JPH1176828A - Manufacture of exhaust gas cleaning catalyst - Google Patents
Manufacture of exhaust gas cleaning catalystInfo
- Publication number
- JPH1176828A JPH1176828A JP9246641A JP24664197A JPH1176828A JP H1176828 A JPH1176828 A JP H1176828A JP 9246641 A JP9246641 A JP 9246641A JP 24664197 A JP24664197 A JP 24664197A JP H1176828 A JPH1176828 A JP H1176828A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- manufacture
- slurry
- porous inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、各種内燃機関から
排出される排気ガスを浄化するための触媒の製造方法に
関し、さらに詳細には耐久性に優れた排気ガス浄化触媒
の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a catalyst for purifying exhaust gas discharged from various internal combustion engines, and more particularly to a method for producing an exhaust gas purifying catalyst having excellent durability. is there.
【0002】[0002]
【従来の技術】各種内燃機関から排出される排気ガス中
の未燃焼の一酸化炭素や炭化水素,窒素酸化物を浄化す
るための触媒は、従来より、種々検討がなされている。
特に、近年、内燃機関の低燃費化から、希薄燃焼エンジ
ンからの排気ガスを浄化するために、酸素過剰下でも未
燃焼の一酸化炭素,炭化水素等の還元成分により窒素酸
化物を選択的に還元できる触媒として、卑金属をゼオラ
イト等に含有させた触媒が提案されている(特開昭63
−100919号参照)。2. Description of the Related Art Various studies have been made on catalysts for purifying unburned carbon monoxide, hydrocarbons, and nitrogen oxides in exhaust gas discharged from various internal combustion engines.
In particular, in recent years, in order to reduce the fuel consumption of internal combustion engines, in order to purify exhaust gas from lean-burn engines, nitrogen oxides are selectively removed by reducing components such as unburned carbon monoxide and hydrocarbons even under an excess of oxygen. As a reducible catalyst, a catalyst in which a base metal is contained in zeolite or the like has been proposed (Japanese Patent Application Laid-Open No. Sho 63).
-100919).
【0003】しかし、これらの触媒は、高い活性を有す
るが、耐久性に問題があり、活性の劣化を抑制できなか
った。特に、これらの触媒は、水蒸気を含む雰囲気に高
温で長時間さらされると、活性の劣化が著しかった。こ
のほか、銅を含む触媒に他の金属を添加し、触媒の耐久
性を向上させる試みもなされたが、その添加効果も十分
なものとは言えない。[0003] However, these catalysts have high activity, but have a problem in durability, and the deterioration of the activity cannot be suppressed. In particular, when these catalysts were exposed to an atmosphere containing water vapor at a high temperature for a long period of time, the activity was significantly deteriorated. In addition, attempts have been made to improve the durability of the catalyst by adding another metal to the catalyst containing copper, but the effect of the addition is not sufficient.
【0004】[0004]
【発明が解決しようとする課題】本発明は、このような
従来の問題点を解決するためになされたもので、内燃機
関等から排出される酸素過剰の排気ガスを浄化し、かつ
高温で水蒸気を含む雰囲気での耐久性に優れた排気ガス
浄化触媒の製造方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem, and it is intended to purify oxygen-excessive exhaust gas discharged from an internal combustion engine or the like, and to carry out steam treatment at a high temperature. It is an object of the present invention to provide a method for producing an exhaust gas purifying catalyst having excellent durability in an atmosphere containing nitrogen.
【0005】[0005]
【課題を解決するための手段】本発明が提供する排気ガ
ス浄化触媒の製造方法は、次の(1),(2)の工程を
備えたものである。The method for manufacturing an exhaust gas purifying catalyst provided by the present invention comprises the following steps (1) and (2).
【0006】(1)多孔性無機担体と銅イオン分散溶液
を、還元剤,アンモニア及び不活性ガスの共存下で撹拌
混合してスラリーを得る工程。(1) A step of stirring and mixing a porous inorganic carrier and a copper ion dispersion in the presence of a reducing agent, ammonia and an inert gas to obtain a slurry.
【0007】(2)得られたスラリーを、減圧または不
活性ガス雰囲気下で乾燥する工程。(2) A step of drying the obtained slurry under reduced pressure or an inert gas atmosphere.
【0008】すなわち、本発明は、銅イオンを分散させ
た溶液と多孔性無機担体を、還元剤,アンモニア及び不
活性ガスの共存下で混合してスラリーとした後、これを
減圧または不活性ガス雰囲気下で乾燥することを特徴と
する、高温で水蒸気を含む雰囲気での耐久性に優れた排
気ガス浄化触媒の製造方法を提供するものである。この
製造方法によれば、多孔性無機担体に銅を含有させた触
媒を得ることができる。That is, according to the present invention, a slurry in which a solution in which copper ions are dispersed and a porous inorganic carrier are mixed in the coexistence of a reducing agent, ammonia and an inert gas is formed, and then the slurry is depressurized or inert gas. An object of the present invention is to provide a method for producing an exhaust gas purifying catalyst having excellent durability in an atmosphere containing steam at a high temperature, characterized by drying under an atmosphere. According to this production method, a catalyst in which copper is contained in a porous inorganic carrier can be obtained.
【0009】本発明で用いられる多孔性無機担体は、耐
熱性に優れた担体であれば特に限定されないが、多孔性
担体としてゼオライトを用いる場合は、SiO2 /Al
2 O3 =10以上のものでないと、担体としての耐熱性
が十分ではなく、性能を十分に発揮できない。The porous inorganic carrier used in the present invention is not particularly limited as long as it is a carrier having excellent heat resistance. However, when zeolite is used as the porous carrier, SiO 2 / Al
Unless it is 2 O 3 = 10 or more, the heat resistance of the carrier is not sufficient, and the performance cannot be sufficiently exhibited.
【0010】ゼオライト以外の多孔性無機担体として
は、シリカ,アルミナ,メタロシリケート,アルミノフ
ォスフェート等の多孔性無機担体を使用できる。本発明
によって得られる触媒は銅を含有しているが、銅イオン
分散溶液に用いる銅の化合物は、触媒に可溶なものであ
れば特に制限はないが、塩化物塩,酢酸塩,硝酸塩の
他、錯塩、たとえばアンミン錯塩等を使用できる。As a porous inorganic carrier other than zeolite, a porous inorganic carrier such as silica, alumina, metallosilicate and aluminophosphate can be used. Although the catalyst obtained by the present invention contains copper, the copper compound used for the copper ion dispersion is not particularly limited as long as it is soluble in the catalyst. In addition, complex salts such as ammine complex salts can be used.
【0011】銅の含有量としては、担体を含んだ重量比
で3〜20%が好ましい。本発明で用いる還元剤は、銅
を還元することが可能であり、かつ溶媒に添加できるも
のであれば、特に制限はない。還元剤を作用させる際に
使用するガスは不活性ガスであれば、特に制限はない。The content of copper is preferably 3 to 20% by weight including the carrier. The reducing agent used in the present invention is not particularly limited as long as it can reduce copper and can be added to a solvent. There is no particular limitation on the gas used when causing the reducing agent to act, as long as it is an inert gas.
【0012】スラリーを乾燥する際に減圧乾燥を行う場
合は、真空度が−50KPa以上となることが望まし
い。乾燥温度は150℃以上の温度で乾燥することが望
ましい。乾燥の際に使用する不活性ガスは、特に制限は
ないが、窒素,He,Ar等を使用できる。When drying under reduced pressure when drying the slurry, it is desirable that the degree of vacuum be -50 KPa or more. It is desirable to dry at a temperature of 150 ° C. or higher. The inert gas used for drying is not particularly limited, but nitrogen, He, Ar, or the like can be used.
【0013】本発明によって得られる排気ガス浄化用触
媒は、粘土鉱物等のバインダーと混合し成型して使用す
ることができる。また、予め無機多孔性担体を成型し、
その後に上記要領でCuを含有させることも可能であ
る。無機多孔性担体を成型する際に用いるバインダーに
特に制限はないが、粘土鉱物やSiO2 ,Al2 O3 等
が使用できる。また、これらを耐火性担体へウォッシュ
コートして用いることができる。The exhaust gas purifying catalyst obtained by the present invention can be used by mixing with a binder such as clay mineral and molding. In addition, the inorganic porous carrier is molded in advance,
Thereafter, Cu can be contained as described above. The binder used for molding the inorganic porous carrier is not particularly limited, but clay minerals, SiO 2 , Al 2 O 3 and the like can be used. These can be wash-coated on a refractory carrier before use.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態を実施
例によって、比較例とともに、説明する。Embodiments of the present invention will be described below with reference to examples and comparative examples.
【0015】(実施例1)触媒1の調製 ZSM5ゼオライト(SiO2 /Al2 O3 =23.
8)10gを、ゼオライト中に含まれるAlの等倍モル
のCuを含むCuアンミン錯体水溶液(pH=10.
5)に加え、Heガスを溶液中へバブリングしながらヒ
ドラジン1水和物をCuの等倍モル加えた。得られたス
ラリーを、Heガスをバブリングしながら30℃で20
時間撹拌した。(Example 1) Preparation of catalyst 1 ZSM5 zeolite (SiO 2 / Al 2 O 3 = 23.
8) 10 g of an aqueous Cu ammine complex solution containing Cu in the same mole as Al contained in the zeolite (pH = 10.
In addition to 5), hydrazine monohydrate was added in the same molar amount as Cu while bubbling He gas into the solution. The obtained slurry was heated at 30 ° C. for 20 hours while bubbling He gas.
Stirred for hours.
【0016】このスラリーをろ別し、得られたケーキを
再び別の上記溶液に加え同様に撹拌した。This slurry was separated by filtration, and the obtained cake was again added to the above another solution and stirred similarly.
【0017】これを再びろ別し、得られたケーキを−1
00kPaの真空乾燥器にて徐々に昇温しながら、25
0℃で12時間乾燥し、触媒1を得た。得られた触媒の
組成分析は蛍光X線を用いて行った。その結果、銅の含
有量はCu/Al2 =1.98であった。This is filtered off again, and the obtained cake is reduced to -1.
While gradually increasing the temperature with a vacuum dryer of 00 kPa, 25
After drying at 0 ° C. for 12 hours, catalyst 1 was obtained. The composition of the obtained catalyst was analyzed using fluorescent X-rays. As a result, the copper content was Cu / Al 2 = 1.98.
【0018】(実施例2)触媒2の調製 実施例1と同じ操作を行い、ケーキを調製し、得られた
ケーキを乾燥させる際に、乾燥器にてHeを50ml/
min流通させながら、徐々に昇温し、250℃で12
時間乾燥して、触媒2を得た。得られた触媒の組成分析
は蛍光X線を用いて行った。その結果、銅の含有量はC
u/Al2 =1.98であった。(Example 2) Preparation of catalyst 2 The same operation as in Example 1 was carried out to prepare a cake, and when the obtained cake was dried, 50 ml of He was used in a dryer.
The temperature is gradually raised while flowing through the
After drying for an hour, catalyst 2 was obtained. The composition of the obtained catalyst was analyzed using fluorescent X-rays. As a result, the copper content is C
u / Al 2 = 1.98.
【0019】(実施例3)触媒3の調製 実施例1においてCuアンミン錯体水溶液(pH=1
0.5)をゼオライト中に含まれるAlの2倍モルのC
uを含むCuアンミン錯体水溶液(pH=10.5)に
変更した以外は同じ操作を行い、触媒3を得た。得られ
た触媒の組成分析は蛍光X線を用いて行った。その結
果、銅の含有量はCu/Al2 =2.17であった。Example 3 Preparation of Catalyst 3 In Example 1, a Cu ammine complex aqueous solution (pH = 1)
0.5) is twice as much C as Al contained in the zeolite.
Catalyst 3 was obtained in the same manner as above except that the aqueous solution was changed to an aqueous solution of Cu ammine complex containing u (pH = 10.5). The composition of the obtained catalyst was analyzed using fluorescent X-rays. As a result, the copper content was Cu / Al 2 = 2.17.
【0020】(実施例4)触媒4の調製 実施例1においてCuアンミン錯体水溶液(pH=1
0.5)をゼオライト中に含まれるAlの5倍モルのC
uを含むCuアンミン錯体水溶液(pH=10.5)に
変更した以外は同じ操作を行い、触媒4を得た。得られ
た触媒の組成分析は蛍光X線を用いて行った。その結
果、銅の含有量はCu/Al2 =2.04であった。Example 4 Preparation of Catalyst 4 In Example 1, an aqueous solution of Cu ammine complex (pH = 1)
0.5) is 5 times the molar amount of C contained in the zeolite.
Catalyst 4 was obtained in the same manner as above except that the aqueous solution was changed to an aqueous solution of Cu ammine complex containing u (pH = 10.5). The composition of the obtained catalyst was analyzed using fluorescent X-rays. As a result, the copper content was Cu / Al 2 = 2.04.
【0021】(比較例1)比較触媒1の調製 ZSM5ゼオライト(SiO2 /Al2 O3 =23.
8)10gを、ゼオライト中に含まれるAlの0.5倍
モルのCuを含むCuアンミン錯体水溶液(pH=1
0.5)水溶液に加えた。得られたスラリーを30℃で
20時間撹拌した。Comparative Example 1 Preparation of Comparative Catalyst 1 ZSM5 zeolite (SiO 2 / Al 2 O 3 = 23.
8) 10 g of an aqueous Cu ammine complex solution containing 0.5 moles of Cu of Al contained in the zeolite (pH = 1)
0.5) Added to aqueous solution. The resulting slurry was stirred at 30 C for 20 hours.
【0022】ろ別後、得られたケーキを、通常の乾燥器
で110℃で20時間乾燥し、比較触媒1を得た。得ら
れた触媒の組成分析は蛍光X線を用いて行った。その結
果、銅の含有量はCu/Al2 =1.03であった。After filtration, the obtained cake was dried in a usual dryer at 110 ° C. for 20 hours to obtain Comparative Catalyst 1. The composition of the obtained catalyst was analyzed using fluorescent X-rays. As a result, the copper content was Cu / Al 2 = 1.03.
【0023】(比較例2)比較触媒2の調製 比較例1と同じ操作でケーキを調製し、得られたケーキ
を−100kPaの真空乾燥器にて250℃で20時間
乾燥し、比較触媒2を得た。得られた触媒の組成分析は
蛍光X線を用いて行った。その結果、銅の含有量はCu
/Al2 =1.03であった。(Comparative Example 2) Preparation of Comparative Catalyst 2 A cake was prepared in the same manner as in Comparative Example 1, and the obtained cake was dried in a vacuum dryer at -100 kPa at 250 ° C. for 20 hours. Obtained. The composition of the obtained catalyst was analyzed using fluorescent X-rays. As a result, the copper content is Cu
/ Al 2 = 1.03.
【0024】(比較例3)比較触媒3の調製 実施例1におけるCuイオン,ヒドラジン,He共存下
でスラリーを撹拌する操作を1回のみ行った後、得られ
たケーキを通常の乾燥器にて110℃で20時間乾燥
し、比較触媒3を得た。得られた触媒の組成分析は蛍光
X線を用いて行った。その結果、銅の含有量はCu/A
l2 =0.89であった。Comparative Example 3 Preparation of Comparative Catalyst 3 The operation of stirring the slurry in the coexistence of Cu ion, hydrazine and He in Example 1 was performed only once, and the obtained cake was dried in a usual dryer. After drying at 110 ° C. for 20 hours, Comparative Catalyst 3 was obtained. The composition of the obtained catalyst was analyzed using fluorescent X-rays. As a result, the copper content was Cu / A
l 2 = 0.89.
【0025】(比較例4)比較触媒4の調製 比較例1におけるCuアンミン錯体水溶液(pH=1
0.5)をゼオライト中に含まれるAlの2.5倍モル
のCuを含むCuアンミン錯体水溶液(pH=10.
5)に変更した以外は同じ操作を行い、比較触媒4を得
た。得られた触媒の組成分析は蛍光X線を用いて行っ
た。その結果、銅の含有量はCu/Al2 =1.98で
あった。Comparative Example 4 Preparation of Comparative Catalyst 4 The aqueous Cu ammine complex solution of Comparative Example 1 (pH = 1)
0.5) of Cu ammine complex aqueous solution (pH = 10.0.5) containing 2.5 times mole of Cu of Al contained in the zeolite.
The same operation was performed except for changing to 5) to obtain Comparative Catalyst 4. The composition of the obtained catalyst was analyzed using fluorescent X-rays. As a result, the copper content was Cu / Al 2 = 1.98.
【0026】(比較例5)比較触媒5の調製 比較例4と同じ操作でケーキを調製し、得られたケーキ
を乾燥器にてHeを50ml/min流通させながら、
徐々に昇温し、250℃で12時間乾燥して、比較触媒
5を得た。得られた触媒の組成分析は蛍光X線を用いて
行った。その結果、銅の含有量はCu/Al2 =1.9
8であった。(Comparative Example 5) Preparation of Comparative Catalyst 5 A cake was prepared in the same manner as in Comparative Example 4, and the obtained cake was passed through a dryer at a flow rate of 50 ml / min.
The temperature was gradually raised and dried at 250 ° C. for 12 hours to obtain Comparative Catalyst 5. The composition of the obtained catalyst was analyzed using fluorescent X-rays. As a result, the copper content was Cu / Al 2 = 1.9.
It was 8.
【0027】(性能評価)得られた触媒1〜4、比較触
媒1〜5を打錠成型器で成型後、粉砕し500μm〜1
mmに整粒し評価用触媒とした。性能評価を行う前に、評
価用触媒の前処理を行った。すなわち、O2 6%、N2
バランスのガスをSV=10,000hr-1で流通させ
た常圧流通固定床において、評価用触媒を500℃で1
hr保持した。(Evaluation of Performance) The obtained catalysts 1 to 4 and comparative catalysts 1 to 5 were molded by a tableting machine, and then pulverized to 500 μm to 1 μm.
The particles were sieved to have a size of mm and used as a catalyst for evaluation. Before performing the performance evaluation, a pretreatment of the evaluation catalyst was performed. That is, O 2 6%, N 2
In an atmospheric pressure fixed bed through which a balanced gas was passed at SV = 10,000 hr -1 , the catalyst for evaluation was heated at 500 ° C. for 1 hour.
hr.
【0028】その後、前処理を行った評価用触媒0.7
5mlをとり、常圧流通固定床で、表1に示す組成のガ
ス(以下、反応ガスという。)をSV=200,000
hr-1で流通させた。触媒床入口と触媒床出口のNOx
濃度を化学発光式NOx計で、600℃から50℃おき
に200℃まで、NOx濃度が定常に達した時の濃度を
測定し、各温度でのNOx浄化率(%)を求めた。その
結果を表2に示す。Thereafter, the pretreated catalyst for evaluation 0.7
5 ml was taken, and a gas having a composition shown in Table 1 (hereinafter, referred to as a reaction gas) was SV = 200,000 on a fixed bed under normal pressure flow.
hr- 1 . NOx at catalyst bed inlet and catalyst bed outlet
The concentration was measured using a chemiluminescence NOx meter from 600 ° C. to 200 ° C. in steps of 50 ° C. when the NOx concentration reached a steady state, and the NOx purification rate (%) at each temperature was determined. Table 2 shows the results.
【0029】[0029]
【表1】 [Table 1]
【0030】上記NOx浄化率(%)は、次式で計算し
た。The NOx purification rate (%) was calculated by the following equation.
【0031】 NOx浄化率(%) =(入口NOx濃度−出口NOx濃度)÷入口NOx濃
度×100NOx purification rate (%) = (inlet NOx concentration−outlet NOx concentration) ÷ inlet NOx concentration × 100
【0032】[0032]
【表2】 [Table 2]
【0033】(耐久性能評価)得られた触媒1〜4、比
較触媒1〜5を打錠成型器で成型後、粉砕し500μm
〜1mmに整粒し評価用触媒とした。性能評価を行う前
に、評価用触媒の前処理を行った。すなわち、常圧流通
O2 6%、N2 バランスのガスをSV=10,000h
r-1で流通させた常圧流通固定床において、評価用触媒
を500℃で1hr保持した。(Evaluation of durability performance) The obtained catalysts 1 to 4 and comparative catalysts 1 to 5 were molded by a tableting machine, and then pulverized to 500 μm.
It was sized to 〜1 mm to obtain a catalyst for evaluation. Before performing the performance evaluation, a pretreatment of the evaluation catalyst was performed. That is, a gas having an O 2 flow of 6% and a N 2 balance at a normal pressure is SV = 10,000 h
The catalyst for evaluation was kept at 500 ° C. for 1 hour in a fixed bed under normal pressure flowing at r −1 .
【0034】その後、前処理を行った評価用触媒2ml
をとり、常圧流通固定床で、表3に示す組成のガス(以
下、耐久ガスという。)を、600℃にて5時間、SV
=10,000hr-1で流通させた。Then, 2 ml of the pre-treated catalyst for evaluation was used.
Then, a gas having a composition shown in Table 3 (hereinafter referred to as a durable gas) was applied to a fixed pressure flowing fixed bed at 600 ° C. for 5 hours by SV.
= 10,000 hr -1 .
【0035】[0035]
【表3】 [Table 3]
【0036】上記耐久処理を行った触媒を0.75ml
とり、上記性能評価と同様に触媒の評価を行い、耐久性
能評価とした。その結果を表4に示す。0.75 ml of the catalyst subjected to the above durability treatment
Then, the catalyst was evaluated in the same manner as in the performance evaluation described above, and the durability performance was evaluated. Table 4 shows the results.
【0037】[0037]
【表4】 [Table 4]
【0038】表3及び表4から明らかなように、触媒1
〜4は、いずれも、水蒸気を含む耐久条件での耐久性に
優れ、特に300℃〜400℃の低温での耐久性に優れ
ている。As apparent from Tables 3 and 4, the catalyst 1
Nos. 4 to 4 are excellent in durability under durability conditions including water vapor, and particularly excellent in durability at a low temperature of 300 ° C. to 400 ° C.
【0039】[0039]
【発明の効果】以上説明したように、本発明によれば、
上述のような構成としたので、内燃機関等から排出され
る酸素過剰の排気ガスを浄化し、かつ高温で水蒸気を含
む雰囲気での耐久性に優れた排気ガス浄化触媒を得るこ
とができる。As described above, according to the present invention,
With the above configuration, it is possible to obtain an exhaust gas purifying catalyst that purifies oxygen-excessive exhaust gas discharged from an internal combustion engine or the like and has excellent durability in an atmosphere containing steam at a high temperature.
Claims (2)
ことを特徴とする排気ガス浄化触媒の製造方法。 (1)多孔性無機担体と銅イオン分散溶液を、還元剤,
アンモニア及び不活性ガスの共存下で撹拌混合してスラ
リーを得る工程。 (2)得られたスラリーを、減圧または不活性ガス雰囲
気下で乾燥する工程。1. A method for producing an exhaust gas purifying catalyst, comprising the following steps (1) and (2). (1) A porous inorganic carrier and a copper ion dispersion solution are mixed with a reducing agent,
A step of obtaining a slurry by stirring and mixing in the presence of ammonia and an inert gas. (2) A step of drying the obtained slurry under reduced pressure or an inert gas atmosphere.
項1記載の排気ガス浄化触媒の製造方法。2. The method for producing an exhaust gas purifying catalyst according to claim 1, wherein the porous inorganic carrier is zeolite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9246641A JPH1176828A (en) | 1997-09-11 | 1997-09-11 | Manufacture of exhaust gas cleaning catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9246641A JPH1176828A (en) | 1997-09-11 | 1997-09-11 | Manufacture of exhaust gas cleaning catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1176828A true JPH1176828A (en) | 1999-03-23 |
Family
ID=17151441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9246641A Pending JPH1176828A (en) | 1997-09-11 | 1997-09-11 | Manufacture of exhaust gas cleaning catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1176828A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006247460A (en) * | 2005-03-08 | 2006-09-21 | Catalysts & Chem Ind Co Ltd | Manufacturing method of adsorbent |
-
1997
- 1997-09-11 JP JP9246641A patent/JPH1176828A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006247460A (en) * | 2005-03-08 | 2006-09-21 | Catalysts & Chem Ind Co Ltd | Manufacturing method of adsorbent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5433933A (en) | Method of purifying oxygen-excess exhaust gas | |
JPH01130735A (en) | Catalyst for purifying exhaust gas | |
JP2529739B2 (en) | Exhaust gas purification catalyst and method | |
JP5305133B2 (en) | Nitrogen oxide purification catalyst and method for producing the same | |
JPH05220403A (en) | Exhaust gas purifying catalyst | |
JP2973524B2 (en) | Exhaust gas purification catalyst | |
JPH07155614A (en) | Production of exhaust gas purifying catalyst | |
JPH1176828A (en) | Manufacture of exhaust gas cleaning catalyst | |
JP2851444B2 (en) | Exhaust gas purification method | |
JPS5820307B2 (en) | Catalyst for vehicle exhaust gas purification | |
JPH0640964B2 (en) | Exhaust gas purification catalyst manufacturing method | |
JP2969343B2 (en) | Manufacturing method of exhaust gas purifying catalyst | |
JP3141233B2 (en) | Manufacturing method of exhaust gas purification catalyst | |
JP3362401B2 (en) | Exhaust gas purification catalyst | |
JPH01247710A (en) | Purifying device for automobile exhaust | |
JPH08150336A (en) | Waste gas purification material and method for purifying waste gas | |
JPH04193347A (en) | Catalyst for purification of exhaust gas | |
JPH04219143A (en) | Exhaust gas purification catalyst | |
JPH05208138A (en) | Production of zeolite containing cobalt and palladium and method for purifying exhaust gas | |
JP3473245B2 (en) | Exhaust gas purification catalyst | |
JP2802335B2 (en) | Method for producing exhaust purification catalyst | |
JPH08117558A (en) | Formation of nitrogen dioxide | |
JPH1147605A (en) | Catalyst and method for purifying exhaust gas | |
JPH11294150A (en) | Exhaust emission control device and its use | |
JPH04219146A (en) | Exhaust gas purification catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20011225 |