JP3412363B2 - Vehicle body speed estimation device and wheel free rotation speed estimation device - Google Patents

Vehicle body speed estimation device and wheel free rotation speed estimation device

Info

Publication number
JP3412363B2
JP3412363B2 JP27361295A JP27361295A JP3412363B2 JP 3412363 B2 JP3412363 B2 JP 3412363B2 JP 27361295 A JP27361295 A JP 27361295A JP 27361295 A JP27361295 A JP 27361295A JP 3412363 B2 JP3412363 B2 JP 3412363B2
Authority
JP
Japan
Prior art keywords
wheel
vehicle
speed
calculated
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27361295A
Other languages
Japanese (ja)
Other versions
JPH0986367A (en
Inventor
善樹 深田
司朗 門崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27361295A priority Critical patent/JP3412363B2/en
Publication of JPH0986367A publication Critical patent/JPH0986367A/en
Application granted granted Critical
Publication of JP3412363B2 publication Critical patent/JP3412363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)
  • Regulating Braking Force (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の車輌の車体
速度及び車輪の自由回転速度を推定する装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for estimating a vehicle body speed and a free wheel rotation speed of a vehicle such as an automobile.

【0002】[0002]

【従来の技術】例えば特表平5−502836号公報に
記載されている如く、車輌の制動時にμ−S特性の直線
の範囲内にある特定の車輪の検出車輪速度及びヨーレー
ト等から車輌の特定の位置の速度を求め、これを車体速
度とする技術は従来より知られており、またかくして演
算された車体速度及びヨーレート等から各輪の自由回転
速度(制動されていない状態に於ける回転速度)を求め
る技術も従来より知られている。
2. Description of the Related Art As described in, for example, Japanese Patent Publication No. 5-502836, the specification of a vehicle is made based on the detected wheel speed and yaw rate of a specific wheel within the linear range of the μ-S characteristic when the vehicle is being braked. A technique for obtaining the speed of the position of the vehicle and using this as the vehicle body speed has been conventionally known, and the free rotation speed of each wheel (the rotation speed in the unbraked state is calculated from the vehicle speed and yaw rate calculated in this way). ) Is also known in the art.

【0003】かかる技術によれば、例えば各輪の車輪速
度を検出し単純にそれらの車輪速度の平均値として車体
速度を演算する場合に比して車体速度及び各輪の自由回
転速度を正確に求めることができ、これによりこれらの
速度に基づく車輌の制御を良好に実行することができ
る。
According to such a technique, the vehicle body speed and the free rotation speed of each wheel are more accurately compared with the case where the wheel speed of each wheel is detected and the vehicle body speed is simply calculated as an average value of those wheel speeds. Therefore, the control of the vehicle based on these speeds can be performed well.

【0004】[0004]

【発明が解決しようとする課題】しかし上記技術に於い
ては、特定の車輪がμ−S特性の直線の範囲内にあるか
否かを確認しなければならず、また車輪がμ−S特性の
直線の範囲内にない場合にはその車輪の制動圧が減圧さ
れなければならず、そのため所望の制動力制御に支障を
来す虞れがある。
However, in the above technique, it is necessary to confirm whether or not a particular wheel is within the range of the straight line of the μ-S characteristic, and the wheel has the μ-S characteristic. If it is not within the range of the straight line, the braking pressure of the wheel must be reduced, which may hinder the desired braking force control.

【0005】本発明は、従来の装置に於ける上述の如き
問題に鑑みてなされたものであり、本発明の主要な課題
は、制動力の制御が実行されているか否かに応じて車体
速度演算の基礎となる速度に重み付けしたり、車輌の加
速状態に応じて車体速度演算の基礎となる速度を適宜に
選定することにより、車輪がμ−S特性の直線の範囲内
にあるか否かに拘らず車輌の車体速度及び車輪の自由回
転速度を高精度に推定することである。
The present invention has been made in view of the above-mentioned problems in the conventional device, and the main object of the present invention is to determine the vehicle body speed depending on whether or not the control of the braking force is executed. Whether the wheel is within the range of the straight line of the μ-S characteristic by weighting the speed that is the basis of the calculation and appropriately selecting the speed that is the basis of the vehicle speed calculation according to the acceleration state of the vehicle. In spite of this, the vehicle body speed of the vehicle and the free rotation speed of the wheels are accurately estimated.

【0006】[0006]

【課題を解決するための手段】上述の如き主要な課題
は、本発明によれば、必要に応じて車輪の制動力を制御
する制動力制御装置を備えた車輌の車体速度推定装置に
して、各輪の車輪速度Vwiを検出する手段と、車輌の旋
回状態を表すパラメータを検出する手段と、前記車輪速
度Vwi及び前記パラメータに基づき各輪について車輌の
特定の位置の前後速度Vriを演算する前後速度演算手段
と、前記制動力制御装置による制動力の制御が実行され
ているか否かに基づいて各輪について前記前後速度Vri
の重みWiを演算する手段と、前記前後速度Vri及び前
記重みWi に基づき車体速度Vx を演算する手段とを有
することを特徴とする車輌の車体速度推定装置(請求項
1の構成)、又は必要に応じて車輪の制動力を制御する
制動力制御装置を備えた車輌の車体速度推定装置にし
て、各輪の車輪速度Vwiを検出する手段と、車輌の旋回
状態を表すパラメータを検出する手段と、各輪の動荷重
半径の変化を検出する手段と、前記車輪速度Vwi前記
パラメータ及び前記動荷重半径の変化に基づき各輪につ
いて車輌の特定の位置の前後速度Vriを演算する前後速
度演算手段と、車輌の加速状態を検出する手段と、前記
前後速度Vriの何れか一つを選定する選定手段と、前記
選定手段により選定された前後速度に基づき車体速度V
xを演算する手段とを有し、前記選定手段は車輌が加速
状態にあるときには加速スリップが最も小さい車輪につ
いて演算された前後速度Vriを選定することを特徴とす
る車輌の車体速度推定装置(請求項2の構成)によって
達成される。
According to the present invention, a main object as described above is a vehicle body speed estimating device for a vehicle equipped with a braking force control device for controlling the braking force of wheels as necessary. Means for detecting the wheel speed Vwi of each wheel, means for detecting a parameter indicating the turning state of the vehicle, and before and after calculating the wheel speed Vwi and the longitudinal speed Vri of a specific position of the vehicle for each wheel based on the parameters. Based on whether or not the control of the braking force by the speed calculation means and the braking force control device is being executed, the longitudinal velocity Vri of each wheel is calculated.
Of the vehicle body speed estimating apparatus (composition of claim 1), or means for calculating the vehicle body speed Vx based on the longitudinal speed Vri and the weight Wi. A vehicle body speed estimation device having a braking force control device for controlling the braking force of the wheels according to the above, and means for detecting the wheel speed Vwi of each wheel and means for detecting a parameter indicating the turning state of the vehicle. , Dynamic load of each wheel
A means for detecting a change in radius, a front-rear speed calculating means for calculating a front-rear speed Vri at a specific position of the vehicle for each wheel based on the change in the wheel speed Vwi , the parameter and the dynamic load radius, and an acceleration state of the vehicle. Detecting means, selecting means for selecting any one of the longitudinal speed Vri, and vehicle speed V based on the longitudinal speed selected by the selecting means.
and a means for calculating x, wherein the selecting means selects the longitudinal velocity Vri calculated for the wheel with the smallest acceleration slip when the vehicle is in an accelerating state. Thus it is achieved in the section 2 of the configuration).

【0007】請求項1の構成によれば、各輪の車輪速度
Vwi及び車輌の旋回状態を表すパラメータに基づき各輪
について車輌の特定の位置の前後速度Vriが演算され、
制動力制御装置による制動力の制御が実行されているか
否かに基づいて、換言すれば車体速度演算の基礎とし得
る信頼性の度合に応じて各輪について前後速度Vriの重
みWi が演算され、前後速度Vri及び重みWi に基づき
車体速度Vx が演算されるので、制動力制御装置により
車輪の制動力が制御されている場合にも車輌の車体速度
が正確に推定される。
According to the first aspect of the invention, the front-rear velocity Vri at a specific position of the vehicle is calculated for each wheel based on the wheel speed Vwi of each wheel and the parameter representing the turning state of the vehicle.
Whether the braking force is controlled by the braking force controller
Based on whether, computed weights Wi of longitudinal velocity Vri for each wheel in accordance with the reliability of every case which may be a basis for vehicle speed calculating other words, the vehicle speed Vx is calculated based on longitudinal velocity Vri and weight Wi Therefore, the braking force control device
Vehicle speed of the vehicle is correctly estimated even when the braking force of the wheels that are controlled.

【0008】また請求項2の構成によれば、各輪の車輪
速度Vwi車輌の旋回状態を表すパラメータ及び各輪の
動荷重半径の変化に基づき各輪について車輌の特定の位
置の前後速度Vriが演算され、後速度Vriの何れか一
つが車体速度Vx として選定され、特に車輌が加速状態
にあるときには加速スリップが最も小さい車輪について
演算された前後速度Vriが選定されるので、車輌の旋回
や加減速時にもこれらに起因する荷重移動による車輪の
動荷重半径の変化の影響を受けることなく前後速度Vri
が求められ、また車輌が加速状態にあるか否かが考慮さ
れることなく前後速度Vriが選択される場合に比して車
輌の車体速度が正確に推定される。
According to the second aspect of the invention , the wheel speed Vwi of each wheel, the parameter indicating the turning state of the vehicle, and each wheel
For each wheel on the basis of the change in the dynamic load radius is longitudinal speed Vri is operational at a particular position of the vehicle, any one of the previous post-speed Vri is selected as the vehicle speed Vx, the acceleration slip, especially when the vehicle is in the accelerating state Since the longitudinal velocity Vri calculated for the smallest wheel is selected , turning of the vehicle
And during acceleration and deceleration
Front-rear velocity Vri without being affected by changes in dynamic load radius
Is calculated and the vehicle body speed of the vehicle is accurately estimated as compared with the case where the longitudinal speed Vri is selected without considering whether or not the vehicle is in an accelerated state.

【0009】[0009]

【0010】[0010]

【0011】[0011]

【0012】[0012]

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】[0016]

【課題解決手段の好ましい態様】一般に車輌の制御に於
いては車輌の速度として車輌の重心に於ける速度の重要
性が高く、車輌の他の位置に於ける速度は車輌の重心に
於ける速度が判れば比較的容易に求められる。従って上
述の請求項1又は2の構成に於いて、前記前後速度Vri
は車輌の重心位置の前後速度として演算されるよう構成
される。
Generally, in controlling a vehicle, the speed at the center of gravity of the vehicle is important as the speed of the vehicle, and the speed at other positions of the vehicle is the speed at the center of gravity of the vehicle. Can be obtained relatively easily. Therefore, in the above-mentioned structure of claim 1 or 2, the longitudinal speed Vri
Is configured to be calculated as the longitudinal velocity of the center of gravity of the vehicle.

【0017】またタイヤの空気圧や各輪の静的支持荷重
の相違等に起因して各輪の静止状態に於ける半径が標準
状態とは大きく異なる場合には、車体速度や各輪の自由
回転速度を正確に演算することができない。従って上述
の請求項の構成に於いて、車輌の静止状態に於ける各
輪の半径についての静的補正係数を求める手段を有し、
前記前後速度演算手段は前記車輪速度Vwi、前記パラメ
ータ、前記動荷重半径の変化及び前記静的補正係数に基
づき前記前後速度Vriを演算するよう構成される。
When the radius of each wheel in the stationary state is significantly different from the standard state due to the difference in tire air pressure or the static support load of each wheel, etc., the vehicle speed and the free rotation of each wheel are different. The speed cannot be calculated accurately. Therefore, in the above-mentioned structure of claim 2 , there is provided a means for obtaining a static correction coefficient for the radius of each wheel in a stationary state of the vehicle,
The longitudinal speed calculation means is configured to calculate the longitudinal speed Vri based on the wheel speed Vwi, the parameter, the change in the dynamic load radius, and the static correction coefficient.

【0018】更に車輌の旋回挙動や車輪の加減速スリッ
プを制御する制動力制御装置が搭載された車輌に於いて
は制動力制御装置により各輪の制動力が必要に応じて制
御される。従って上述の請求項1の構成に於ける制動力
制御装置による制動力の制御が実行されているか否かは
制動力制御装置よりの情報に基づき判定され
Further, in a vehicle equipped with a braking force control device for controlling the turning behavior of the vehicle and the acceleration / deceleration slip of the wheels, the braking force control device controls the braking force of each wheel as necessary. Therefore whether or not the control of the braking force of the above-described in the braking force control device to the first aspect is running Ru is determined based on information from the brake force control apparatus.

【0019】[0019]

【発明の実施の形態】以下に添付の図を参照しつつ、本
発明の幾つかの実施形態について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0020】図1は各輪の制動力を制御し車輌の旋回挙
動を安定化させる挙動制御装置が搭載された車輌に適用
された本発明による推定装置の第一の実施形態を示す概
略構成図(A)及びブロック線図(B)である。
FIG. 1 is a schematic configuration diagram showing a first embodiment of an estimation device according to the present invention applied to a vehicle equipped with a behavior control device for controlling the braking force of each wheel to stabilize the turning behavior of the vehicle. It is (A) and a block diagram (B).

【0021】図1(A)に於いて、右前輪10fr、左前
輪10fl、右後輪10rr、左後輪10rlにはそれぞれ対
応する車輪の車輪速Vwi(i=fr、fl、rr、rl)を周速
として検出する車輪速度センサ12fr、12fl、12r
r、12rlが設けられており、車輪速度Vwiを示す信号
は推定装置14へ入力されるようになっている。また推
定装置14には操舵角センサ16より操舵角θを示す信
号、実質的に車輌の重心に設けられた前後加速度センサ
18より車体の前後加速度Gx を示す信号、横加速度セ
ンサ20より車体の横加速度Gy を示す信号、ヨーレー
トセンサ22より車輌のヨーレートγを示す信号が入力
されるようになっている。尚前後加速度センサ18は車
輌の前進方向を正として前後加速度を検出し、横加速度
センサ20等は車輌の左旋回方向を正として横加速度等
を検出するようになっている。
In FIG. 1A, the wheel speed Vwi (i = fr, fl, rr, rl) of the wheels corresponding to the right front wheel 10fr, the left front wheel 10fl, the right rear wheel 10rr, and the left rear wheel 10rl, respectively. Wheel speed sensors 12fr, 12fl, 12r
r and 12rl are provided, and a signal indicating the wheel speed Vwi is input to the estimation device 14. Further, the estimation device 14 has a signal indicating the steering angle θ from the steering angle sensor 16, a signal indicating the longitudinal acceleration Gx of the vehicle body from the longitudinal acceleration sensor 18 provided substantially at the center of gravity of the vehicle, and a lateral acceleration sensor 20 indicating the lateral direction of the vehicle body. A signal indicating the acceleration Gy and a signal indicating the yaw rate γ of the vehicle are input from the yaw rate sensor 22. The longitudinal acceleration sensor 18 detects the longitudinal acceleration with the forward direction of the vehicle as positive, and the lateral acceleration sensor 20 etc. detects the lateral acceleration with the left turning direction of the vehicle as positive.

【0022】図1には詳細に示されていないが、推定装
置14は中央処理ユニット(CPU)と、リードオンリ
メモリ(ROM)と、ランダムアクセスメモリ(RA
M)と、入出力ポート装置とを有し、これらが双方向性
のコモンバスにより互いに接続された一般的な構成のも
のであり、上述の種々のセンサにより検出されたパラメ
ータに基づき後述の推定ルーチンに従って種々の演算を
行うことにより、車輌の車体速度Vb 及び車輪の自由回
転速度Vriを演算し、各輪の制動力を制御し車輌の旋回
挙動を安定化させる挙動制御装置24へ車体速度Vb 及
び自由回転速度Vriを示す信号を出力するようになって
いる。
Although not shown in detail in FIG. 1, the estimation device 14 includes a central processing unit (CPU), a read only memory (ROM), and a random access memory (RA).
M) and an input / output port device, which have a general configuration in which these are connected to each other by a bidirectional common bus, and an estimation routine described later based on the parameters detected by the various sensors described above. The vehicle body speed Vb of the vehicle and the free rotation speed Vri of the wheels are calculated by performing various calculations in accordance with the above, and the vehicle body speed Vb and the vehicle body speed Vb of the vehicle body speed Vb A signal indicating the free rotation speed Vri is output.

【0023】尚挙動制御装置24は車体速度Vb が例え
ば15km/hの如き基準値Vc 以上のときには、車体速度
Vb 及び自由回転速度Vri等に基づき車輌の旋回挙動を
推定し、旋回挙動がスピン状態にあるときには旋回外輪
に制動力を付与して車輌にアンチスピンモーメントを与
えることにより車輌の挙動を安定化し、旋回挙動がドリ
フトアウト状態にあるときには左右後輪に制動力を付与
して車輌を減速すると共に後輪の横力を低減して車輌に
旋回補助モーメントを与えることにより車輌の挙動を安
定化するようになっている。
The behavior control device 24 estimates the turning behavior of the vehicle based on the vehicle speed Vb and the free rotation speed Vri when the vehicle speed Vb is equal to or higher than a reference value Vc such as 15 km / h, and the turning behavior is a spin state. When the vehicle is on, braking force is applied to the turning outer wheels to give an anti-spin moment to the vehicle to stabilize the behavior of the vehicle, and when the turning behavior is drifting out, braking force is applied to the left and right rear wheels to decelerate the vehicle. In addition, the lateral force of the rear wheels is reduced and a turning assist moment is applied to the vehicle to stabilize the behavior of the vehicle.

【0024】次に図2及び図3に示されたフローチャー
トを参照して第一の実施形態に於ける車体速度及び車輪
の自由回転速度の推定演算ルーチンの概要について説明
する。尚図2及び図3に示されたフローチャートによる
推定演算は図には示されていないイグニッションスイッ
チの閉成により開始され、所定の時間毎に繰返し実行さ
れる。
Next, the outline of the routine for estimating and calculating the vehicle body speed and the free wheel rotation speed in the first embodiment will be described with reference to the flow charts shown in FIGS. The estimation calculation according to the flowcharts shown in FIGS. 2 and 3 is started by closing an ignition switch (not shown) and is repeatedly executed at predetermined time intervals.

【0025】まずステップ10に於いては車輪速センサ
12fl〜12rrにより検出された車輪速Vwiを示す信号
等の読込みが行われ、ステップ20に於いてはTをトレ
ッドとして下記の数1に従ってヨーレートによる車輪位
置に於ける速度と車輌の重心位置に於ける速度との速度
差Vyrが演算される。
First, at step 10, a signal indicating the wheel speed Vwi detected by the wheel speed sensors 12fl to 12rr is read, and at step 20, with T as the tread, the yaw rate is calculated according to the following equation 1. A speed difference Vyr between the speed at the wheel position and the speed at the center of gravity of the vehicle is calculated.

【数1】Vyr=γ*(T/2)*3.6*π/180[Formula 1] Vyr = γ * (T / 2) * 3.6 * π / 180

【0026】ステップ30に於いてはNsgをステアリン
グギア比として下記の数2に従って前輪の舵角δが演算
される。
In step 30, the steering angle δ of the front wheels is calculated according to the following equation 2 using Nsg as the steering gear ratio.

【数2】δ=θ/Nsg[Equation 2] δ = θ / Nsg

【0027】ステップ40に於いてはWを車輌の重量と
しHを車輌の重心高さとしLをホイールベースとして下
記の数3に従って前後加速度Gx による各輪の荷重移動
量ΔWgxが演算される。
In step 40, W is the weight of the vehicle, H is the height of the center of gravity of the vehicle, and L is the wheel base, and the load movement amount ΔWgx of each wheel due to the longitudinal acceleration Gx is calculated according to the following equation (3).

【数3】ΔWgx=Gx *W*H/L/2[Formula 3] ΔWgx = Gx * W * H / L / 2

【0028】ステップ50に於いてはGpf及びGprをそ
れぞれ前輪側及び後輪側のロール剛性配分として下記の
数4に従って横加速度Gy による前輪及び後輪の荷重移
動量ΔWgyf 及びΔWgyr が演算される。
In step 50, the load movement amounts ΔWgyf and ΔWgyr of the front and rear wheels due to the lateral acceleration Gy are calculated according to the following equation 4 by using Gpf and Gpr as roll rigidity distributions on the front wheel side and the rear wheel side, respectively.

【数4】ΔWgyf =(Gy *W*H/T)*Gpf ΔWgyr =(Gy *W*H/T)*Gpr## EQU4 ## ΔWgyf = (Gy * W * H / T) * Gpf ΔWgyr = (Gy * W * H / T) * Gpr

【0029】ステップ60に於いてはKをタイヤ剛性と
しRt をタイヤ半径として下記の数5に従って荷重移動
に起因する各輪のタイヤ半径の動的補正係数Kdiが演算
される。
In step 60, K is the tire stiffness and Rt is the tire radius, and the dynamic correction coefficient Kdi of the tire radius of each wheel due to load movement is calculated according to the following equation (5).

【数5】Kdfr =1+{−ΔWgx+ΔWgyf }*9.8
/K/Rt Kdfl =1+{−ΔWgx−ΔWgyf }*9.8/K/R
t Kdrr =1+{ΔWgx+ΔWgyf }*9.8/K/Rt Kdrl =1+{ΔWgx−ΔWgyf }*9.8/K/Rt
## EQU00005 ## Kdfr = 1 + {-. DELTA.Wgx + .DELTA.Wgyf} * 9.8
/ K / Rt Kdfl = 1 + {-ΔWgx-ΔWgyf} * 9.8 / K / R
t Kdrr = 1 + {ΔWgx + ΔWgyf} * 9.8 / K / Rt Kdrl = 1 + {ΔWgx−ΔWgyf} * 9.8 / K / Rt

【0030】ステップ70に於いては下記の数6に従っ
て各輪についての車輌の重心に於ける車体の前後速度V
riが演算される。
In step 70, the longitudinal velocity V of the vehicle body at the center of gravity of the vehicle for each wheel is calculated according to the following equation 6.
ri is calculated.

【数6】Vrfr =Kdfr *Vwfr *cos δ−Vyr Vrfl =Kdfl *Vwfl *cos δ+Vyr Vrrr =Kdrr *Vwrr −Vyr Vrrl =Kdrl *Vwrl +Vyr[Equation 6] Vrfr = Kdfr * Vwfr * cos δ-Vyr Vrfl = Kdfl * Vwfl * cos δ + Vyr Vrrr = Kdrr * Vwrr-Vyr Vrrl = Kdrl * Vwrl + Vyr

【0031】ステップ80に於いては車輌の前後加速度
Gx が正であるか否かの判別、即ち車輌が加速状態にあ
るか否かの判別が行われ、肯定判別が行われたときには
ステップ90に於いて車体の前後速度Vriのうちの最小
値が前後速度Vwsとし選定され、否定判別が行われたと
きにはステップ100に於いて車体の前後速度Vriのう
ち最大値が前後速度Vwsとして選定される。
In step 80, it is determined whether or not the longitudinal acceleration Gx of the vehicle is positive, that is, whether or not the vehicle is in an accelerating state, and if a positive determination is made, step 90 is entered. In this case, the minimum value of the longitudinal velocity Vri of the vehicle body is selected as the longitudinal velocity Vws, and when a negative determination is made, the maximum value of the longitudinal velocity Vri of the vehicle body is selected as the longitudinal velocity Vws in step 100.

【0032】ステップ110に於いてはVxfを1サイク
ル前のステップ110に於いて求められた車体速度と
し、α1 及びα2 をそれぞれ正の定数として下記の数7
に従って車体速度Vx が演算される。尚下記の数7に於
いて、MEDはカッコ内の三つの数値の中間値を選択す
ることを意味する。
In step 110, Vxf is the vehicle body speed obtained in step 110 one cycle before, and α1 and α2 are positive constants.
The vehicle speed Vx is calculated in accordance with the above. In the following expression 7, MED means selecting an intermediate value of the three numerical values in parentheses.

【数7】 Vx =MED[Vws,Vxf+α1 ,Vxf−α2 ][Equation 7] Vx = MED [V w s, Vxf + α1, Vxf-α2]

【0033】ステップ120に於いては車体速度Vx が
挙動制御の基準値Vc 未満であるか否かの判別が行わ
れ、否定判別が行われたときにはステップ140へ進
み、肯定判別が行われたときにはステップ130に於い
て車体速度Vx が各輪の自由回転速度Vbiの演算の基準
速度Vwsb に選定される。
In step 120, it is judged whether or not the vehicle speed Vx is less than the reference value Vc for behavior control. If a negative judgment is made, the routine proceeds to step 140, and if a positive judgment is made. In step 130, the vehicle body speed Vx is selected as the reference speed Vwsb for calculating the free rotation speed Vbi of each wheel.

【0034】ステップ140に於いては挙動制御装置2
4によりスピンを低減すべく旋回外側輪のみが制動され
ているか否かの判別が行われ、肯定判別が行われたとき
にはステップ150に於いて旋回内輪側前輪の車体速度
Vriが基準速度Vwsb に選定され、否定判別が行われた
ときにはステップ160へ進む。ステップ160に於い
ては挙動制御装置24によりドリフトアウトを低減すべ
く後輪のみが制動されているか否かの判別が行われ、否
定判別が行われたときにはステップ130へ進み、肯定
判別が行われたときにはステップ170に於いて前輪の
車体速度Vfr及びVrfl のうち大きい方の値が基準速度
Vwsb に選定される。
In step 140, the behavior controller 2
In step 150, it is determined whether only the outer wheel on the turning side is being braked in order to reduce spin. When a positive determination is made, the vehicle body speed Vri of the front wheel on the turning inner wheel side is selected as the reference speed Vwsb in step 150. If a negative determination is made, the process proceeds to step 160. In step 160, the behavior control device 24 determines whether or not only the rear wheels are being braked in order to reduce drift-out. When a negative determination is made, the routine proceeds to step 130, where an affirmative determination is made. In step 170, the larger one of the vehicle speeds Vfr and Vrfl of the front wheels is selected as the reference speed Vwsb.

【0035】ステップ180に於いてはステップ13
0、150又は170に於いて選定された基準速度Vws
b に基づき下記の数8に従って各輪の自由回転速度Vbi
が演算される。尚下記の数8に於いてMAXはカッコ内
の二つの数値のうち大きい方の値を選択することを意味
する。
In step 180, step 13
Reference speed Vws selected at 0, 150 or 170
Free rotation speed Vbi of each wheel according to the following equation 8 based on b
Is calculated. In the following expression 8, MAX means selecting the larger value of the two values in the parentheses.

【数8】Vbfr =MAX[(Vwsb +Vyr)* cosδ*
Kdfr ,0] Vbfl =MAX[(Vwsb −Vyr)* cosδ*Kdfl ,
0] Vbrr =MAX[(Vwsb +Vyr)*Kdrr ,0] Vbrl =MAX[(Vwsb −Vyr)*Kdrl ,0]
## EQU8 ## Vbfr = MAX [(Vwsb + Vyr) * cosδ *
Kdfr, 0] Vbfl = MAX [(Vwsb-Vyr) * cosδ * Kdfl,
0] Vbrr = MAX [(Vwsb + Vyr) * Kdrr, 0] Vbrl = MAX [(Vwsb-Vyr) * Kdrl, 0]

【0036】ステップ190に於いてはそれぞれステッ
プ110及び180に於いて演算された車体速度Vx 及
び車輪の自由回転速度Vbiを示す信号が挙動制御装置2
4へ出力される。
In step 190, the signals indicating the vehicle body speed Vx and the free wheel rotation speed Vbi calculated in steps 110 and 180 are the behavior control device 2.
4 is output.

【0037】かくして第一の実施形態に於いては、ステ
ップ20に於いてヨーレートによる車輪位置に於ける速
度と車輌の重心位置に於ける速度との速度差Vyrが演算
され、ステップ30に於いて前輪の舵角δが演算され、
ステップ40に於いて前後加速度Gx による各輪の荷重
移動量ΔWgxが演算され、ステップ50に於いて横加速
度Gy による前輪及び後輪の荷重移動量ΔWgyf 及びΔ
Wgyr が演算され、ステップ60に於いて荷重移動に起
因する各輪のタイヤ半径の動的補正係数Kdiが演算さ
れ、ステップ70に於いて各輪の車輪速度Vwi及び車輌
の旋回状態を表すパラメータに基づき各輪についての車
輌の重心に於ける車体の前後速度Vriが演算される。
Thus, in the first embodiment, the speed difference Vyr between the speed at the wheel position and the speed at the center of gravity of the vehicle due to the yaw rate is calculated in step 20, and in step 30. The steering angle δ of the front wheels is calculated,
In step 40, the load movement amount ΔWgx of each wheel due to the longitudinal acceleration Gx is calculated, and in step 50, the load movement amount ΔWgyf and Δ of the front and rear wheels due to the lateral acceleration Gy.
Wgyr is calculated, the dynamic correction coefficient Kdi of the tire radius of each wheel due to load movement is calculated in step 60, and in step 70, the wheel speed Vwi of each wheel and the turning state of the vehicle are set as parameters. Based on this, the longitudinal velocity Vri of the vehicle body at the center of gravity of the vehicle for each wheel is calculated.

【0038】そしてステップ80に於いて車輌が加速状
態にあるか否かの判別が行われ、車輌が加速状態にある
ときにはステップ90及び110に於いて加速スリップ
が0又は最も小さい車輪について演算された車体の前後
速度が選定されると共に該前後速度に基づき車体速度V
x が求められ、車輌が加速状態にないときにはステップ
100及び110に於いて減速スリップが0又は最も小
さい車輪について演算された車体の前後速度が選定され
ると共に該前後速度に基づき車体速度Vx が求められ
る。
Then, in step 80, it is judged whether or not the vehicle is in the accelerating state, and when the vehicle is in the accelerating state, in steps 90 and 110, the calculation is made for the wheel with 0 or the smallest acceleration slip. The longitudinal speed of the vehicle body is selected, and the vehicle speed V is determined based on the longitudinal speed.
x is obtained, and when the vehicle is not in an accelerating state, the longitudinal velocity of the vehicle body calculated in steps 100 and 110 for the wheel having zero deceleration slip or the smallest is selected.
At the same time , the vehicle body speed V x is obtained based on the longitudinal speed .

【0039】従ってこの第一の実施形態によれば、車輌
が加速状態にある場合には加速スリップしていない車輪
或いは加速スリップが最も小さい車輪について演算され
た前後速度Vriが選定され該前後速度に基づき車体速度
が演算されるので、車輌が加速状態にある場合にも車輌
の車体速度を正確に推定することができる。
Therefore, according to the first embodiment, when the vehicle is in an accelerating state, the longitudinal velocity Vri calculated for the wheel that has not undergone the acceleration slip or the wheel with the smallest acceleration slip is selected and set as the longitudinal velocity. Based on vehicle speed
Is calculated , the vehicle body speed of the vehicle can be accurately estimated even when the vehicle is in an accelerating state.

【0040】また第一の実施形態によれば、ステップ4
0〜60に於いて荷重移動に起因する各輪のタイヤ半径
の動的補正係数Kdiが演算され、ステップ70に於ける
車体の前後速度Vriの演算に於いて動的補正係数Kdiが
考慮されるので、荷重移動に起因する各輪のタイヤ半径
の変化が考慮されない場合に比して車輌の重心に於ける
車体の前後速度Vriを正確に演算し、これにより車体速
度Vx を正確に推定することができる。
According to the first embodiment, step 4
In 0 to 60, the dynamic correction coefficient Kdi of the tire radius of each wheel due to load movement is calculated, and in the calculation of the vehicle body longitudinal velocity Vri in step 70, the dynamic correction coefficient Kdi is considered. Therefore, as compared with the case where the change in tire radius of each wheel due to load movement is not taken into consideration, the front-rear velocity Vri of the vehicle body at the center of gravity of the vehicle is accurately calculated, and thereby the vehicle body speed Vx is accurately estimated. You can

【0041】また第一の実施形態によれば、ステップ1
20、140、160に於いて車輌が挙動制御されてい
るか否かの判別が行われ、その判別結果に基づき挙動制
御による制動力制御の影響のない車輪速度Vri又は車体
速度Vx に基づき各輪の自由回転速度Vbiが演算される
ので、車輪が挙動制御装置により制動力が制御される状
態にある場合にも各輪の自由回転速度を正確に推定する
ことができる。
According to the first embodiment, step 1
Vehicle In 20,140,160 is made determination of whether it is the behavior control, each wheel on the basis of the free wheel velocity Vri or vehicle speed V x the influence of the braking force control by the behavior control based on the determination result Since the free rotation speed Vbi of is calculated, the free rotation speed of each wheel can be accurately estimated even when the braking force of the wheel is controlled by the behavior control device.

【0042】図4は各輪の制動力を制御し車輌の旋回挙
動を安定化させる挙動制御装置及び各輪の制動力をロッ
クしないよう制御するABS装置が搭載された車輌に適
用された本発明による推定装置の第二の実施形態を示す
概略構成図(A)及びブロック線図(B)である。
FIG. 4 shows the present invention applied to a vehicle equipped with a behavior control device for controlling the braking force of each wheel to stabilize the turning behavior of the vehicle and an ABS device for controlling the braking force of each wheel so as not to lock. FIG. 2 is a schematic configuration diagram (A) and a block diagram (B) showing a second embodiment of the estimation device according to the present invention.

【0043】この実施形態の推定装置14は、第一の実
施形態に於ける推定装置と同様種々のセンサにより検出
されたパラメータに基づき後述の推定ルーチンに従って
種々の演算を行うことにより、車輌の車体速度Vb 及び
車輪の自由回転速度Vbiを演算し、挙動制御装置24へ
車体速度Vb 及び自由回転速度Vbiを示す信号を出力す
るだけでなく、各輪の制動力をロックしないよう制御す
るABS装置26にも車体速度Vb 及び自由回転速度V
biを示す信号を出力するようになっている。
The estimation device 14 of this embodiment performs various calculations according to an estimation routine to be described later based on the parameters detected by various sensors as in the estimation device of the first embodiment. calculates the free rotation speed V b i speed Vb and the wheel, as well as outputs a signal indicating a vehicle speed Vb and the free rotational speed V b i to the behavior control device 24, a control so as not to lock the braking force of each wheel The vehicle body speed Vb and the free rotation speed V
It outputs a signal indicating b i.

【0044】次に図5に示されたフローチャートを参照
して第二の実施形態に於ける車体速度及び車輪の自由回
転速度の推定演算ルーチンの概要について説明する。尚
図5に示されたフローチャートによる推定演算も図には
示されていないイグニッションスイッチの閉成により開
始され、所定の時間毎に繰返し実行される。
Next, the outline of the routine for estimating and calculating the vehicle body speed and the free wheel rotation speed in the second embodiment will be described with reference to the flow chart shown in FIG. The estimation calculation according to the flow chart shown in FIG. 5 is also started by closing an ignition switch (not shown) and is repeatedly executed at predetermined time intervals.

【0045】まずステップ210に於いては車輪速セン
サ12fl〜12rrにより検出された車輪速Vwiを示す信
号等の読込みが行われ、ステップ220に於いては上記
数2に従って前輪の舵角δが演算され、またAをアッカ
ーマン率としTをトレッドとしHを車輌の重心高さとし
て下記の数9に従って左前輪及び右前輪の舵角δl 及び
δr が演算される。
First, at step 210, a signal indicating the wheel speed Vwi detected by the wheel speed sensors 12fl to 12rr is read, and at step 220, the steering angle δ of the front wheels is calculated according to the above equation 2. With A as the Ackermann ratio, T as the tread, and H as the height of the center of gravity of the vehicle, the steering angles δl and δr of the left front wheel and the right front wheel are calculated according to the following equation 9.

【数9】 δl =[1+A{1+(T*δ)/(2*H)}]*δ δr =[1−A{1−(T*δ)/(2*H)}]*δ[Equation 9] δl = [1 + A {1+ (T * δ) / (2 * H)}] * δ δr = [1-A {1- (T * δ) / (2 * H)}] * δ

【0046】ステップ230に於いては上記数3に従っ
て前後加速度Gx による各輪の荷重移動量ΔWgxが演算
され、ステップ240に於いては上記数4に従って横加
速度Gy による前輪及び後輪の荷重移動量ΔWgyf 及び
ΔWgyr が演算され、ステップ250に於いては上記数
5に従って荷重移動に起因する各輪のタイヤ半径の動的
補正係数Kdiが演算される。
In step 230, the load movement amount ΔWgx of each wheel due to the longitudinal acceleration Gx is calculated according to the above equation 3, and in step 240, the load movement amount of the front wheel and the rear wheel due to the lateral acceleration Gy according to the above equation 4. ΔWgyf and ΔWgyr are calculated, and in step 250, the dynamic correction coefficient Kdi of the tire radius of each wheel due to the load movement is calculated according to the equation (5).

【0047】ステップ260に於いては横加速度Gy と
後述のステップ280に於いて演算される車体車速Vx
及びヨーレートγの積Vx *γとの偏差Gy −Vx *γ
として横加速度の偏差、即ち車輌の横すべり加速度Vyd
が演算され、この横加速度の偏差Vydが積分されること
により車体の横すべり速度Vy が演算され、また車体速
度Vx に対する車体の横すべり速度Vy の比Vy /Vx
として車輌の重心に於ける車体のスリップ角βが演算さ
れる。
In step 260, the lateral acceleration Gy and the vehicle body speed Vx calculated in step 280 described later.
And the deviation of the yaw rate γ from the product Vx * γ Gy -Vx * γ
Is the deviation of the lateral acceleration, that is, the lateral slip acceleration of the vehicle Vyd
Is calculated, and the lateral slip velocity Vy of the vehicle body is calculated by integrating the deviation Vyd of the lateral acceleration, and the ratio Vy / Vx of the lateral slip velocity Vy of the vehicle body to the vehicle body speed Vx is calculated.
The slip angle β of the vehicle body at the center of gravity of the vehicle is calculated as

【0048】ステップ270に於いてはLf を重心と前
輪の車軸との間の距離として下記の数10に従って各輪
についての車輌の重心に於ける車体速度Vriが演算され
る。尚数10に於いてKsiは後述の図6に示されたルー
チンにより演算される各輪のタイヤ半径の静的補正係数
である。
In step 270, the vehicle body speed Vri at the center of gravity of the vehicle for each wheel is calculated in accordance with the following equation 10 using Lf as the distance between the center of gravity and the axle of the front wheel. In Expression 10, Ksi is a static correction coefficient of the tire radius of each wheel calculated by the routine shown in FIG. 6 described later.

【数10】Vrfr ={Ksfr *Kdfr *Vwfr +(T/
2)*γ*cos δr −Lf *γ*sin δr }/cos (β
−δr ) Vrfl ={Ksfl *Kdfl *Vwfl +(T/2)*γ*
cos δl −Lf *γ*sin δl }/cos (β−δl ) Vrrr ={Ksrr *Kdrr *Vwrr +(T/2)*γ}
/cos β Vrrl ={Ksrl *Kdrl *Vwrl +(T/2)*γ}
/cos β
[Equation 10] Vrfr = {Ksfr * Kdfr * Vwfr + (T /
2) * γ * cos δr −Lf * γ * sin δr} / cos (β
−δr) Vrfl = {Ksfl * Kdfl * Vwfl + (T / 2) * γ *
cos δl −Lf * γ * sin δl} / cos (β−δl) Vrrr = {Ksrr * Kdrr * Vwrr + (T / 2) * γ}
/ Cos β Vrrl = {Ksrl * Kdrl * Vwrl + (T / 2) * γ}
/ Cos β

【0049】ステップ280に於いては図6に示された
ルーチンにより演算される各輪の重みWi 及び各輪につ
いての車体速度Vriに基づき下記の数11に従って車体
速度Vx が演算される。
In step 280, the vehicle body speed Vx is calculated according to the following equation 11 based on the weight Wi of each wheel and the vehicle body speed Vri of each wheel calculated by the routine shown in FIG.

【数11】Vx =(Wfr*Vrfr +Wfl*Vrfl +Wrr
*Vrrr +Wrl*Vrrl )/(Wfr+Wfl+Wrr+Wr
l)
[Equation 11] Vx = (Wfr * Vrfr + Wfl * Vrfl + Wrr
* Vrrr + Wrl * Vrrl) / (Wfr + Wfl + Wrr + Wr
l)

【0050】ステップ290に於いては車体速度Vx に
基づき下記の数12に従って各輪の自由回転速度Vbiが
演算される。
In step 290, the free rotation speed Vbi of each wheel is calculated according to the following equation 12 based on the vehicle speed Vx.

【数12】Vbfr =Vx *cos (β−δr )−(T/
2)*γ*cos δr+Lf *γ*sin δr Vbfl =Vx *cos (β−δl )+(T/2)*γ*co
s δl−Lf *γ*sin δr Vbrr =Vx *cos β−(T/2)*γ Vbrl =Vx *cos β+(T/2)*γ
## EQU12 ## Vbfr = Vx * cos (β-δr)-(T /
2) * γ * cos δr + Lf * γ * sin δr Vbfl = Vx * cos (β-δl) + (T / 2) * γ * co
s δl-Lf * γ * sin δr Vbrr = Vx * cos β- (T / 2) * γ Vbrl = Vx * cos β + (T / 2) * γ

【0051】ステップ300に於いてはそれぞれステッ
プ280及び290に於いて演算された車体速度Vx 及
び各輪の自由回転速度Vbiを示す信号が挙動制御装置2
4及びABS装置26へ出力される。
In step 300, the signals indicating the vehicle body speed Vx and the free rotation speed Vbi of each wheel calculated in steps 280 and 290 are the behavior control device 2.
4 and the ABS device 26.

【0052】次に図6に示されたフローチャートを参照
して各輪の重みWi 及び各輪のタイヤ半径の静的補正係
数Ksiを演算するルーチンについて説明する。尚図6に
示されたルーチンも所定時間毎に繰り返し実行され、ま
たステップ410〜450は例えば右前輪、左前輪、右
後輪、左後輪の順に時系列的に各輪について実行され
る。
Next, the routine for calculating the weight Wi of each wheel and the static correction coefficient Ksi of the tire radius of each wheel will be described with reference to the flow chart shown in FIG. The routine shown in FIG. 6 is also repeatedly executed at predetermined time intervals, and steps 410 to 450 are executed for each wheel in a time series order, for example, the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel.

【0053】まずステップ410に於いては当該車輪が
挙動制御装置24による挙動制御中であるか否かの判
別、即ち挙動制御のための制動力制御が実行されている
か否かの判別が行われ、否定判別が行われたときにはス
テップ430へ進み、肯定判別が行われたときにはステ
ップ420に於いて重みWi がRvsc に設定される。
First, at step 410, it is determined whether or not the wheel is under the behavior control by the behavior control device 24, that is, whether or not the braking force control for the behavior control is being executed. When a negative determination is made, the routine proceeds to step 430, and when a positive determination is made, the weight Wi is set to Rvsc in step 420.

【0054】ステップ430に於いては当該車輪がAB
S制御中であるか否かの判別、即ちABS装置26によ
る制動力制御が実行されているか否かの判別が行われ、
肯定判別が行われたときにはステップ440に於いて重
みWi がRabs に設定され、否定判別が行われたときに
はステップ450に於いて重みWi がRnor に設定され
る。尚Rvsc 、Rabs 、Rnor は下記の数13を満たす
定数である。
In step 430, the wheel is AB
Whether or not the S control is being performed, that is, whether or not the braking force control by the ABS device 26 is being performed,
When a positive determination is made, the weight Wi is set to Rabs in step 440, and when a negative determination is made, the weight Wi is set to Rnor in step 450. Rvsc, Rabs, and Rnor are constants that satisfy the following Expression 13.

【数13】Rnor >Rabs >Rvsc =0[Equation 13] Rnor> Rabs> Rvsc = 0

【0055】ステップ460に於いてはRf 及びRr を
それぞれ前輪及び後輪についての係数(正の定数)とし
て下記の数14に従って各輪の重みWi が演算される。
尚係数Rf 及びRr は車輌が後輪駆動車の場合にはRf
>Rr であり、前輪駆動車の場合にはRf <Rr であ
る。
In step 460, the weight Wi of each wheel is calculated according to the following equation 14 using Rf and Rr as coefficients (positive constants) for the front wheel and the rear wheel, respectively.
The coefficients Rf and Rr are Rf when the vehicle is a rear-wheel drive vehicle.
> Rr, and in the case of a front-wheel drive vehicle, Rf <Rr.

【数14】Wfr=Wfr*Rf Wfl=Wfl*Rf Wrr=Wrr*Rr Wrl=Wrl*Rr[Equation 14] Wfr = Wfr * Rf Wfl = Wfl * Rf Wrr = Wrr * Rr Wrl = Wrl * Rr

【0056】ステップ470に於いては下記の数15に
従って各輪のタイヤ半径の静的補正係数Ksiが演算され
る。尚Rはフィルタ係数であり、Ts をサンプリングタ
イムとしTr を数秒程度の正の定数としてTs /Tr で
ある。またVbiはステップ290に於いて演算される各
輪の自由回転速度であり、このルーチンが最初に実行さ
れるときには静的補正係数Ksiは1に設定される。
In step 470, the static correction coefficient Ksi of the tire radius of each wheel is calculated according to the following equation 15. In addition, R is a filter coefficient, and Ts is a sampling time, and Tr is Ts / Tr, where Tr is a positive constant of about several seconds. Vbi is the free rotation speed of each wheel calculated in step 290, and the static correction coefficient Ksi is set to 1 when this routine is first executed.

【数15】Ksi=(1−R)*Ksi+R*Vbi/Vwi[Expression 15] Ksi = (1-R) * Ksi + R * Vbi / Vwi

【0057】かくして第二の実施形態に於いては、ステ
ップ220に於いて前輪の舵角δr及びδl が演算さ
れ、ステップ230に於いて前後加速度Gx による各輪
の荷重移動量ΔWgxが演算され、ステップ240に於い
て横加速度Gy による前輪及び後輪の荷重移動量ΔWgy
f 及びΔWgyr が演算され、ステップ250に於いて荷
重移動に起因する各輪のタイヤ半径の動的補正係数Kdi
が演算され、ステップ260に於いて車体のスリップ角
βが演算され、ステップ270に於いて各輪の車輪速度
Vwi及び車輌の旋回状態を表すパラメータに基づき各輪
についての車輌の重心に於ける車体の前後速度Vriが演
算される。
Thus, in the second embodiment, the steering angles δr and δl of the front wheels are calculated in step 220, and the load movement amount ΔWgx of each wheel due to the longitudinal acceleration Gx is calculated in step 230. In step 240, the load movement amount ΔWgy of the front and rear wheels due to the lateral acceleration Gy
f and ΔWgyr are calculated, and in step 250, the dynamic correction coefficient Kdi of the tire radius of each wheel caused by the load movement is calculated.
Is calculated, and the slip angle β of the vehicle body is calculated in step 260, and in step 270, the vehicle body at the center of gravity of the vehicle for each wheel is calculated based on the wheel speed Vwi of each wheel and the parameter indicating the turning state of the vehicle. The front-rear velocity Vri of V is calculated.

【0058】そしてステップ410〜460に於いて車
輪の制動状態に応じて重みWi が演算され、ステップ2
80に於いて車体の前後速度Vri及び重みWi に基づき
車体速度Vx が演算され、その車体速度Vx に基づき各
輪の自由回転速度Vbiが演算される。
Then, in steps 410 to 460, the weight Wi is calculated according to the braking state of the wheels, and step 2
Vehicle speed V x on the basis of the longitudinal velocity Vri and the weight Wi of the vehicle body at 80 is calculated, the free rotational speed Vbi of each wheel based on the vehicle speed V x is calculated.

【0059】従ってこの第二の実施形態によれば、重み
Wi は車輪の制動状態に基づき車体速度演算の基礎とし
得る信頼性の度合として演算され、重みWi に基づく前
後速度Vriの重み平均として車体速度Vx が演算される
ので、車輪が挙動制御又はABS制御により制動力が制
御される状態にある場合にも車輌の車体速度及び各輪の
自由回転速度を正確に推定することができる。
[0059] Therefore, according to this second embodiment, the weights Wi are calculated as the reliability of the time if that may be a basis of the vehicle speed calculated based on the braking state of the wheel, as the weight average of the longitudinal velocity Vri-based weight Wi Since the vehicle body speed Vx is calculated, the vehicle body speed of the vehicle and the free rotation speed of each wheel can be accurately estimated even when the braking force of the wheel is controlled by the behavior control or the ABS control .

【0060】また第二の実施形態によれば、荷重移動に
起因する各輪のタイヤ半径の動的補正係数Kdiに加えて
ステップ470に於いて各輪のタイヤ半径の静的補正係
数Ksiが演算され、ステップ270に於ける車体の前後
速度Vriの演算に於いては動的補正係数Kdi及び静的補
正係数Ksiの両方が考慮されるので、タイヤの空気圧の
変化等に起因して各輪のタイヤ半径が標準状態とは異な
る場合にも、第一の実施形態の場合に比して車輌の重心
に於ける車体の前後速度Vriを正確に演算し、これによ
り車体速度Vx及び各輪の自由回転速度を正確に推定す
ることができる。
Further, according to the second embodiment, in addition to the dynamic correction coefficient Kdi of the tire radius of each wheel due to the load movement, the static correction coefficient Ksi of the tire radius of each wheel is calculated in step 470. Since both the dynamic correction coefficient Kdi and the static correction coefficient Ksi are taken into consideration in the calculation of the vehicle body front-rear speed Vri in step 270, each wheel is affected by a change in tire air pressure or the like. Even when the tire radius is different from the standard state, the longitudinal velocity Vri of the vehicle body at the center of gravity of the vehicle is calculated more accurately than in the case of the first embodiment, whereby the vehicle body velocity Vx and the freedom of each wheel are calculated. The rotation speed can be accurately estimated.

【0061】また第二の実施形態によれば、前輪の舵角
の演算に際しアッカーマン率Aが考慮され、左右前輪の
舵角が正確に演算されるので、このことによっても第一
の実施形態の場合に比して車輌の重心に於ける車体の前
後速度Vriを正確に演算し、これにより車体速度Vx
び各輪の自由回転速度を正確に推定することができる。
Further, according to the second embodiment, the Ackermann ratio A is taken into consideration when calculating the steering angle of the front wheels, and the steering angles of the left and right front wheels are accurately calculated. Compared with the case, the front-rear velocity Vri of the vehicle body at the center of gravity of the vehicle is accurately calculated, and the vehicle body velocity Vx and
The free rotation speed of each wheel can be accurately estimated.

【0062】尚上述の第一の実施形態は挙動制御装置の
みが搭載された車輌に適用された実施形態であるが、挙
動制御装置に加えてABS制御装置若しくはTRC装置
が搭載された車輌に適用される場合には、ステップ16
0に於いて否定判別が行われた場合にABS制御中若し
くはTRC制御中であるか否かの判別が行われ、ABS
制御中である旨の判別が行われたときにはABS制御さ
れていない車輪のVriのうちの最大がVwsb に選定さ
れ、TRC制御中である旨の判別が行われたときにはT
RC制御されていない車輪のVriのうちの最小値がVws
b に選定され、ABS制御もTRC制御も実行されてい
ないときにはステップ130へ進むよう構成されてよ
い。
The above-described first embodiment is an embodiment applied to a vehicle in which only the behavior control device is installed, but is applied to a vehicle in which an ABS control device or a TRC device is installed in addition to the behavior control device. If so, step 16
If a negative determination is made at 0, it is determined whether ABS control or TRC control is in progress, and the ABS control
When it is determined that the control is being performed, the maximum of Vri of the wheels that are not under ABS control is selected as Vwsb, and when it is determined that the TRC control is being performed, T
The minimum value of Vri of wheels that are not RC controlled is Vws
If b is selected and neither ABS control nor TRC control is executed, the process may proceed to step 130.

【0063】また上述の第二の実施形態に於ては、ステ
ップ280に於いて演算された車体速度Vx に基づきス
テップ290に於いて各輪の自由回転速度Vbiが演算さ
れるようになっているが、この実施形態に於いても各輪
の自由回転速度は第一の実施形態に於けるステップ12
0〜180と同様のルーチンに従って演算されてもよ
い。
In the second embodiment described above, the free rotation speed Vbi of each wheel is calculated in step 290 based on the vehicle body speed Vx calculated in step 280. However, even in this embodiment, the free rotation speed of each wheel is determined by the step 12 in the first embodiment.
It may be calculated according to the same routine as 0 to 180.

【0064】以上に於ては本発明を特定の実施形態につ
いて詳細に説明したが、本発明は上述の実施形態に限定
されるものではなく、本発明の範囲内にて他の種々の実
施形態が可能であることは当業者にとって明らかであろ
う。
Although the present invention has been described above in detail with respect to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are also possible within the scope of the present invention. It will be apparent to those skilled in the art that

【0065】[0065]

【発明の効果】以上の説明より明らかである如く、本発
明の請求項1の構成によれば、各輪の車輪速度Vwi及び
車輌の旋回状態を表すパラメータに基づき各輪について
車輌の特定の位置の前後速度Vriが演算され、制動力制
御装置による制動力の制御が実行されているか否かに基
づいて、換言すれば車体速度演算の基礎とし得る信頼性
の度合に応じて各輪について前後速度Vriの重みWi が
演算され、前後速度Vri及び重みWi に基づき車体速度
Vx が演算されるので、制動力制御装置により車輪の制
動力が制御されている場合にも車輌の車体速度を正確に
推定することができる。
As is apparent from the above description, according to the configuration of claim 1 of the present invention, the specific position of the vehicle for each wheel is determined based on the wheel speed Vwi of each wheel and the parameter indicating the turning state of the vehicle. before and after speed Vri is calculated, the braking force system
Reliability based on whether or not the control of the braking force by the control device is executed , in other words, the basis of vehicle speed calculation
Time for each wheel in accordance with the case that the weight Wi of the longitudinal velocity Vri is calculated, and since the vehicle speed Vx based on longitudinal velocity Vri and weight Wi is calculated, control of the wheel by the braking force control unit
It is possible to accurately estimate the vehicle body speed of the vehicle even when the power is that is controlled.

【0066】また請求項2の構成によれば、各輪の車輪
速度Vwi車輌の旋回状態を表すパラメータ及び各輪の
動荷重半径の変化に基づき各輪について車輌の特定の位
置の前後速度Vriが演算され、車輌が加速状態にあると
きには加速スリップが最も小さい車輪について演算され
た前後速度Vriが選定されるよう前後速度Vriの何れか
一つが選定され、選定された前後速度に基づき車体速度
Vxが演算されるので、車輌の旋回や加減速時にもこれ
らに起因する荷重移動による車輪の動荷重半径の変化の
影響を受けることなく前後速度Vriを求めることがで
き、また車輌が加速状態にあるか否かが考慮されること
なく前後速度Vriが選択される場合に比して車輌の車体
速度を正確に推定することができる。
According to the second aspect of the invention , the wheel speed Vwi of each wheel, the parameter indicating the turning state of the vehicle, and the wheel
The front-rear velocity Vri at a specific position of the vehicle is calculated for each wheel based on the change in the dynamic load radius, and when the vehicle is in an accelerating state, the front-rear velocity Vri calculated for the wheel with the smallest acceleration slip is selected. is any one the selection of Vri, since the vehicle speed Vx based on the longitudinal velocity that is selected is calculated, which is also the time of turning and acceleration of the vehicle
Of the dynamic load radius of the wheel due to the load transfer caused by
The front-rear velocity Vri can be calculated without being affected.
In addition, the vehicle body speed of the vehicle can be accurately estimated as compared with the case where the longitudinal speed Vri is selected without considering whether or not the vehicle is in the accelerated state.

【0067】[0067]

【0068】[0068]

【0069】[0069]

【0070】[0070]

【図面の簡単な説明】[Brief description of drawings]

【図1】各輪の制動力を制御し車輌の旋回挙動を安定化
させる挙動制御装置が搭載された車輌に適用された本発
明による推定装置の第一の実施形態を示す概略構成図
(A)及びブロック線図(B)である。
FIG. 1 is a schematic configuration diagram showing a first embodiment of an estimation device according to the present invention applied to a vehicle equipped with a behavior control device for controlling a braking force of each wheel and stabilizing a turning behavior of the vehicle (A). ) And a block diagram (B).

【図2】第一の実施形態に於ける車体速度及び車輪の自
由回転速度の推定演算ルーチンの前半を示すフローチャ
ートである。
FIG. 2 is a flowchart showing a first half of an estimation calculation routine of a vehicle body speed and a free wheel rotation speed in the first embodiment.

【図3】第一の実施形態に於ける車体速度及び車輪の自
由回転速度の推定演算ルーチンの後半を示すフローチャ
ートである。
FIG. 3 is a flowchart showing a latter half of a routine for estimating and calculating a vehicle body speed and a free wheel rotation speed in the first embodiment.

【図4】各輪の制動力を制御し車輌の旋回挙動を安定化
させる挙動制御装置及び各輪の制動力をロックしないよ
う制御するABS装置が搭載された車輌に適用された本
発明による推定装置の第二の実施形態を示す概略構成図
(A)及びブロック線図(B)である。
FIG. 4 is an estimation according to the present invention applied to a vehicle equipped with a behavior control device that controls the braking force of each wheel to stabilize the turning behavior of the vehicle and an ABS device that controls so that the braking force of each wheel is not locked. It is the schematic block diagram (A) and block diagram (B) which show 2nd embodiment of an apparatus.

【図5】第二の実施形態に於ける車体速度及び車輪の自
由回転速度の推定演算ルーチンを示すフローチャートで
ある。
FIG. 5 is a flowchart showing a routine for estimating and calculating a vehicle body speed and a free wheel rotation speed in the second embodiment.

【図6】第二の実施形態に於ける各輪のタイヤ半径の動
的補正係数Kdi及び静的補正係数Ksiの演算ルーチンを
示すフローチャートである。
FIG. 6 is a flow chart showing a calculation routine of a dynamic correction coefficient Kdi and a static correction coefficient Ksi of a tire radius of each wheel in the second embodiment.

【符号の説明】[Explanation of symbols]

12fr、12fl、12rr、12rl…車輪速度センサ 14…推定装置 16…操舵角センサ 18…前後加速度センサ 20…横加速度センサ 22…ヨーレートセンサ 24…挙動制御装置 26…ABS装置 12fr, 12fl, 12rr, 12rl ... Wheel speed sensor 14 ... Estimating device 16 ... Steering angle sensor 18 ... longitudinal acceleration sensor 20 ... Lateral acceleration sensor 22 ... Yaw rate sensor 24. Behavior control device 26 ... ABS device

フロントページの続き (56)参考文献 特開 平2−70945(JP,A) 特開 平1−254463(JP,A) 特開 平1−202565(JP,A) 特開 平5−105056(JP,A) 特開 平6−321085(JP,A) 特開 平2−303963(JP,A) 特開 平4−201658(JP,A) 特開 昭62−125944(JP,A) 特開 昭61−71265(JP,A) 特開 平4−50068(JP,A) 特開 平2−310157(JP,A) 特開 昭56−90754(JP,A) 特開 平4−143158(JP,A) 特表 平5−502836(JP,A) (58)調査した分野(Int.Cl.7,DB名) B60T 8/66 B60T 8/24 B60T 8/58 Continuation of the front page (56) References JP-A-2-70945 (JP, A) JP-A-1-254463 (JP, A) JP-A-1-202565 (JP, A) JP-A-5-105056 (JP , A) JP-A-6-321085 (JP, A) JP-A-2-303963 (JP, A) JP-A-4-201658 (JP, A) JP-A-62-125944 (JP, A) JP-A- 61-71265 (JP, A) JP-A-4-50068 (JP, A) JP-A-2-310157 (JP, A) JP-A-56-90754 (JP, A) JP-A-4-143158 (JP, A) Special table HEI 5-502836 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) B60T 8/66 B60T 8/24 B60T 8/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】必要に応じて車輪の制動力を制御する制動
力制御装置を備えた車輌の車体速度推定装置にして、各
輪の車輪速度Vwiを検出する手段と、車輌の旋回状態を
表すパラメータを検出する手段と、前記車輪速度Vwi及
び前記パラメータに基づき各輪について車輌の特定の位
置の前後速度Vriを演算する前後速度演算手段と、前記
制動力制御装置による制動力の制御が実行されているか
否かに基づいて各輪について前記前後速度Vriの重みW
i を演算する手段と、前記前後速度Vri及び前記重みW
i に基づき車体速度Vx を演算する手段とを有すること
を特徴とする車輌の車体速度推定装置。
1. A vehicle body speed estimating device equipped with a braking force control device for controlling the braking force of wheels as necessary, and means for detecting the wheel speed Vwi of each wheel, and a turning state of the vehicle. A parameter detecting means, a front-rear speed calculating means for calculating a front-rear speed Vri at a specific position of the vehicle for each wheel based on the wheel speed Vwi and the parameter, and a braking force control by the braking force control device are executed. The weight W of the front-rear speed Vri for each wheel based on whether
means for calculating i, the longitudinal velocity Vri and the weight W
and a means for calculating a vehicle speed Vx based on i.
【請求項2】必要に応じて車輪の制動力を制御する制動
力制御装置を備えた車輌の車体速度推定装置にして、各
輪の車輪速度Vwiを検出する手段と、車輌の旋回状態を
表すパラメータを検出する手段と、各輪の動荷重半径の
変化を検出する手段と、前記車輪速度Vwi前記パラメ
ータ及び前記動荷重半径の変化に基づき各輪について車
輌の特定の位置の前後速度Vriを演算する前後速度演算
手段と、車輌の加速状態を検出する手段と、前記前後速
度Vriの何れか一つを選定する選定手段と、前記選定手
段により選定された前後速度に基づき車体速度Vxを演
算する手段とを有し、前記選定手段は車輌が加速状態に
あるときには加速スリップが最も小さい車輪について演
算された前後速度Vriを選定することを特徴とする車輌
の車体速度推定装置。
2. A vehicle body speed estimating device equipped with a braking force control device for controlling braking force of wheels as required, and means for detecting a wheel velocity Vwi of each wheel, and a turning state of the vehicle. The means to detect the parameters and the dynamic load radius of each wheel
Means for detecting a change , front-rear speed calculating means for calculating a front-rear speed Vri at a specific position of the vehicle for each wheel based on the change in the wheel speed Vwi , the parameter and the dynamic load radius, and an acceleration state of the vehicle are detected. Means for selecting one of the longitudinal speeds Vri, and means for calculating the vehicle body speed Vx based on the longitudinal speeds selected by the selecting means. The selecting means accelerates the vehicle. A vehicle body speed estimation device for a vehicle, characterized in that when the vehicle is in a state, the longitudinal speed Vri calculated for the wheel with the smallest acceleration slip is selected.
JP27361295A 1995-09-27 1995-09-27 Vehicle body speed estimation device and wheel free rotation speed estimation device Expired - Lifetime JP3412363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27361295A JP3412363B2 (en) 1995-09-27 1995-09-27 Vehicle body speed estimation device and wheel free rotation speed estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27361295A JP3412363B2 (en) 1995-09-27 1995-09-27 Vehicle body speed estimation device and wheel free rotation speed estimation device

Publications (2)

Publication Number Publication Date
JPH0986367A JPH0986367A (en) 1997-03-31
JP3412363B2 true JP3412363B2 (en) 2003-06-03

Family

ID=17530178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27361295A Expired - Lifetime JP3412363B2 (en) 1995-09-27 1995-09-27 Vehicle body speed estimation device and wheel free rotation speed estimation device

Country Status (1)

Country Link
JP (1) JP3412363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222923B2 (en) 2003-08-26 2007-05-29 Advics Co., Ltd. Vehicle wheel speed estimation device, vehicle body speed estimation device and vehicle behavior control apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9145127B2 (en) 2008-12-26 2015-09-29 Komatsu Ltd. Traction control device
EP2374674B1 (en) 2008-12-26 2013-11-27 Komatsu Ltd. Traction control device
EP2374675B1 (en) 2009-01-08 2016-03-30 Komatsu, Ltd. Traction control apparatus
CN103350700B (en) 2009-01-08 2016-01-20 株式会社小松制作所 Car speed estimation device and traction control apparatus
JP5370568B2 (en) * 2012-10-24 2013-12-18 株式会社アドヴィックス Body speed control device
JP6329105B2 (en) 2015-05-13 2018-05-23 トヨタ自動車株式会社 Driving force control device for four-wheel drive vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222923B2 (en) 2003-08-26 2007-05-29 Advics Co., Ltd. Vehicle wheel speed estimation device, vehicle body speed estimation device and vehicle behavior control apparatus

Also Published As

Publication number Publication date
JPH0986367A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
CN100358766C (en) Vehicle run stability control device based on wheel longitudinal force
US6456920B1 (en) Apparatus for estimating a vehicle side slip angle
JP2716435B2 (en) Vehicle speed control device for road surface vehicles
US5641212A (en) Dynamic behavior estimate system of automotive vehicle
JP3215414B2 (en) Wheel slip control device
US6904351B1 (en) Operating a vehicle control system
US5700073A (en) Braking force control system and the method thereof
JP3334647B2 (en) Vehicle yaw rate detection device
US6155655A (en) Yaw braking force control system and the method thereof
JP4151389B2 (en) Vehicle behavior control device
EP0775617A2 (en) Apparatus for determining an estimated quantity of a state of motion of a vehicle
JP2800141B2 (en) A method for controlling braking pressure in relation to the deviation of actual slip from target slip of wheels.
EP0970876A2 (en) Wheel slip angle detecting system for a vehicle
JPH09226559A (en) Reference wheelspeed calculation device for controlling brake force and drive force
JP3607985B2 (en) Vehicle body speed estimation device and control device
JP3662118B2 (en) Vehicle acceleration / deceleration calculation method
US5855419A (en) Process for controlling a distribution of braking force in a vehicle
JP2003531761A (en) ESP controller for automobile
US6092882A (en) Braking force control system and the method thereof
US6523914B2 (en) Vehicle steerability and driving stability while braking in a curve
JP3412363B2 (en) Vehicle body speed estimation device and wheel free rotation speed estimation device
JPH04121439A (en) Wheel speed controller of vehicle
EP0992411B1 (en) Estimation of vehicle speed for regulating the ABS function
US5935186A (en) Monitor system for hydraulic pressure circuits of vehicles
JP3662187B2 (en) Road slope estimation device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 11

EXPY Cancellation because of completion of term