JPH1177908A - Polymer ultra-fine particle attraction structure and its manufacture - Google Patents

Polymer ultra-fine particle attraction structure and its manufacture

Info

Publication number
JPH1177908A
JPH1177908A JP26779297A JP26779297A JPH1177908A JP H1177908 A JPH1177908 A JP H1177908A JP 26779297 A JP26779297 A JP 26779297A JP 26779297 A JP26779297 A JP 26779297A JP H1177908 A JPH1177908 A JP H1177908A
Authority
JP
Japan
Prior art keywords
polymer
ultrafine
particles
charged
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26779297A
Other languages
Japanese (ja)
Other versions
JP3847424B2 (en
Inventor
Mitsuru Akashi
満 明石
Takeshi Serizawa
武 芹澤
Hiroko Takeshita
寛子 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNIE CHEM KK
Original Assignee
UNIE CHEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNIE CHEM KK filed Critical UNIE CHEM KK
Priority to JP26779297A priority Critical patent/JP3847424B2/en
Publication of JPH1177908A publication Critical patent/JPH1177908A/en
Application granted granted Critical
Publication of JP3847424B2 publication Critical patent/JP3847424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide polymer ultra-fine particle attraction structure usable for functional material such as electronic material, optical material or the like or specifically sensor, diagnosing test carrier or the like, and a method for manufacturing it. SOLUTION: The polymer ultra-fine particle attraction structure comprises chargeable polymer ultra-fine particles substantially uniformly dispersed and attracted on a chargeable polymer thin film formed on a surface of a base plate. The method for manufacturing it comprises the steps of forming a chargeable polymer thin film on a base plate, then dipping chargeable polymer ultra- fine particles in dispersion liquid, and substantially uniformly dispersing the particles by electrostatic interaction to attract the particles on the film. The thin film is preferably obtained by alternately laminating at least one layer of water soluble polymer having cationic charge and one layer of water soluble polymer having anionic charge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子超微粒子吸
着構造体及びその製造方法に関し、特に電子材料や光学
的材料等の機能性材料、各種センサー、診断試薬用担体
等に利用可能な高分子超微粒子吸着構造体及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer ultrafine particle adsorbing structure and a method for producing the same, and more particularly to a functional material such as an electronic material and an optical material, various sensors, and a carrier for a diagnostic reagent. The present invention relates to a molecular ultrafine particle adsorption structure and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】表面積
の大きな高分子超微粒子は従来より塗料、接着剤、クロ
マトグラフィーの固定相、化粧品、医薬品等多くの分野
における利用可能性が期待されており、これまでにポリ
スチレンラテックス、アクリルラテックス等種々の単分
散性ラテックスが実用化されている。
2. Description of the Related Art Ultrafine polymer particles having a large surface area have been expected to be applicable in many fields such as paints, adhesives, stationary phases for chromatography, cosmetics and pharmaceuticals. Various monodisperse latexes such as polystyrene latex and acrylic latex have been put to practical use.

【0003】またこのような高分子超微粒子の集積体と
しては、高分子超微粒子の乳化・分散液を基板上に塗工
したものや、電着塗装により高分子超微粒子を基板上に
吸着あるいは凝集・堆積させたもの等が実用化されてい
る。しかしながら、このような方法で作製された高分子
超微粒子の集積体は、超微粒子の分散均一性が不十分で
あり、機能的にも超微粒子としての特性が発揮されない
という問題がある。
[0003] Such an aggregate of ultrafine polymer particles is prepared by coating an emulsion / dispersion of ultrafine polymer particles on a substrate, or by adsorbing ultrafine polymer particles on a substrate by electrodeposition coating. Aggregated and deposited materials have been put to practical use. However, the aggregate of the ultrafine polymer particles produced by such a method has a problem that the dispersion uniformity of the ultrafine particles is insufficient and the characteristics as the ultrafine particles are not functionally exhibited.

【0004】一方、静電的な相互作用を駆動力とした超
微粒子の積層技術としては、荷電ポリマーの静電複合化
法を使って超薄膜を作製する方法が報告されている。こ
のような方法は、具体的には鎖状ポリマー、タンパク
質、又は金属アルコキシドや(Chem. Lett. , 125 頁,
1996年)、シリカ等の酸化物粒子(Chem. Lett., 125
頁,1997 年)を静電相互作用を利用して積層するもので
ある。
On the other hand, as a technique for laminating ultrafine particles using electrostatic interaction as a driving force, there has been reported a method of producing an ultrathin film using an electrostatic compounding method of a charged polymer. Such a method is, specifically, a linear polymer, a protein, or a metal alkoxide or (Chem. Lett., P. 125,
1996), oxide particles such as silica (Chem. Lett., 125
P. 1997) using electrostatic interaction.

【0005】さらに水面単分子膜化、溶媒の蒸発に伴う
ポリスチレン微粒子の配列化(特開平6-277501号、特開
平8-229474号、Langmuir, 12巻,1303 頁, 1996年)、電
場印加(Science , 272 巻,706 頁, 1996 年)等によ
る高分子微粒子の集積化の技術が検討されている。これ
らの技術によって得られる高分子超微粒子の集積体は、
装飾用途(特開平8-234007号)や光学用途(J.Colloid
Interface Sci.,144巻,2号,538 頁,1991年)等へ
の応用が検討されている。
Further, formation of polystyrene fine particles with formation of a monolayer on the water surface and evaporation of the solvent (JP-A-6-277501, JP-A-8-229474, Langmuir, vol. 12, p. 1303, 1996), application of an electric field ( Science, vol. 272, p. 706, 1996), etc., are being studied. The aggregate of polymer ultrafine particles obtained by these technologies
For decorative applications (JP-A-8-234007) and optical applications (J.Colloid
Application to Interface Sci., Vol. 144, No. 2, p. 538, 1991) is being studied.

【0006】しかしながら、上記の技術はいずれも高分
子超微粒子を最密充填又は凝集状態で集積・積層するも
のであり、高分子超微粒子の集積密度を制御し、高分子
超微粒子を均一に分散させつつ基板上に吸着させる方法
は実現されていない。
[0006] However, all of the above-mentioned technologies accumulate and laminate polymer ultrafine particles in a close-packed or agglomerated state. No method has been realized in which the substrate is adsorbed on the substrate while the substrate is being made to adhere to the substrate.

【0007】従って本発明の目的は、高分子超微粒子を
凝集させることなく実質的に均一に分散して、単層で基
板上に吸着させた高分子超微粒子吸着構造体、及びその
製造方法を提供することである。
Accordingly, an object of the present invention is to provide a polymer ultrafine particle adsorbing structure in which polymer ultrafine particles are substantially uniformly dispersed without agglomeration and adsorbed on a substrate in a single layer, and a method for producing the same. To provide.

【0008】[0008]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者等は、基板上に形成された荷電性高分
子薄膜上に、荷電性高分子超微粒子を静電的な相互作用
を主な駆動力として実質的に均一に吸着させることによ
り、センサーや試薬用担体を始めとして、電子材料、光
学材料等に利用可能な高分子超微粒子吸着構造体が得ら
れることを発見し、本発明を完成した。
Means for Solving the Problems As a result of intensive studies in view of the above-mentioned object, the present inventors have found that a charged polymer ultra-fine particle is electrostatically interconnected on a charged polymer thin film formed on a substrate. It has been discovered that by adsorbing substantially uniformly the action as the main driving force, it is possible to obtain a polymer ultrafine particle adsorption structure that can be used for electronic materials, optical materials, etc., including carriers for sensors and reagents. Thus, the present invention has been completed.

【0009】すなわち、本発明の高分子超微粒子吸着構
造体は、基板表面に形成された荷電性高分子薄膜上に、
荷電性高分子超微粒子が実質的に均一に分散して吸着し
ていることを特徴とする。
That is, the polymer ultrafine particle-adsorbing structure of the present invention is formed on a charged polymer thin film formed on a substrate surface.
The present invention is characterized in that the charged polymer ultrafine particles are substantially uniformly dispersed and adsorbed.

【0010】また本発明の高分子超微粒子吸着構造体の
製造方法は、荷電性高分子薄膜を形成した基板を、荷電
性高分子超微粒子の分散液中に浸漬し、前記荷電性高分
子薄膜上に前記荷電性高分子超微粒子を静電相互作用に
より実質的に均一に分散して吸着させることを特徴とす
る。
Further, in the method for producing a polymer ultrafine particle adsorption structure according to the present invention, the substrate on which the chargeable polymer thin film is formed is immersed in a dispersion of the chargeable polymer ultrafine particles, The charged polymer ultrafine particles are substantially uniformly dispersed and adsorbed thereon by electrostatic interaction.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[1] 高分子超微粒子吸着構造体の構成 (1) 荷電性高分子超微粒子 本発明に使用する荷電性高分子超微粒子は、界面活性剤
や保護コロイドの存在下又は界面活性剤の不存在下で、
乳化重合によって調製することができる。乳化重合法に
より、真球度の高い高分子超微粒子を得ることができ
る。素材としては、ポリスチレン、ポリメチルメタクリ
レート、メタクリル酸エステル/アクリル酸エステル共
重合体、スチレン/アクリル酸エステル共重合体、ポリ
酢酸ビニル、酢酸ビニル/メタクリル酸エステル共重合
体、酢酸ビニル/アクリル酸エステル共重合体、スチレ
ン/ブタジエン共重合体(SB)、アクリロニトリル/
ブタジエン共重合体(NB)、メチルメタクリレート/
ブタジエン共重合体(MB)、ポリブタジエン、ポリク
ロロプレン、これらのブレンド又はこれらの3元系以上
の共重合体を挙げることができる。
[1] Configuration of polymer ultrafine particle adsorption structure (1) Chargeable polymer ultrafine particles The charged polymer ultrafine particles used in the present invention are in the presence of a surfactant or a protective colloid or in the absence of a surfactant. Below,
It can be prepared by emulsion polymerization. By the emulsion polymerization method, polymer ultrafine particles having high sphericity can be obtained. Materials include polystyrene, polymethyl methacrylate, methacrylate / acrylate copolymer, styrene / acrylate copolymer, polyvinyl acetate, vinyl acetate / methacrylate copolymer, vinyl acetate / acrylate Copolymer, styrene / butadiene copolymer (SB), acrylonitrile /
Butadiene copolymer (NB), methyl methacrylate /
Butadiene copolymer (MB), polybutadiene, polychloroprene, a blend thereof, or a ternary or higher copolymer thereof can be given.

【0012】上記荷電性高分子超微粒子は、表面に結合
した官能基、重合開始剤断片、界面活性剤、又は保護コ
ロイドの電荷によって荷電性を示す。表面にカルボキシ
ル基、水酸基、スルホン基等の官能基又はアニオン性界
面活性剤が結合したアニオン性高分子超微粒子はアニオ
ン性を示し、表面にアミノ基、4級アンモニウム塩基等
の官能基又はカチオン性界面活性剤が結合したカチオン
性高分子超微粒子はカチオン性を示す。
The above-mentioned charged ultrafine polymer particles are charged by the charge of a functional group, a polymerization initiator fragment, a surfactant, or a protective colloid bonded to the surface. Ultrafine particles of anionic polymer having a functional group such as a carboxyl group, a hydroxyl group, or a sulfone group on the surface or an anionic surfactant bonded thereto exhibit anionic properties, and have a functional group such as an amino group or a quaternary ammonium base or a cationic group on the surface. The cationic polymer ultrafine particles to which the surfactant is bound show cationicity.

【0013】荷電性高分子超微粒子の平均粒径は、一般
に数nm〜数十μmとすることができるが、作業性や分散
性等の観点から粒径のばらつきを小さくするのが好まし
い。平均粒径は10nm〜10μmの範囲が好ましく、50nm〜
3μmの範囲がより好ましく、70nm〜2μmの範囲が最
も好ましい。なお粒径は電子顕微鏡、レーザー光散乱法
等により測定することができる。
The average particle size of the charged ultrafine polymer particles can be generally from several nm to several tens of μm, but it is preferable to reduce the variation in particle size from the viewpoint of workability and dispersibility. The average particle size is preferably in the range of 10 nm to 10 μm,
A range of 3 μm is more preferred, and a range of 70 nm to 2 μm is most preferred. The particle size can be measured by an electron microscope, a laser light scattering method, or the like.

【0014】荷電性高分子超微粒子の単分散性の程度は
高分子超微粒子吸着構造体の用途により異なるが、いず
れの場合でも高分子超微粒子の粒径分布(C.V.)値は20
%以下であるのが好ましく、15%以下であるのがより好
ましい。特に高度の単分散性が要求される場合には、C.
V.値は5%以下、さらに3%以下であるのが好ましい。
C.V.値が20%を超えると、粒径のばらつきが大きくな
り、高分子超微粒子集合体の構造が不均一になるため好
ましくない。粒径分布(C.V.)は、平均粒径(R)の測
定値と標準偏差(S.D.)とから、C.V.=S.D./R(%)
の式により算出する。
Although the degree of monodispersity of the charged ultrafine polymer particles varies depending on the application of the ultrafine polymer particle adsorbing structure, the particle size distribution (CV) value of the ultrafine polymer particles is 20 in each case.
% Or less, and more preferably 15% or less. Particularly when a high degree of monodispersity is required, C.
The V. value is preferably 5% or less, more preferably 3% or less.
If the CV value exceeds 20%, the dispersion of the particle size becomes large, and the structure of the aggregate of ultrafine polymer particles becomes ununiform. The particle size distribution (CV) is obtained from the measured value of the average particle size (R) and the standard deviation (SD) as follows: CV = SD / R (%)
It is calculated by the following equation.

【0015】荷電性高分子超微粒子は、分散媒として
水、又は水に水溶性高分子、界面活性剤又は水溶性塩類
等を溶解した溶液に懸濁して用いるのが好ましい。この
ような荷電性高分子超微粒子の分散液の市販品として
は、例えばSTANDEX SC、IMMUTEXG 、及び MPP(いずれ
も日本合成ゴム(株)製)、エスタポール(ローヌ・プ
ーラン社製)、ポリビード(フナコシ(株)製)等が挙
げられる。
The charged polymer ultrafine particles are preferably used by suspending in water as a dispersion medium or a solution in which a water-soluble polymer, a surfactant or a water-soluble salt is dissolved in water. Commercially available dispersions of such charged polymer ultrafine particles include, for example, STANDEX SC, IMMUTEXG, and MPP (all manufactured by Nippon Synthetic Rubber Co., Ltd.), Estapol (Rhone Poulin), and Polybead ( Funakoshi Co., Ltd.) and the like.

【0016】(2) 荷電性高分子薄膜 基板上に形成する荷電性高分子薄膜は、荷電性高分子超
微粒子を単層で吸着するとともに、基板の凹凸を覆って
表面を平坦化する。
(2) Chargeable polymer thin film The chargeable polymer thin film formed on the substrate adsorbs the charged polymer ultrafine particles in a single layer and covers the unevenness of the substrate to flatten the surface.

【0017】荷電性高分子薄膜は、ある程度の厚みを確
保するとともに表面上の荷電分布を均一にするために、
カチオン性の水溶性高分子とアニオン性の水溶性高分子
とをそれぞれ少なくとも一層ずつ交互に積層することに
より形成するのが好ましい。得られた積層体はコンプレ
ックスを形成して水に不溶化しており、安定である。荷
電性高分子薄膜の厚さは3nm〜1μmとするのが好まし
く、5nm〜0.1 μmとするのがより好ましい。
The chargeable polymer thin film has a certain thickness and a uniform charge distribution on the surface.
It is preferable to form them by alternately laminating at least one layer each of a cationic water-soluble polymer and an anionic water-soluble polymer. The obtained laminate forms a complex, is insoluble in water, and is stable. The thickness of the chargeable polymer thin film is preferably from 3 nm to 1 μm, more preferably from 5 nm to 0.1 μm.

【0018】薄膜を形成する荷電性高分子は、ポリビニ
ル系、ポリアクリル酸エステル系、ポリメタクリル酸エ
ステル系、ポリスチレン系等の高分子にイオン性官能基
が結合したものである。イオン性官能基としては、ス
ルホン酸基、カルボキシル基、リン酸基等のアルカリ金
属塩又はアルカリ土類金属塩(アニオン性)、又は1
級〜3級のアミノ基の塩酸塩、4級アンモニウム塩基
(カチオン性)等が挙げられる。このような荷電性高分
子の具体例を以下に例示する。
The chargeable polymer forming the thin film is a polymer in which an ionic functional group is bonded to a polymer such as polyvinyl, polyacrylate, polymethacrylate, and polystyrene. Examples of the ionic functional group include an alkali metal salt such as a sulfonic acid group, a carboxyl group, and a phosphoric acid group or an alkaline earth metal salt (anionic);
And quaternary ammonium bases (cationic). Specific examples of such a charged polymer will be described below.

【0019】(イ) 下記式(1) :(A) The following formula (1):

【化1】 (ただし、nは重合度を表す整数である。)により表さ
れるポリアリルアミン塩酸塩。
Embedded image (Where n is an integer representing the degree of polymerization).

【0020】(ロ) 下記式(2) :(B) The following formula (2):

【化2】 (ただし、nは重合度を表す整数である。)により表さ
れるポリトリメチルアンモニウムメチルスチレンクロラ
イド。
Embedded image (Where n is an integer representing the degree of polymerization).

【0021】(ハ) 下記式(3) :(C) The following equation (3):

【化3】 (ただし、nは重合度を表す整数である。)により表さ
れるポリアクリル酸2-トリメチルアンモニウムエチルエ
ステルクロライド。
Embedded image (Where n is an integer representing the degree of polymerization) 2-acrylic acid 2-trimethylammonium ethyl ester chloride represented by the formula:

【0022】(ニ) 下記式(4) :(D) The following formula (4):

【化4】 (ただし、nは重合度を表す整数である。)により表さ
れるポリスチレンスルホン酸ナトリウム。
Embedded image (Where n is an integer representing the degree of polymerization).

【0023】(ホ) 下記式(5) :(E) The following formula (5):

【化5】 (ただし、nは重合度を表す整数である。)により表さ
れるポリアミンサルホン。
Embedded image (Where n is an integer representing the degree of polymerization).

【0024】上記荷電性高分子薄膜の形成方法として
は、基板の表面上に前記荷電性高分子を塗布する方
法、好ましくはカチオン性とアニオン性それぞれの荷電
性高分子溶液を交互に基板の表面上に塗布(乾燥)する
方法、他のプラスチック材料に荷電性高分子を混練し
成形する方法等が挙げられる。
As a method for forming the above-mentioned charged polymer thin film, a method for applying the above-mentioned charged polymer on the surface of the substrate, preferably, a solution of a cationic polymer and an anionic charged polymer solution is alternately applied to the surface of the substrate. There is a method of applying (drying) on the top, a method of kneading a chargeable polymer with another plastic material and molding.

【0025】この荷電性高分子薄膜形成時に、水溶性高
分子鎖中の電荷が水中で分離するのを促進させるととも
に、基板表面あるいは薄膜表面へ吸着及び堆積する速度
を向上させるために、アルカリ金属やアルカリ土類金属
のハロゲン化物等の電解質を共存させるのが好ましい。
電解質を共存させることにより、未添加の時に比較して
粒子の吸着速度や分散性が向上する。電解質の具体例と
しては、LiCl、LiBr、LiI 、NaCl、NaBr、NaI 、KCl 、
KBr 、KI、MgCl 2、MgBr 2、MgI 2 、CaCl 2、CaBr 2
CaI 2 等が挙げられるが、NaCl、NaBr、KCl 、KBr 等の
1価の塩が好ましい。電解質の濃度は0.01〜10Mの範囲
であるのが好ましく、0.02〜5Mの範囲であるのがより
好ましい。0.01M未満であると共存による効果が小さ
く、10Mを超えると過剰となるため好ましくない。
At the time of forming the charged polymer thin film, an alkali metal is used to promote the separation of the electric charge in the water-soluble polymer chain in water and to increase the rate of adsorption and deposition on the substrate surface or thin film surface. And an electrolyte such as a halide of an alkaline earth metal.
The coexistence of the electrolyte improves the particle adsorption speed and dispersibility as compared with the case where no electrolyte is added. Specific examples of the electrolyte include LiCl, LiBr, LiI, NaCl, NaBr, NaI, KCl,
KBr, KI, MgCl 2, MgBr 2, MgI 2, CaCl 2, CaBr 2,
Examples thereof include CaI 2 and the like, and monovalent salts such as NaCl, NaBr, KCl 3 and KBr are preferred. The concentration of the electrolyte is preferably in the range of 0.01 to 10M, more preferably in the range of 0.02 to 5M. If it is less than 0.01M, the effect due to coexistence is small, and if it exceeds 10M, it becomes excessive, which is not preferable.

【0026】(3) 基板 基板の素材としては、例えばガラス、プラスチック、金
属、セラミックス、黒鉛や炭素繊維等の炭素系材料、も
しくは雲母、カオリン、モンモリロナイト等の粘土鉱物
のケイ酸塩類、及びこれらの複合体等が挙げられる。基
板の形状は、表面が十分に平滑であれば特に限定されな
い。
(3) Substrate Materials for the substrate include, for example, glass, plastic, metal, ceramics, carbonaceous materials such as graphite and carbon fiber, or silicates of clay minerals such as mica, kaolin and montmorillonite, and the like. And a complex. The shape of the substrate is not particularly limited as long as the surface is sufficiently smooth.

【0027】[2] 高分子超微粒子吸着構造体の製造方法 高分子超微粒子吸着構造体を製造するには、荷電性高分
子超微粒子が分散した液中に荷電性高分子薄膜を形成し
た基板を浸漬する方法が好ましい。例えばカチオン性の
高分子超微粒子を使用する場合、それを分散した液中に
アニオン性の水溶性高分子からなる薄膜(又はその表面
層)を有する基板を浸漬すると、前記カチオン性高分子
超微粒子が静電相互作用により表面に吸着する。またア
ニオン性の高分子超微粒子を使用する場合には、カチオ
ン性の水溶性高分子からなる薄膜(又はその表面層)を
有する基板を浸漬すると、同様に静電相互作用により前
記アニオン性高分子超微粒子が表面に吸着する。
[2] Method for Producing Polymer Ultrafine Particle Adsorbed Structure In order to produce a polymer ultrafine particle adsorbed structure, a substrate having a chargeable polymer thin film formed in a liquid in which charged polymer ultrafine particles are dispersed is used. Is preferred. For example, when a cationic polymer ultrafine particle is used, a substrate having a thin film (or a surface layer thereof) made of an anionic water-soluble polymer is immersed in a liquid in which the cationic polymer ultrafine particle is dispersed. Are adsorbed on the surface by electrostatic interaction. In the case of using anionic ultrafine polymer particles, when a substrate having a thin film (or a surface layer thereof) made of a cationic water-soluble polymer is immersed, the anionic polymer is similarly subjected to electrostatic interaction. Ultrafine particles are adsorbed on the surface.

【0028】荷電性高分子超微粒子の分散濃度は1×10
7 〜1015個/mlの範囲が好ましい。吸着量は分散濃度が
増すことによって増加する。分散媒は水、特に純水が好
ましいが、荷電性高分子超微粒子の荷電性を損なわず、
浸潤しないものであれば他の極性溶媒でも使用すること
ができる。
The dispersion concentration of the charged polymer ultrafine particles is 1 × 10
Range of 7-10 15 cells / ml are preferred. The amount of adsorption increases with increasing dispersion concentration. The dispersion medium is preferably water, particularly pure water, but does not impair the chargeability of the charged polymer ultrafine particles,
Other polar solvents that do not infiltrate can be used.

【0029】荷電性高分子超微粒子の吸着性を促進する
ために、浸漬温度は0〜60℃程度の範囲が好ましい。分
散媒が水である場合、浸漬温度は1〜30℃程度の範囲が
より好ましく、1〜15℃程度の温度範囲がさらに好まし
い。温度が高過ぎると荷電性高分子超微粒子が種類によ
っては分散液中で会合し易くなり、荷電性高分子超微粒
子は実質的に均一に分散して薄膜に吸着しない。
The immersion temperature is preferably in the range of about 0 to 60 ° C. in order to promote the adsorptivity of the charged polymer ultrafine particles. When the dispersion medium is water, the immersion temperature is more preferably in the range of about 1 to 30 ° C, and further preferably in the range of about 1 to 15 ° C. If the temperature is too high, the charged polymer ultrafine particles may easily associate in the dispersion depending on the type, and the charged polymer ultrafine particles are substantially uniformly dispersed and do not adsorb to the thin film.

【0030】荷電性高分子超微粒子の所望の吸着量を達
成するために、浸漬時間は1分〜3時間の範囲が好まし
い。この範囲において吸着量は浸漬時間の経過とともに
増加する。ただし他の浸漬条件によってはさらに長時間
浸漬してもよく、吸着平衡に達した後の吸着量はほとん
ど変化しないと推測される。
The immersion time is preferably in the range of 1 minute to 3 hours in order to achieve a desired adsorption amount of the charged polymer ultrafine particles. In this range, the amount of adsorption increases as the immersion time elapses. However, depending on other immersion conditions, immersion may be performed for a longer time, and it is assumed that the amount of adsorption after reaching the adsorption equilibrium hardly changes.

【0031】本発明では、機能的に高分子超微粒子の単
粒子としての特性を発揮させるために、荷電性高分子超
微粒子は実質的に均一な分散状態で吸着させる。ここで
「実質的に均一」とは、吸着した超微粒子の相当数が実
質的に接触していないことを意味し、各粒子間の距離が
一定である必要はない。具体的には、荷電性高分子薄膜
に吸着している荷電性高分子超微粒子のうち、単粒子で
吸着しているものの割合を単粒子率とすると、単粒子率
は30%以上であるのが好ましく、特に40%以上が好まし
い。30%以上の単粒子率で吸着させると、高分子超微粒
子層は単層となる。
In the present invention, the charged ultrafine polymer particles are adsorbed in a substantially uniform dispersion state in order to functionally exhibit the characteristics of the ultrafine polymer particles as single particles. Here, “substantially uniform” means that a considerable number of the adsorbed ultrafine particles are not substantially in contact with each other, and the distance between the particles does not need to be constant. Specifically, assuming that the percentage of the charged polymer ultrafine particles adsorbed on the charged polymer thin film adsorbed as single particles is the single particle ratio, the single particle ratio is 30% or more. Is preferable, and particularly preferably 40% or more. When adsorbed at a single particle rate of 30% or more, the polymer ultrafine particle layer becomes a single layer.

【0032】高分子薄膜が形成された基板を荷電性高分
子超微粒子の分散液中に所定時間浸漬した後、取り出
し、室温あるいは加熱下で、静置あるいは窒素, アルゴ
ン等の不活性ガスや空気等を送風して乾燥する。高分子
超微粒子は比表面積が大きいため、その吸着量に応じて
高分子超微粒子吸着構造体の表面積も大きくなる。
The substrate on which the polymer thin film is formed is immersed in a dispersion of charged polymer ultrafine particles for a predetermined period of time, taken out, and allowed to stand at room temperature or under heating, or to stand still or an inert gas such as nitrogen or argon or air. Air is blown and dried. Since the polymer ultrafine particles have a large specific surface area, the surface area of the polymer ultrafine particle adsorption structure increases in accordance with the amount of adsorption.

【0033】[0033]

【実施例】本発明を以下の実施例に基づいて具体的に説
明するが、本発明はそれらに限定されるものではない。
EXAMPLES The present invention will be specifically described based on the following examples, but the present invention is not limited thereto.

【0034】実施例1 基板として水晶発振子マイクロバランス(QCM 、9MHz
)を用い、この基板をカチオン性の水溶性高分子とし
てポリアリルアミン塩酸塩(重量平均分子量Mw:8,500
〜11,000)の0.02mol %水溶液、及びアニオン性の水溶
性高分子としてポリスチレンスルホン酸ナトリウム(重
量平均分子量Mw:70,000)の0.02mol %水溶液に交互に
20℃で3回ずつ浸漬し、QCM の金電極表面に厚さ約6nm
の高分子薄膜を形成した。なおそれぞれの水溶液には2
MのNaClを添加した。高分子薄膜表面をカチオン性にす
るために、最後の浸漬液をポリアリルアミン塩酸塩水溶
液とした。
Example 1 A quartz crystal microbalance (QCM, 9 MHz) was used as a substrate.
), And using this substrate as a cationic water-soluble polymer, polyallylamine hydrochloride (weight average molecular weight Mw: 8,500
~ 11,000) and a 0.02mol% aqueous solution of sodium polystyrenesulfonate (weight average molecular weight Mw: 70,000) as an anionic water-soluble polymer.
Dip three times at 20 ° C, and apply a thickness of about 6 nm on the surface of the gold electrode of QCM.
Polymer thin film was formed. Each aqueous solution contains 2
M NaCl was added. In order to make the polymer thin film surface cationic, the last immersion liquid was an aqueous solution of polyallylamine hydrochloride.

【0035】次に平均粒径548nm のポリスチレン超微粒
子(表面電荷アニオン性、ポリビード(フナコシ(株)
製))を、それぞれ(a) 19×1010個/ml、(b) 3.8 ×10
10個/ml、及び(c) 7.6 ×109 個/mlの濃度で純水中に
分散した20℃の液中に、上記高分子薄膜被覆電極を0〜
60分間浸漬し、その間基板表面の振動数変化ΔFをQCM
によりモニターした。電極表面の単位面積当たりのポリ
スチレン超微粒子の吸着重量Δm/S(ng/cm2 )は、
QCM によりモニターした振動数変化ΔFをもとに、以下
の関係式(6) : −ΔF= 0.87×Δm ・・・(6) (但しΔFは振動数変化を表し、Δm は吸着重量(ng)
を表す。)と電極表面積S(0.32cm2 )とから算出し
た。結果を図1に示す。図1から明らかなように、ポリ
スチレン超微粒子の吸着量は短時間の浸漬で急増した。
Next, polystyrene ultrafine particles having an average particle size of 548 nm (surface charge anionic, polybead (Funakoshi Co., Ltd.)
(A) 19 × 10 10 / ml, (b) 3.8 × 10
The polymer thin film-coated electrode was placed in a liquid at 20 ° C. dispersed in pure water at a concentration of 10 cells / ml and (c) 7.6 × 10 9 cells / ml.
Immersion for 60 minutes, during which time the frequency change ΔF
Monitored by The adsorption weight Δm / S (ng / cm 2 ) of polystyrene ultrafine particles per unit area of the electrode surface is
Based on the frequency change ΔF monitored by the QCM, the following relational expression (6): −ΔF = 0.87 × Δm (6) (where ΔF represents the frequency change and Δm is the adsorption weight (ng))
Represents ) And the electrode surface area S (0.32 cm 2 ). The results are shown in FIG. As is clear from FIG. 1, the adsorption amount of the polystyrene ultrafine particles rapidly increased by immersion for a short time.

【0036】ポリスチレン超微粒子を3.8 ×1010個/ml
の濃度で分散した水中に高分子薄膜被覆電極を60分間浸
漬して作製したポリスチレン超微粒子吸着構造体を乾燥
後、薄膜表面のポリスチレン超微粒子をSEM(5,000
倍)観察した。結果を図2に示す。
3.8 × 10 10 polystyrene ultra-fine particles / ml
The polystyrene ultrafine particle-adsorbed structure prepared by immersing the polymer thin film-coated electrode in water dispersed at a concentration of 60 minutes for 60 minutes is dried, and the polystyrene ultrafine particles on the thin film surface are subjected to SEM (5,000
Times) observed. The results are shown in FIG.

【0037】図2より、高分子薄膜表面に分散状態(隣
接微粒子が接触しない状態で)で吸着しているポリスチ
レン超微粒子の単粒子率は約56%であることが分かっ
た。このポリスチレン超微粒子吸着構造体の表面に空気
流を吹付けたり水流を当ててもポリスチレン超微粒子が
脱離せず、安定な構造を維持していた。
FIG. 2 shows that the polystyrene ultrafine particles adsorbed on the surface of the polymer thin film in a dispersed state (with no adjacent fine particles in contact with each other) had a single particle ratio of about 56%. The polystyrene ultrafine particles were not desorbed even when the air flow or the water flow was applied to the surface of the polystyrene ultrafine particle adsorption structure, and the stable structure was maintained.

【0038】実施例2 平均粒径548 nmのポリスチレン超微粒子を3.8 ×1010
/mlの濃度で純水に分散させ、それに実施例1と同じ高
分子薄膜被覆電極を表1に示す通り5〜40℃の範囲の温
度でそれぞれ60分間浸漬し、ポリスチレン超微粒子吸着
構造体を作製した。薄膜表面のポリスチレン超微粒子を
SEM(5,000 倍)観察した。SEM写真より、ポリス
チレン超微粒子の単粒子率は高分子薄膜表面の約30%以
上であることが分かった。
Example 2 Ultrafine polystyrene particles having an average particle size of 548 nm were dispersed in pure water at a concentration of 3.8 × 10 10 particles / ml, and the same polymer thin film-coated electrode as in Example 1 was used as shown in Table 1. Each was immersed at a temperature in the range of 4040 ° C. for 60 minutes to prepare a polystyrene ultrafine particle adsorption structure. Ultrafine polystyrene particles on the surface of the thin film were observed by SEM (5,000 times). From the SEM photograph, it was found that the single particle ratio of the polystyrene ultrafine particles was about 30% or more of the surface of the polymer thin film.

【0039】 [0039]

【0040】実施例3 平均粒径が(a) 780 nm、(b) 548 nm、及び(c) 84 nm の
ポリスチレン超微粒子(ポリビード、フナコシ(株)
製)を3.8 ×1010個/mlの濃度で純水に分散した液を使
用した以外は実施例1と同様にして、ポリスチレン超微
粒子吸着構造体を作製した。表面の振動数変化をQCM に
よりモニターし、また上記式(6) により吸着重量(ng/
cm2 )を実施例1と同様にして算出した。結果を図3に
示す。
Example 3 Ultrafine polystyrene particles having an average particle diameter of (a) 780 nm, (b) 548 nm, and (c) 84 nm (Polybead, Funakoshi Co., Ltd.)
Was prepared in the same manner as in Example 1 except that a liquid prepared by dispersing a polystyrene solution at a concentration of 3.8 × 10 10 particles / ml in pure water was used. The frequency change of the surface was monitored by QCM, and the adsorption weight (ng / ng /
cm 2 ) was calculated in the same manner as in Example 1. The results are shown in FIG.

【0041】図3から明らかなように、浸漬時間の経過
とともにポリスチレン微粒子の吸着量が増加し、またポ
リスチレン微粒子の平均粒径が大きくなるにつれて吸着
量が飛躍的に増大した。
As is apparent from FIG. 3, the amount of adsorbed polystyrene fine particles increased with the elapse of the immersion time, and the amount of adsorption increased dramatically as the average particle size of the polystyrene fine particles increased.

【0042】実施例4 荷電性高分子薄膜を形成する際に荷電性高分子水溶液に
添加するNaClの濃度を(a) 2M、(b) 0.2 M、及び(c)
0M(無添加)とし、かつ浸漬液中のポリスチレン超微
粒子(平均粒径:548 nm)の分散濃度を3.8 ×1010個/
mlとした以外は実施例1と同様にして、ポリスチレン超
微粒子吸着構造体を作製した。表面の振動数変化をQCM
によりモニターし、また上記式(6) により吸着重量(ng
/cm2 )を実施例1と同様にして算出した。結果を図4
に示す。
Example 4 When forming a charged polymer thin film, the concentrations of NaCl added to the aqueous charged polymer solution were 2M, (b) 0.2M, and (c)
0 M (no addition), and the dispersion concentration of the polystyrene ultrafine particles (average particle size: 548 nm) in the immersion liquid is 3.8 × 10 10 particles /
A polystyrene ultrafine particle adsorption structure was produced in the same manner as in Example 1 except that the amount was changed to ml. QCM for surface frequency change
And the adsorption weight (ng
/ Cm 2 ) was calculated in the same manner as in Example 1. Fig. 4 shows the results.
Shown in

【0043】図4から明らかなように、NaClの添加量が
増大すると、同一浸漬時間におけるポリスチレン微粒子
の吸着量が増加した。NaCl無添加の場合(c) において、
60分間浸漬して作製したポリスチレン超微粒子吸着構造
体のポリスチレン超微粒子をSEM(5,000 倍)観察し
た。結果を図5に示す。図5から算出したポリスチレン
超微粒子の単粒子率は64%であった。
As apparent from FIG. 4, as the amount of added NaCl increased, the amount of polystyrene fine particles adsorbed during the same immersion time increased. In the case without NaCl (c),
The polystyrene ultrafine particles of the polystyrene ultrafine particle adsorption structure produced by immersion for 60 minutes were observed by SEM (5,000 times). FIG. 5 shows the results. The single particle ratio of the polystyrene ultrafine particles calculated from FIG. 5 was 64%.

【0044】実施例5 実施例1と同じ条件で作製したポリスチレン超微粒子吸
着構造体(使用したポリスチレン超微粒子の濃度:3.8
×1010個/ml、60分間浸漬)の表面に、カチオン性の水
溶性高分子としてポリアリルアミン塩酸塩(重量平均分
子量:8,500 〜11,000)を0.02mol %含有する水溶液
(2MのNaCl含有)、及びアニオン性の水溶性高分子と
してポリスチレンスルホン酸ナトリウム(重量平均分子
量:70,000)を0.02 mol%含有する水溶液(2MのNaCl
含有)に15℃で交互に浸漬し、3層のポリアリルアミン
塩酸塩の層及び2層のポリスチレンスルホン酸ナトリウ
ムの層からなる厚さ約5nmの第二の高分子薄膜を形成し
た。ただし表面がカチオン性になるように、最上層はポ
リアリルアミン塩酸塩の層とした。
Example 5 A polystyrene ultrafine particle-adsorbing structure prepared under the same conditions as in Example 1 (concentration of polystyrene ultrafine particles used: 3.8)
An aqueous solution (containing 2 M NaCl) containing 0.02 mol% of polyallylamine hydrochloride (weight average molecular weight: 8,500 to 11,000) as a cationic water-soluble polymer on the surface of (× 10 10 / ml, immersed for 60 minutes) And an aqueous solution (2 M NaCl) containing 0.02 mol% of sodium polystyrene sulfonate (weight average molecular weight: 70,000) as an anionic water-soluble polymer
) At 15 ° C. alternately to form a second polymer thin film having a thickness of about 5 nm comprising three layers of polyallylamine hydrochloride and two layers of sodium polystyrenesulfonate. However, the uppermost layer was a layer of polyallylamine hydrochloride so that the surface became cationic.

【0045】平均粒径548 nmのポリスチレン超微粒子を
3.8 ×1010個/mlの濃度で純水中に分散した15℃の液中
に、第二の高分子薄膜を被覆したポリスチレン超微粒子
吸着構造体を0〜60分間浸漬し、ポリスチレン超微粒子
吸着構造体の表面に、第二の荷電性高分子薄膜とポリス
チレン超微粒子とからなる組合せを積層した。その間振
動数変化をQCM によりモニターし、ポリスチレン超微粒
子の吸着重量(ng/cm2 )を実施例1と同様にして算出
した。結果を図6に示す。図6から明らかなように、浸
漬時間の経過とともにポリスチレン超微粒子の吸着量が
増加した。
Ultrafine polystyrene particles having an average particle size of 548 nm
The polystyrene ultrafine particle adsorption structure coated with the second polymer thin film is immersed in a liquid at 15 ° C. dispersed in pure water at a concentration of 3.8 × 10 10 particles / ml for 0 to 60 minutes to adsorb polystyrene ultrafine particles. On the surface of the structure, a combination of the second chargeable polymer thin film and the ultrafine polystyrene particles was laminated. During that time, the frequency change was monitored by QCM, and the adsorption weight (ng / cm 2 ) of the polystyrene ultrafine particles was calculated in the same manner as in Example 1. FIG. 6 shows the results. As is clear from FIG. 6, the adsorption amount of the polystyrene ultrafine particles increased with the elapse of the immersion time.

【0046】また60分間浸漬することにより第二の荷電
性高分子薄膜表面に吸着させたポリスチレン超微粒子を
SEM(10,000倍)観察した。結果を図7に示す。図7
から明らかなように、2層目のポリスチレン超微粒子も
2層目の高分子薄膜上に実質的に均一に分散して吸着し
ていた。ただし図7において、第二の荷電性高分子薄膜
は実質的に透明であるので、下層にあるポリスチレン超
微粒子は暗い粒子として見え、上層にあるポリスチレン
超微粒子は明るい粒子として見える。
The polystyrene ultrafine particles adsorbed on the surface of the second charged polymer thin film by immersion for 60 minutes were observed by SEM (10,000 times). FIG. 7 shows the results. FIG.
As is clear from the figure, the second layer of polystyrene ultrafine particles was substantially uniformly dispersed and adsorbed on the second layer of the polymer thin film. However, in FIG. 7, since the second charged polymer thin film is substantially transparent, the polystyrene ultrafine particles in the lower layer appear as dark particles, and the polystyrene ultrafine particles in the upper layer appear as bright particles.

【0047】[0047]

【発明の効果】以上詳述したように、本発明によれば、
基板上に形成した高分子薄膜上に高分子超微粒子を実質
的に均一に分散させて(単層で)吸着させた高分子超微
粒子吸着構造体を簡便かつ迅速に得ることができる。単
分散性の高い高分子超微粒子を吸着させた高分子超微粒
子吸着構造体は、各種のセンサーや診断用等の試験担
体、或いは電子材料や光学的用途等へ利用することがで
きる。
As described in detail above, according to the present invention,
A polymer ultrafine particle-adsorbed structure in which polymer ultrafine particles are substantially uniformly dispersed and adsorbed (in a single layer) on a polymer thin film formed on a substrate can be obtained easily and quickly. The polymer ultrafine particle-adsorbed structure on which the polymer ultrafine particles having high monodispersity is adsorbed can be used for various sensors, test carriers for diagnosis and the like, or electronic materials and optical applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で得られたポリスチレン超微粒子吸
着構造体について、種々の濃度のポリスチレン超微粒子
の分散液への高分子薄膜被覆電極の浸漬時間と振動数変
化及びポリスチレン超微粒子の吸着重量との関係を示す
グラフである。
FIG. 1 shows the immersion time and frequency change of a polymer thin film-coated electrode in dispersions of polystyrene ultrafine particles at various concentrations, and the weight of polystyrene ultrafine particles adsorbed on the polystyrene ultrafine particle adsorption structure obtained in Example 1. 6 is a graph showing a relationship with the graph.

【図2】 実施例1で得られたポリスチレン超微粒子吸
着構造体の表面のSEM写真(倍率5,000 倍)である。
FIG. 2 is a SEM photograph (magnification: 5,000) of the surface of the polystyrene ultrafine particle-adsorbed structure obtained in Example 1.

【図3】 実施例3で得られたポリスチレン超微粒子吸
着構造体について、種々の平均粒径のポリスチレン超微
粒子の分散液への高分子薄膜被覆電極の浸漬時間と振動
数変化及びポリスチレン超微粒子の吸着重量との関係を
示すグラフである。
FIG. 3 shows the immersion time and frequency change of the polymer thin film-coated electrode in dispersions of polystyrene ultrafine particles having various average particle diameters, and the polystyrene ultrafine particles of the polystyrene ultrafine particle adsorption structure obtained in Example 3. It is a graph which shows the relationship with an adsorption weight.

【図4】 実施例4で得られたポリスチレン超微粒子吸
着構造体について、種々の濃度のNaClを添加して形成し
た高分子薄膜を被覆した電極をポリスチレン超微粒子の
分散液へ浸漬した場合に、浸漬時間と振動数変化及びポ
リスチレン超微粒子の吸着重量との関係を示すグラフで
ある。
FIG. 4 shows a polystyrene ultrafine particle-adsorbed structure obtained in Example 4, when an electrode coated with a polymer thin film formed by adding various concentrations of NaCl is immersed in a polystyrene ultrafine particle dispersion. 4 is a graph showing the relationship between immersion time, frequency change, and the adsorption weight of polystyrene ultrafine particles.

【図5】 実施例4で得られたポリスチレン超微粒子吸
着構造体の表面のSEM写真(倍率5,000 倍)である。
FIG. 5 is a SEM photograph (magnification: 5,000 times) of the surface of the polystyrene ultrafine particle-adsorbed structure obtained in Example 4.

【図6】 実施例5で得られたポリスチレン超微粒子吸
着構造体について、2層目用のポリスチレン超微粒子の
分散液への浸漬時間と振動数変化及びポリスチレン超微
粒子の吸着重量との関係を示すグラフである。
FIG. 6 shows the relationship between the immersion time of a second layer of polystyrene ultrafine particles in a dispersion liquid, the frequency change, and the weight of polystyrene ultrafine particles adsorbed on the polystyrene ultrafine particle-adsorbed structure obtained in Example 5. It is a graph.

【図7】 実施例5で得られたポリスチレン超微粒子吸
着構造体の表面のSEM写真(倍率10,000倍)である。
FIG. 7 is a SEM photograph (magnification: 10,000 times) of the surface of the polystyrene ultrafine particle-adsorbed structure obtained in Example 5.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 基板表面に形成された荷電性高分子薄膜
上に、荷電性高分子超微粒子が実質的に均一に分散して
吸着していることを特徴とする高分子超微粒子吸着構造
体。
1. An ultrafine polymer particle adsorbing structure, wherein charged ultrafine polymer particles are substantially uniformly dispersed and adsorbed on a charged thin polymer film formed on a surface of a substrate. .
【請求項2】 請求項1に記載の高分子超微粒子吸着構
造体において、前記荷電性高分子超微粒子が単層で吸着
していることを特徴とする高分子超微粒子吸着構造体。
2. The ultrafine polymer particle adsorbing structure according to claim 1, wherein the charged ultrafine polymer particles are adsorbed in a single layer.
【請求項3】 請求項1又は2に記載の高分子超微粒子
吸着構造体において、前記荷電性高分子薄膜に吸着して
いる前記荷電性高分子超微粒子のうち、単粒子で吸着し
ているものの割合が30%以上であることを特徴とする高
分子超微粒子吸着構造体。
3. The polymer ultrafine particle adsorbing structure according to claim 1, wherein the charged polymer ultrafine particles adsorbed on the charged polymer thin film are adsorbed by a single particle. A polymer ultrafine particle adsorbing structure, characterized in that the ratio of the particles is 30% or more.
【請求項4】 請求項1〜3のいずれかに記載の高分子
超微粒子吸着構造体において、前記荷電性高分子超微粒
子の平均粒径が10nm〜10μmであることを特徴とする高
分子超微粒子吸着構造体。
4. The polymer ultrafine particle adsorbing structure according to claim 1, wherein said charged ultrafine polymer particles have an average particle size of 10 nm to 10 μm. Fine particle adsorption structure.
【請求項5】 請求項1〜4のいずれかに記載の高分子
超微粒子吸着構造体において、前記基板表面上に前記荷
電性高分子薄膜及び前記荷電性高分子超微粒子層からな
る組合せが2層以上積層されていることを特徴とする高
分子超微粒子吸着構造体。
5. The structure for adsorbing ultrafine polymer particles according to claim 1, wherein a combination of the chargeable polymer thin film and the chargeable polymer ultrafine particle layer on the surface of the substrate is 2 or more. A structure for adsorbing ultrafine polymer particles, comprising at least two layers.
【請求項6】 請求項1〜5のいずれかに記載の高分子
超微粒子吸着構造体において、前記荷電性高分子薄膜
は、カチオン性の電荷を有する水溶性高分子と、アニオ
ン性の電荷を有する水溶性高分子とが少なくとも一層ず
つ交互に積層してなることを特徴とする高分子超微粒子
吸着構造体。
6. The ultrafine polymer particle-adsorbing structure according to claim 1, wherein the charged polymer thin film comprises a water-soluble polymer having a cationic charge and an anionic charge. And a water-soluble polymer having at least one layer alternately laminated thereon.
【請求項7】 請求項1〜6のいずれかに記載の高分子
超微粒子吸着構造体を製造する方法において、荷電性高
分子薄膜が形成された基板を荷電性高分子超微粒子の分
散液中に浸漬し、前記荷電性高分子超微粒子を静電相互
作用により実質的に均一に分散させて前記荷電性高分子
薄膜上に吸着させることを特徴とする方法。
7. The method for producing a polymer ultrafine particle adsorption structure according to claim 1, wherein the substrate on which the chargeable polymer thin film is formed is placed in a dispersion of the chargeable polymer ultrafine particles. Wherein the charged polymer ultrafine particles are substantially uniformly dispersed by electrostatic interaction and adsorbed on the charged polymer thin film.
【請求項8】 請求項7に記載の高分子超微粒子吸着構
造体の製造方法において、前記荷電性高分子超微粒子を
単層で吸着させることを特徴とする方法。
8. The method according to claim 7, wherein the charged ultrafine polymer particles are adsorbed in a single layer.
【請求項9】 請求項7又は8に記載の高分子超微粒子
吸着構造体の製造方法において、前記荷電性高分子超微
粒子の単粒子率を30%以上とすることを特徴とする方
法。
9. The method for producing a polymer ultrafine particle-adsorbed structure according to claim 7, wherein a single particle ratio of the charged polymer ultrafine particles is 30% or more.
【請求項10】 請求項7〜9のいずれかに記載の高分子
超微粒子吸着構造体の製造方法において、前記荷電性高
分子超微粒子の平均粒径が10nm〜10μmであることを特
徴とする方法。
10. The method for producing a polymer ultrafine particle-adsorbing structure according to claim 7, wherein the charged polymer ultrafine particles have an average particle size of 10 nm to 10 μm. Method.
【請求項11】 請求項7〜10のいずれかに記載の高分子
超微粒子吸着構造体の製造方法において、前記基板表面
上に前記荷電性高分子薄膜及び前記荷電性高分子超微粒
子層からなる組合せを2層以上積層することを特徴とす
る方法。
11. The method for manufacturing a polymer ultrafine particle-adsorbing structure according to any one of claims 7 to 10, comprising the charged polymer thin film and the charged polymer ultrafine particle layer on the substrate surface. A method comprising laminating two or more combinations.
【請求項12】 請求項7〜11のいずれかに記載の高分子
超微粒子吸着構造体の製造方法において、前記荷電性高
分子薄膜を、カチオン性の電荷を有する水溶性高分子
と、アニオン性の電荷を有する水溶性高分子とを少なく
とも一層ずつ交互に積層させて形成することを特徴とす
る方法。
12. The method for producing an ultrafine polymer particle adsorption structure according to any one of claims 7 to 11, wherein the charged polymer thin film comprises a water-soluble polymer having a cationic charge, and an anionic polymer. A water-soluble polymer having the above-mentioned charge is alternately laminated at least one layer at a time.
【請求項13】 請求項12に記載の高分子超微粒子吸着構
造体の製造方法において、前記荷電性高分子薄膜を形成
する際に、前記水溶性高分子の溶液中に電解質を共存さ
せることを特徴とする方法。
13. The method for producing a polymer ultrafine particle adsorption structure according to claim 12, wherein, when forming the charged polymer thin film, an electrolyte is allowed to coexist in a solution of the water-soluble polymer. Features method.
JP26779297A 1997-09-12 1997-09-12 Polymer ultrafine particle adsorption structure and method for producing the same Expired - Fee Related JP3847424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26779297A JP3847424B2 (en) 1997-09-12 1997-09-12 Polymer ultrafine particle adsorption structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26779297A JP3847424B2 (en) 1997-09-12 1997-09-12 Polymer ultrafine particle adsorption structure and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1177908A true JPH1177908A (en) 1999-03-23
JP3847424B2 JP3847424B2 (en) 2006-11-22

Family

ID=17449665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26779297A Expired - Fee Related JP3847424B2 (en) 1997-09-12 1997-09-12 Polymer ultrafine particle adsorption structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP3847424B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094546A (en) * 2001-09-27 2003-04-03 Dainippon Printing Co Ltd Fine polymer particle layer laminate
JP2003532897A (en) * 2000-05-10 2003-11-05 アスラブ・エス アー How to fix detection components
KR100741242B1 (en) 2005-07-05 2007-07-19 삼성전자주식회사 Method for Dispersing Nanoparticles and Method for Producing Nanoparticles Thin Film Using the Same
KR100768632B1 (en) * 2006-10-30 2007-10-18 삼성전자주식회사 Method for dispersing nanoparticles and method for producing nanoparticles thin film using the same
JP2012508108A (en) * 2008-11-12 2012-04-05 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for coating surfaces with particles and use of coatings formed by this method
JP2014184378A (en) * 2013-03-22 2014-10-02 Daicel Corp Cationic polymer and anionic polymer composite semipermeable membrane
JP2015089987A (en) * 2013-11-07 2015-05-11 ユニ・チャーム株式会社 Compounded material for absorptive article
WO2015068684A1 (en) * 2013-11-07 2015-05-14 ユニ・チャーム株式会社 Composite material for absorbent article, and method for manufacturing said material
JP2017167036A (en) * 2016-03-17 2017-09-21 国立研究開発法人物質・材料研究機構 Nano mechanical sensor and acetone concentration measuring apparatus using polyallylamine hydrochloride as acceptor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532897A (en) * 2000-05-10 2003-11-05 アスラブ・エス アー How to fix detection components
JP4824247B2 (en) * 2000-05-10 2011-11-30 アスラブ・エス アー Detection component immobilization method
JP2003094546A (en) * 2001-09-27 2003-04-03 Dainippon Printing Co Ltd Fine polymer particle layer laminate
KR100741242B1 (en) 2005-07-05 2007-07-19 삼성전자주식회사 Method for Dispersing Nanoparticles and Method for Producing Nanoparticles Thin Film Using the Same
KR100768632B1 (en) * 2006-10-30 2007-10-18 삼성전자주식회사 Method for dispersing nanoparticles and method for producing nanoparticles thin film using the same
JP2012508108A (en) * 2008-11-12 2012-04-05 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for coating surfaces with particles and use of coatings formed by this method
JP2014184378A (en) * 2013-03-22 2014-10-02 Daicel Corp Cationic polymer and anionic polymer composite semipermeable membrane
JP2015089987A (en) * 2013-11-07 2015-05-11 ユニ・チャーム株式会社 Compounded material for absorptive article
WO2015068684A1 (en) * 2013-11-07 2015-05-14 ユニ・チャーム株式会社 Composite material for absorbent article, and method for manufacturing said material
US9603756B2 (en) 2013-11-07 2017-03-28 Unicharm Corporation Composite material for absorbent article, and method for manufacturing thereof
JP2017167036A (en) * 2016-03-17 2017-09-21 国立研究開発法人物質・材料研究機構 Nano mechanical sensor and acetone concentration measuring apparatus using polyallylamine hydrochloride as acceptor

Also Published As

Publication number Publication date
JP3847424B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
Takei et al. Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres
Zhang et al. Controlled placement of CdSe nanoparticles in diblock copolymer templates by electrophoretic deposition
Sun et al. Aqueous latex/ceramic nanoparticle dispersions: colloidal stability and coating properties
Kato et al. Thin multilayer films of weak polyelectrolytes on colloid particles
Chen et al. Selective self-organization of colloids on patterned polyelectrolyte templates
Masuda et al. Two-dimensional self-assembly of spherical particles using a liquid mold and its drying process
CN101454069B (en) Production of micro- and nanopore mass arrangements by self-organization of nanoparticles and sublimation technology
JP4628519B2 (en) Composite particle and method for producing the same
Li et al. Electrostatically driven adsorption of silica nanoparticles on functionalized surfaces
JP2020505220A (en) Method for producing multilayer film on solid support using amphiphilic block copolymer
US10549314B2 (en) Coating method using particle alignment and particle coated substrate manufactured thereby
US8117902B2 (en) Nanopatterned surfaces and related methods for selective adhesion, sensing and separation
JPH1177908A (en) Polymer ultra-fine particle attraction structure and its manufacture
Wu et al. Polyhedral oligomeric silsesquioxane nanocomposite thin films via layer-by-layer electrostatic self-assembly
KR20020069210A (en) Method for forming ordered structure of fine metal particles
Zhu et al. Monolayer arrays of nanoparticles on block copolymer brush films
JP2012246162A (en) Nano-porous thin film and method for producing the same
Sawada et al. Immobilization of highly oriented filamentous viruses onto polymer substrates
JP2013156381A (en) Electrophoretic particle, method of producing electrophoretic particle, electrophoretic dispersion liquid, electrophoretic sheet, electrophoretic apparatus and electronic apparatus
CN101808952B (en) Modified surfaces and method for modifying surface
US7752931B2 (en) Nanopatterned surfaces and related methods for selective adhesion, sensing and separation
Naim et al. Electrostatic deposition of aerosol particles generated from an aqueous nanopowder suspension on a chemically treated substrate
JPH11319542A (en) Production ultrathin layer
WO2020237736A1 (en) Method for manufacturing nanostructure
JP3768568B2 (en) Secondary thin film integration method of nanoscale fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140901

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees