つ1に近い正の定数として下記の数4に従って各
輪の制御目標量BPi (i=fr、fl、rr、rl)が演算さ
れ、ステップ100に於いては制御目標量BPi に基づ
き図6に示されたグラフに対応するマップより各輪の増
減圧制御弁のデューティ比DRi (i=fr、fl、rr、r
l)が演算され、ステップ100に於いては各輪の増減
圧制御弁がデューティ比DRi に基づき開閉されること
により各輪の制動力が制御目標量BPi に対応する値に
なるよう制御される。In step 90, the control target amount BPi (i = fr, fl, rr, rl) of each wheel is calculated in accordance with the following equation 4 as Ka is a positive constant smaller than 1 and close to 1. In step 100, based on the control target amount BPi, the duty ratio DRi (i = fr, fl, rr, r) of the pressure increasing / decreasing control valve of each wheel is obtained from the map corresponding to the graph shown in FIG.
l) is calculated, and in step 100, the pressure increasing / decreasing control valve of each wheel is opened and closed based on the duty ratio DRi so that the braking force of each wheel is controlled to a value corresponding to the control target amount BPi. .
【数4】BPi =Ka (ΔVwi −ΔVt )BPi = Ka (ΔVwi−ΔVt)
【0029】尚ステップ100に於いて、デューティ比
DRi が正のときには対応する車輪の制動圧が増圧さ
れ、デューティ比DRi が負のときには対応する車輪の
制動圧が減圧され、デューティ比DRi が0のときには
対応する車輪の制動圧が保持される。In step 100, when the duty ratio DRi is positive, the braking pressure of the corresponding wheel is increased, and when the duty ratio DRi is negative, the braking pressure of the corresponding wheel is reduced, and the duty ratio DRi becomes 0. In the case of, the braking pressure of the corresponding wheel is held.
【0030】図3に示された車体速度Vbi演算ルーチン
のステップ21に於いては、Ku を単位を合わせるため
の係数として下記の数5に従ってヨーレートによる車輪
位置に於ける速度と車輌の重心位置に於ける速度との速
度差Vyrが演算される。In step 21 of the vehicle speed Vbi calculation routine shown in FIG. 3, Ku is used as a coefficient for adjusting the unit and the speed at the wheel position at the yaw rate and the center of gravity of the vehicle are calculated according to the following equation (5). The speed difference Vyr from the speed at the time is calculated.
【数5】Vyr=γ・(T/2)・Ku ・π/180Vyr = γ · (T / 2) · Ku · π / 180
【0031】ステップ22に於いてはWを車輌の重量と
しHを車輌の重心高さとしLをホイールベースとして下
記の数6に従って前後加速度Gx による各輪の荷重移動
量ΔWgxが演算される。In step 22, using W as the weight of the vehicle, H as the height of the center of gravity of the vehicle, and L as the wheel base, the load movement amount ΔWgx of each wheel by the longitudinal acceleration Gx is calculated according to the following equation (6).
【数6】ΔWgx=Gx ・W・H/L/2ΔWgx = Gx · W · H / L / 2
【0032】ステップ23に於いてはGpf及びGprをそ
れぞれ前輪側及び後輪側のロール剛性配分として下記の
数7に従って横加速度Gy による前輪及び後輪の荷重移
動量ΔWgyf 及びΔWgyr が演算される。In step 23, the load movement amounts .DELTA.Wgyf and .DELTA.Wgyr of the front wheel and the rear wheel due to the lateral acceleration Gy are calculated in accordance with the following equation 7 using Gpf and Gpr as the roll rigidity distribution on the front wheel side and the rear wheel side, respectively.
【数7】ΔWgyf =(Gy ・W・H/T)・Gpf ΔWgyr =(Gy ・W・H/T)・GprΔWgyf = (Gy · W · H / T) · Gpf ΔWgyr = (Gy · W · H / T) · Gpr
【0033】ステップ24に於いてはgを重力加速度と
し、Kをタイヤ剛性とし、Rt をタイヤ半径として下記
の数8に従って荷重移動に起因する各輪のタイヤ半径の
動的補正係数Kdi(i=fr、fl、rr、rl)が演算され
る。In step 24, g is the gravitational acceleration, K is the tire stiffness, and Rt is the tire radius. The dynamic correction coefficient Kdi (i = fr, fl, rr, rl) are calculated.
【数8】 Kdfr =1+{−ΔWgx+ΔWgyf }・g/K/Rt Kdfl =1+{−ΔWgx−ΔWgyf }・g/K/Rt Kdrr =1+{ΔWgx+ΔWgyf }・g/K/Rt Kdrl =1+{ΔWgx−ΔWgyf }・g/K/RtKdfr = 1 + {− ΔWgx + ΔWgyf} · g / K / Rt Kdfl = 1 + {− ΔWgx−ΔWgyf} · g / K / RtKdrr = 1 + {ΔWgx + ΔWgyf} · g / K / RtKdrl = 1 + {W ΔWgyf} · g / K / Rt
【0034】ステップ25に於いては下記の数9に従っ
て各輪についての車輌の重心に於ける車体の前後速度V
ri(i=fr、fl、rr、rl)が演算される。In step 25, the longitudinal velocity V of the vehicle at the center of gravity of the vehicle for each wheel according to the following equation (9)
ri (i = fr, fl, rr, rl) is calculated.
【数9】Vrfr =Kdfr ・Vwfr ・cos δ−Vyr Vrfl =Kdfl ・Vwfl ・cos δ+Vyr Vrrr =Kdrr ・Vwrr −Vyr Vrrl =Kdrl ・Vwrl +VyrVrfr = Kdfr.Vwfr.cos.delta.-Vyr Vrfl = Kdfl.Vwfl.cos.delta. + Vyr Vrrr = Kdrr.Vwrr-Vyr Vrrl = Kdrl.Vwrl + Vyr.
【0035】ステップ26に於いては車輌の前後加速度
Gx が正であるか否かの判別、即ち車輌が加速状態にあ
るか否かの判別が行われ、肯定判別が行われたときには
ステップ27に於いて車体の前後速度Vriのうちの最小
値が前後速度Vwsとし選定され、否定判別が行われたと
きにはステップ28に於いて車体の前後速度Vriのうち
最大値が前後速度Vwsとして選定される。In step 26, it is determined whether or not the longitudinal acceleration Gx of the vehicle is positive, that is, whether or not the vehicle is accelerating. If an affirmative determination is made, the process proceeds to step 27. In this case, the minimum value of the front-rear speeds Vri of the vehicle body is selected as the front-rear speed Vws, and if a negative determination is made, the maximum value of the front-rear speeds Vri of the vehicle body is selected in step 28 as the front-rear speed Vws.
【0036】ステップ29に於いてはVbfを1サイクル
前のステップ29に於いて求められた車体速度とし、α
1 及びα2 をそれぞれ正の定数として下記の数10に従
って車体速度Vb が演算される。尚下記の数10に於い
て、MEDはカッコ内の三つの数値の中間値を選択する
ことを意味する。In step 29, Vbf is set to the vehicle speed obtained in step 29 one cycle before, and α
The vehicle speed Vb is calculated according to the following equation 10 with 1 and α2 being positive constants. In the following Expression 10, MED means that an intermediate value of three numerical values in parentheses is selected.
【数10】 Vb =MED[Vms,Vbf+α1 ,Vbf−α2 ]Vb = MED [Vms, Vbf + α1, Vbf−α2]
【0037】また図4に示された各輪の制御基準量ΔV
wi演算ルーチンのステップ71に於いては、横加速度G
y に基づき図7に示されたグラフに対応するマップより
係数Kcfr が演算されると共に、図8に示されたグラフ
に対応するマップより係数Kcfl が演算され、ステップ
72に於いては車速V及び横加速度Gy の絶対値に基づ
き図9に示されたグラフに対応するマップより係数Kb
が演算される。尚係数Kb は何れか一輪の減速スリップ
が過剰であるときには0に設定される。The control reference amount ΔV for each wheel shown in FIG.
In step 71 of the wi calculation routine, the lateral acceleration G
Based on y, a coefficient Kcfr is calculated from a map corresponding to the graph shown in FIG. 7, and a coefficient Kcfl is calculated from a map corresponding to the graph shown in FIG. Based on the absolute value of the lateral acceleration Gy, the coefficient Kb is obtained from a map corresponding to the graph shown in FIG.
Is calculated. The coefficient Kb is set to 0 when the deceleration slip of any one wheel is excessive.
【0038】ステップ73に於いては下記の数11に従
って左右前輪の平均スリップ量SLafが演算される。In step 73, the average slip amount SLaf of the left and right front wheels is calculated according to the following equation (11).
【数11】SLaf={(Vwfr +Vwfl )−(Vbfr +
Vbfl )}/2## EQU11 ## SLaf = {(Vwfr + Vwfl)-(Vbfr +
Vbfl)} / 2
【0039】ステップ74に於いては下記の数12に従
って左右後輪の平均スリップ量SLarが演算される。In step 74, the average slip amount SLa of the left and right rear wheels is calculated according to the following equation (12).
【数12】SLar={(Vwrr +Vwrl )−(Vbrr +
Vbrl )}/2Slar = 12 (Vwrr + Vwrl) − (Vbrr +
Vbrl)} / 2
【0040】ステップ75に於いては下記の数13に従
って各輪の制御基準量ΔVwi(i=fr、fl、rr、rl)が
演算される。In step 75, the control reference amount ΔVwi (i = fr, fl, rr, rl) of each wheel is calculated according to the following equation (13).
【数13】ΔVwfr =SLfr−Kcfr ・SLfl+Kb ・
(SLaf−SLar) ΔVwfl =SLfl−Kcfl ・SLfr+Kb ・(SLaf−
SLar) ΔVwrr =SLrr−SLrl+Kb ・(SLar−SLaf) ΔVwrl =SLrl−SLrr+Kb ・(SLar−SLaf)ΔVwfr = SLfr−Kcfr · SLfl + Kb ·
(SLaf−SLar) ΔVwfl = SLfl−Kcfl · SLfr + Kb · (SLaf−
(SLar) ΔVwrr = SLrr−SLrl + Kb (SLar−SLaf) ΔVwrl = SLrl−SLrr + Kb (SLar−SLaf)
【0041】尚上記数13に於いて、SLi <0のとき
にはSLi は0に設定され、SLaf−SLar<0のとき
にはSLaf−SLarは0に設定され、SLar−SLaf<
0のときにはSLar−SLafは0に設定される。In the above equation (13), when SLi <0, SLi is set to 0, when SLaf-Slar <0, SLaf-Slar is set to 0, and SLa-SLaf <
When it is 0, Slar-SLaf is set to 0.
【0042】かくして図示の実施形態によれば、ステッ
プ20に於いて各輪の車輪速度Vwi(i=fr、fl、rr、
rl)に基づき車輌の重心に於ける車体速度Vb が演算さ
れ、ステップ30に於いて車体のスリップ角βが演算さ
れ、ステップ40に於いて車体速度Vb に基づき各輪の
位置に於ける車体速度として各輪の基準車輪速度Vbiが
演算され、ステップ50に於いて実車輪速度Vwiと基準
車輪速度Vbiとの差として各輪のスリップ量SLi が演
算される。Thus, according to the illustrated embodiment, in step 20, the wheel speeds Vwi (i = fr, fl, rr,
rl), the vehicle speed Vb at the center of gravity of the vehicle is calculated, and in step 30, the slip angle β of the vehicle is calculated. In step 40, the vehicle speed at each wheel position is calculated based on the vehicle speed Vb. The reference wheel speed Vbi of each wheel is calculated. In step 50, the slip amount SLi of each wheel is calculated as the difference between the actual wheel speed Vwi and the reference wheel speed Vbi.
【0043】そしてスリップ量SLi が正のときにはス
テップ70に於いてスリップ量SLi に基づき各輪の制
御基準量ΔVwiが演算され、ステップ80に於いて車速
V及び横加速度Gy に基づき制御目標量ΔVt が演算さ
れ、ステップ90に於いて制御基準量ΔVwiと制御目標
量ΔVt との差に基づき各輪の目標制御量BPi が演算
され、ステップ100に於いて目標制御量BPi に基づ
き各輪の増減圧制御弁のデューティ比DRi が演算さ
れ、ステップ110に於いてデューティ比DRiに基づ
き各輪の増減圧制御弁が制御されることにより各輪の制
動圧が目標制御量BPi に対応する値に制御される。When the slip amount SLi is positive, the control reference amount ΔVwi for each wheel is calculated in step 70 based on the slip amount SLi, and in step 80 the control target amount ΔVt is calculated based on the vehicle speed V and the lateral acceleration Gy. In step 90, the target control amount BPi of each wheel is calculated based on the difference between the control reference amount ΔVwi and the control target amount ΔVt. In step 100, the pressure increase / decrease control of each wheel is performed based on the target control amount BPi. The duty ratio DRi of the valve is calculated, and in step 110, the pressure increase / decrease control valve of each wheel is controlled based on the duty ratio DRi, so that the braking pressure of each wheel is controlled to a value corresponding to the target control amount BPi. .
【0044】例えば何れの車輪にも過剰な駆動スリップ
が発生していない場合には、各輪のスリップ量SLi が
0又は非常に小さい値になることにより、ステップ60
に於いて否定判別が行われ、或いはステップ90に於い
て演算される各輪の目標制御量BPi が0又は非常に小
さい値になり、差動回転抑制のための制動力制御は実行
されない。For example, if no excessive drive slip has occurred on any of the wheels, the slip amount SLi of each wheel becomes 0 or a very small value, and the program proceeds to step 60.
In step 90, the target control amount BPi of each wheel calculated in step 90 becomes 0 or a very small value, and the braking force control for suppressing the differential rotation is not executed.
【0045】これに対し何れかの車輪に過剰な駆動スリ
ップが発生すると、当該車輪のスリップ量SLi が正の
比較的大きい値になり、ステップ60に於いて肯定判別
が行われ、ステップ70〜110が実行されるので、過
剰な駆動スリップを低減し、差動回転を確実に抑制する
ことができる。On the other hand, if an excessive drive slip occurs on any of the wheels, the slip amount SLi of the relevant wheel becomes a relatively large positive value, and an affirmative determination is made in step 60, and steps 70 to 110 are performed. Is performed, excessive drive slip can be reduced, and differential rotation can be reliably suppressed.
【0046】特に車輌の旋回中に何れかの車輪に過剰な
駆動スリップが発生しても、ステップ40に於いて演算
される各輪の基準車輪速度Vbiは車体速度Vb に基づき
演算され、旋回内外輪の旋回半径の相違に相当する車輪
速度差が反映されるので、差動回転抑制のための制動力
制御によって車輌の旋回性能や悪路走破性が悪化される
ことを回避することができ、またステップ100に於け
るデューティ比DRi演算のための図6に示されたマッ
プの不感帯(−BPo 〜BPo )を小さくして車輌の通
常走行時に於ける差動回転抑制性能を向上させることが
できる。In particular, even if an excessive drive slip occurs on any of the wheels during turning of the vehicle, the reference wheel speed Vbi of each wheel calculated in step 40 is calculated based on the vehicle speed Vb, Since the wheel speed difference corresponding to the difference in the turning radius of the wheels is reflected, it is possible to avoid the deterioration of the turning performance and poor road running performance of the vehicle due to the braking force control for suppressing the differential rotation, Further, the dead zone (-BPo to BPo) of the map shown in FIG. 6 for calculating the duty ratio DRi in step 100 can be reduced to improve the differential rotation suppression performance during normal running of the vehicle. .
【0047】更に何れかの車輪の車輪速度が低下し当該
車輪に過剰な減速スリップが発生しても、当該車輪につ
いてはステップ60に於いて否定判別が行われることに
より差動回転抑制のための制動力制御は実行されず、ま
た他の車輪についてはステップ70に於ける制御基準量
ΔVwiの演算に於いて当該車輪のスリップ量SLi が0
に設定されると共に係数Kb が0に設定されることによ
り、他の車輪の制御基準量ΔVwiが過剰な値に演算され
ることが防止され、従って他の車輪について不必要な制
動力制御が実行されることを防止することができる。Further, even if the wheel speed of any one of the wheels is reduced and an excessive deceleration slip is generated in the wheel, a negative determination is made in step 60 for the wheel to prevent the differential rotation. No braking force control is performed, and for the other wheels, in the calculation of the control reference amount ΔVwi in step 70, the slip amount SLi of the relevant wheel is set to 0.
And the coefficient Kb is set to 0, the control reference amount .DELTA.Vwi of the other wheels is prevented from being calculated to an excessive value, so that unnecessary braking force control is performed for the other wheels. Can be prevented.
【0048】特に図示の実施形態によれば、図5に示さ
れたマップより演算される目標制御量ΔVt は車速が高
いほど大きくなり横加速度の大きさが大きいほど小さく
なるよう設定され、また図7及び図8に示されたマップ
より演算される係数Kcfr 及びKcfl は対応する車輌横
方向の横加速度が大きいほど小さくなるよう設定される
ので、これらの目標制御量や係数が車速や横加速度に拘
らず一定である場合に比して、差動回転抑制性能を悪化
することなく車輌の旋回性能を向上させることができ
る。In particular, according to the illustrated embodiment, the target control amount ΔVt calculated from the map shown in FIG. 5 is set to increase as the vehicle speed increases and to decrease as the lateral acceleration increases. The coefficients Kcfr and Kcfl calculated from the maps shown in FIG. 7 and FIG. 8 are set so as to decrease as the corresponding lateral acceleration in the vehicle lateral direction increases, so that these target control amounts and coefficients correspond to the vehicle speed and the lateral acceleration. Regardless, the turning performance of the vehicle can be improved without deteriorating the differential rotation suppressing performance as compared with the case where the rotation speed is constant.
【0049】また例えば低速且つ大舵角走行時等に於い
ては前輪のころがり抵抗が大きくなって前輪の車輪速度
が小さめになるため、車輪速度センサの検出値Vwiを使
用して演算される各輪の基準車輪速度Vbiの信頼性が低
くなるが、図示の実施形態によれば、図9に示されたマ
ップより演算される係数Kb は操舵角θの絶対値が大き
いほど小さくなるよう設定されるので、上述の如く各輪
の基準車輪速度Vbiの信頼性が低くなる状況に於いて、
基準車輪速度Vbiが不正確であることに起因して不要な
差動回転抑制のための制動力制御が行われる虞れを低減
することができる。Further, for example, when the vehicle is traveling at a low speed and a large steering angle, the rolling resistance of the front wheels becomes large and the wheel speed of the front wheels becomes small. Therefore, each value calculated using the detected value Vwi of the wheel speed sensor is used. Although the reliability of the reference wheel speed Vbi of the wheels decreases, according to the illustrated embodiment, the coefficient Kb calculated from the map shown in FIG. 9 is set to decrease as the absolute value of the steering angle θ increases. Therefore, in a situation where the reliability of the reference wheel speed Vbi of each wheel is low as described above,
It is possible to reduce a possibility that the braking force control for suppressing the unnecessary differential rotation due to the inaccuracy of the reference wheel speed Vbi is performed.
【0050】以上に於ては本発明を特定の実施形態につ
いて詳細に説明したが、本発明は上述の実施形態に限定
されるものではなく、本発明の範囲内にて他の種々の実
施形態が可能であることは当業者にとって明らかであろ
う。Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments may be included within the scope of the present invention. It will be clear to those skilled in the art that is possible.
【0051】例えば図示の実施形態に於いては、車体速
度Vb を演算するための車輌の特定の位置は車輌の重心
であるが、特定の位置は車輌の重心以外の位置に設定さ
れてもよく、また基準車輪速度を演算するための車輌の
基準位置は各輪の位置であるが、基準位置は例えば車輌
の重心に設定され、各輪の駆動スリップの大きさは重心
に於ける各輪の実車輪速度と基準車輪速度(重心に於け
る車体速度)とに基づき演算されてもよい。For example, in the illustrated embodiment, the specific position of the vehicle for calculating the vehicle speed Vb is the center of gravity of the vehicle, but the specific position may be set to a position other than the center of gravity of the vehicle. The reference position of the vehicle for calculating the reference wheel speed is the position of each wheel. The reference position is set, for example, at the center of gravity of the vehicle, and the magnitude of the drive slip of each wheel is determined by the position of each wheel at the center of gravity. The calculation may be performed based on the actual wheel speed and the reference wheel speed (body speed at the center of gravity).
【0052】また図示の実施形態に於いては、駆動スリ
ップの大きさは各輪の実車輪速度Vwiと基準車輪速度V
biとの偏差として演算されるスリップ量SLi である
が、駆動スリップの大きさは基準車輪速度を基準とする
スリップ率(Vwi−Vbi)/Vbiとして演算されてもよ
い。In the illustrated embodiment, the magnitude of the driving slip is determined by the actual wheel speed Vwi of each wheel and the reference wheel speed Vwi.
Although the slip amount SLi is calculated as the deviation from bi, the magnitude of the drive slip may be calculated as a slip ratio (Vwi-Vbi) / Vbi based on the reference wheel speed.
【0053】また図示の実施形態に於いては、車体速度
Vb は車輌の前後加速度Gx の符号に応じて各輪につい
ての車体速度Vriの最小値又は最大値を基準に演算され
るようになっているが、各輪についての車体速度Vriの
平均値として演算されてもよく、また車輌の走行状況に
応じて増減される各輪の重みをWi として下記の数14
に従って各輪の車体速度Vriの重み平均として演算され
てもよい。In the illustrated embodiment, the vehicle speed Vb is calculated based on the minimum or maximum value of the vehicle speed Vri for each wheel according to the sign of the longitudinal acceleration Gx of the vehicle. However, the weight may be calculated as the average value of the vehicle speed Vri for each wheel, and the weight of each wheel which is increased or decreased according to the running condition of the vehicle is represented by the following equation (14).
May be calculated as a weighted average of the vehicle speeds Vri of the respective wheels according to
【数14】Vb =(Wfr・Vrfr +Wfl・Vrfl +Wrr
・Vrrr +Wrl・Vrrl )/(Wfr+Wfl+Wrr+Wr
l)Vb = (Wfr · Vrfr + Wfl · Vrfl + Wrr)
・ Vrrr + Wrl ・ Vrrl) / (Wfr + Wfl + Wrr + Wr)
l)
【0054】[0054]
【発明の効果】以上の説明より明らかである如く、本発
明によれば、何らかの要因により何れかの車輪の車輪速
度が低下しても、他の車輪が駆動スリップ状態にあると
判定されることがないので、車輪が不必要に制動される
ことを確実に回避することができ、また車輌の旋回時に
必要な旋回内外輪の車輪速度差が基準車輪速度に反映さ
れるので、左右の車輪間の差動目標値を小さく設定する
ことができ、従って旋回内外輪の車輪速度差に起因して
不必要な駆動スリップ制御が行われることを防止しつ
つ、車輌の悪路走破性や旋回性能を十分に向上させるこ
とができる。As is apparent from the above description, according to the present invention, even if the wheel speed of one of the wheels decreases due to some factor, it is determined that the other wheels are in the drive slip state. Since there is no wheel, unnecessary braking of the wheels can be reliably avoided, and the difference in wheel speed between the inner and outer turning wheels required when turning the vehicle is reflected in the reference wheel speed. The differential target value of the vehicle can be set small, so that unnecessary drive slip control due to the wheel speed difference between the inner and outer turning wheels is prevented from being performed, and the vehicle's ability to travel on rough roads and turning performance is improved. It can be improved sufficiently.
【0055】また各輪の実車輪速度と車体速度に基づく
基準車輪速度とに基づき各輪の駆動スリップの大きさが
演算され、駆動スリップの大きさに基づき各輪の制動目
標量が演算される場合には、何らかの要因により車体速
度が低く推定されると四輪全てに制動力が与えられ、制
動エネルギが無駄に消費されると共に車輌が不必要に減
速されてしまうが、本発明によれば、各輪の制動目標量
は各輪間の駆動スリップの差に基づき演算されるので、
上述の如き問題の発生を確実に回避することができる。The magnitude of the drive slip of each wheel is calculated based on the actual wheel speed of each wheel and the reference wheel speed based on the vehicle speed, and the braking target amount of each wheel is calculated based on the magnitude of the drive slip. In this case, if the vehicle speed is estimated to be low for some reason, braking force is applied to all four wheels, so that braking energy is wasted and the vehicle is unnecessarily decelerated. , Since the braking target amount of each wheel is calculated based on the difference in drive slip between the wheels,
The problem described above can be reliably avoided.
【図1】本発明による四輪駆動車の駆動力制御装置の一
つの実施形態を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing one embodiment of a driving force control device for a four-wheel drive vehicle according to the present invention.
【図2】実施形態に於ける駆動力制御のメインルーチン
を示すゼネラルフローチャートである。FIG. 2 is a general flowchart showing a main routine of driving force control in the embodiment.
【図3】実施形態に於ける車体速度Vb 演算ルーチンを
示すフローチャートである。FIG. 3 is a flowchart illustrating a vehicle speed Vb calculation routine according to the embodiment.
【図4】実施形態に於ける各輪の制御基準量ΔVwi演算
ルーチンを示すフローチャートである。FIG. 4 is a flowchart showing a control reference amount ΔVwi calculation routine for each wheel in the embodiment.
【図5】車速V及び横加速度Gy の絶対値と制御目標量
ΔVt との間の関係を示すグラフである。FIG. 5 is a graph showing a relationship between absolute values of a vehicle speed V and a lateral acceleration Gy and a control target amount ΔVt.
【図6】各輪の制御目標量BPi と各輪のデューティ比
DRi との間の関係を示すグラフである。FIG. 6 is a graph showing a relationship between a control target amount BPi of each wheel and a duty ratio DRi of each wheel.
【図7】横加速度Gy と係数Kcfr との間の関係を示す
グラフである。FIG. 7 is a graph showing a relationship between a lateral acceleration Gy and a coefficient Kcfr.
【図8】横加速度Gy と係数Kcfl との間の関係を示す
グラフである。FIG. 8 is a graph showing a relationship between a lateral acceleration Gy and a coefficient Kcfl.
【図9】操舵角θの絶対値と係数Kb との間の関係を示
すグラフである。FIG. 9 is a graph showing a relationship between an absolute value of a steering angle θ and a coefficient Kb.
10…エンジン 18…センタディファレンシャル 24…前輪ディファレンシャル 30…後輪ディファレンシャル 36…制動装置 38…油圧回路 40…電気式制御装置 46fr〜46rl…車輪速度センサ 48…ヨーレートセンサ 50…前後加速度センサ 52…横加速度センサ 54…車速センサ 56…操舵角センサ DESCRIPTION OF SYMBOLS 10 ... Engine 18 ... Center differential 24 ... Front wheel differential 30 ... Rear wheel differential 36 ... Braking device 38 ... Hydraulic circuit 40 ... Electric control device 46fr-46rl ... Wheel speed sensor 48 ... Yaw rate sensor 50 ... Front-back acceleration sensor 52 ... Lateral acceleration Sensor 54: Vehicle speed sensor 56: Steering angle sensor
Claims (1)
の基準位置に於ける車体速度を基準車輪速度として推定
する手段と、前記基準位置に於ける各輪の実車輪速度を
推定する手段と、前記基準位置に於ける各輪の実車輪速
度と基準車輪速度とに基づき各輪の駆動スリップの大き
さを演算する手段と、各輪間の前記駆動スリップの大き
さの差に基づき各輪の制動目標量を演算する手段とを有
する四輪駆動車の駆動力制御装置。Means for detecting the actual wheel speed of each wheel, means for estimating the vehicle speed at a reference position of the vehicle as a reference wheel speed, and estimating the actual wheel speed of each wheel at the reference position. Means for calculating the magnitude of the drive slip of each wheel based on the actual wheel speed and the reference wheel speed of each wheel at the reference position, and calculating the difference in the magnitude of the drive slip between the wheels. Means for calculating a braking target amount for each wheel based on the driving force of the four-wheel drive vehicle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25284297A JPH1178836A (en) | 1997-09-02 | 1997-09-02 | Driving force control device for four-wheel drive vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25284297A JPH1178836A (en) | 1997-09-02 | 1997-09-02 | Driving force control device for four-wheel drive vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1178836A true JPH1178836A (en) | 1999-03-23 |
Family
ID=17242951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25284297A Pending JPH1178836A (en) | 1997-09-02 | 1997-09-02 | Driving force control device for four-wheel drive vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1178836A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0546704A2 (en) * | 1991-12-13 | 1993-06-16 | AT&T Corp. | Intelligent work surfaces |
JP2001270430A (en) * | 2000-03-10 | 2001-10-02 | Siemens Ag | Method for automatically detecting assembled position of brake force generating unit of electromagnetic automotive brake system |
JP2008049972A (en) * | 2006-08-28 | 2008-03-06 | Advics:Kk | Wheel base length setting device |
JP2009214768A (en) * | 2008-03-11 | 2009-09-24 | Advics Co Ltd | Vehicle body speed controller |
JP2013049417A (en) * | 2012-10-24 | 2013-03-14 | Advics Co Ltd | Vehicle body speed control device |
JPWO2014147976A1 (en) * | 2013-03-22 | 2017-02-16 | ヤマハ発動機株式会社 | Brake control device and straddle-type vehicle equipped with the same |
-
1997
- 1997-09-02 JP JP25284297A patent/JPH1178836A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0546704A2 (en) * | 1991-12-13 | 1993-06-16 | AT&T Corp. | Intelligent work surfaces |
JP2001270430A (en) * | 2000-03-10 | 2001-10-02 | Siemens Ag | Method for automatically detecting assembled position of brake force generating unit of electromagnetic automotive brake system |
JP2008049972A (en) * | 2006-08-28 | 2008-03-06 | Advics:Kk | Wheel base length setting device |
JP2009214768A (en) * | 2008-03-11 | 2009-09-24 | Advics Co Ltd | Vehicle body speed controller |
JP2013049417A (en) * | 2012-10-24 | 2013-03-14 | Advics Co Ltd | Vehicle body speed control device |
JPWO2014147976A1 (en) * | 2013-03-22 | 2017-02-16 | ヤマハ発動機株式会社 | Brake control device and straddle-type vehicle equipped with the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3937524B2 (en) | Vehicle braking / driving force control device | |
CN100358766C (en) | Vehicle run stability control device based on wheel longitudinal force | |
US5839799A (en) | Behavior control device of vehicle based upon monitoring movement of rear wheels | |
JP4534641B2 (en) | Wheel slip ratio calculation device and wheel braking / driving force control device | |
US7562948B2 (en) | Deceleration control apparatus and method for automotive vehicle | |
JP3719116B2 (en) | Vehicle driving force control device | |
US7125086B2 (en) | Vehicle dynamics control system | |
JP4063576B2 (en) | Wheel grip degree estimation device, and vehicle motion control device including the device | |
JP4182014B2 (en) | Vehicle steering control device | |
JPH0729557B2 (en) | Drive force distribution controller for four-wheel drive vehicle | |
JPH0976894A (en) | Braking force controller | |
JP3607985B2 (en) | Vehicle body speed estimation device and control device | |
JP3454011B2 (en) | Rear-wheel drive vehicle braking force control system | |
JPH09226559A (en) | Reference wheelspeed calculation device for controlling brake force and drive force | |
JP4501343B2 (en) | Braking force control device for vehicle | |
JP3827837B2 (en) | Vehicle motion control device | |
JPH1178836A (en) | Driving force control device for four-wheel drive vehicle | |
JP3997923B2 (en) | Regenerative braking control device for vehicle | |
JP4114065B2 (en) | Four-wheel drive vehicle behavior control device | |
JP4158539B2 (en) | Vehicle wheel state estimation device | |
JP3412363B2 (en) | Vehicle body speed estimation device and wheel free rotation speed estimation device | |
JP3832499B2 (en) | Vehicle driving force control device | |
JP3948076B2 (en) | Estimation method of friction circle radius of wheel | |
JP4055225B2 (en) | Vehicle braking / driving force control device | |
JP3612194B2 (en) | Road surface friction coefficient detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050322 |
|
A02 | Decision of refusal |
Effective date: 20050719 Free format text: JAPANESE INTERMEDIATE CODE: A02 |