JPH1174548A - Solar battery and its manufacture - Google Patents

Solar battery and its manufacture

Info

Publication number
JPH1174548A
JPH1174548A JP9230967A JP23096797A JPH1174548A JP H1174548 A JPH1174548 A JP H1174548A JP 9230967 A JP9230967 A JP 9230967A JP 23096797 A JP23096797 A JP 23096797A JP H1174548 A JPH1174548 A JP H1174548A
Authority
JP
Japan
Prior art keywords
solar cell
film
transparent conductive
conductive film
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9230967A
Other languages
Japanese (ja)
Inventor
Kaoru Terajima
薫 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP9230967A priority Critical patent/JPH1174548A/en
Publication of JPH1174548A publication Critical patent/JPH1174548A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a light utility efficiency, by forming a diffuse reflecting surface formed in a selective protrusion and recess shape on a surface formed with a transparent conductive film, thereby enhancing a ratio of an optical confinement in a layer due to a random reflection on a junction surface. SOLUTION: To form a diffuse reflecting surface 5, a surface of a solar battery board 1 at a transparent conductive film side is honed with liquid. This is a processing for spraying water containing abrasive from a nozzle to a work piece, thereby forming the surface of the board being flat to an elementary surface having a desired protrusion and recess shape. At this time, the abrasive having predetermined type, particle size and the like is selected. And, the other working conditions are selectively controlled to perform sufficient optical confinement effect. And, according to a liquid honing method, the board 1 is polished while cleaning it, and hence a worked surface is clean and a cleaning step can be simplified. Thereafter, a transparent conductive film 2 and an a-Si film 3 are formed on the diffuse reflecting surface 5 formed to be the elementary surface, and a metal electrode film 4 is formed by vacuum vapor deposition or sputtering.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池基板上に
電極と非晶質シリコン膜を積層してなる太陽電池とその
製造方法に関し、更に詳しくは、この太陽電池を用いた
電子機器や、時計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell in which an electrode and an amorphous silicon film are laminated on a solar cell substrate, and a method of manufacturing the same. It is about watches.

【0002】[0002]

【従来の技術】透明な太陽電池基板上に電極と非晶質シ
リコン膜を積層して形成した太陽電池が、今日、種々の
電子機器に用いられている。その基本構造は図2のごと
きもので、21は透明な太陽電池基板、22は太陽電池
基板21上に形成された透明導電膜、23は透明導電膜
22上に形成されたP−I−N接合型の非晶質シリコン
膜(a−Si膜と略す)、24はa−Si膜23上に形
成された金属電極膜である。太陽電池基板21側から光
が入射するとa−Si膜23に自由電子と正孔が発生
し、P−I−N接合の作る電界によって透明導電膜22
や金属電極膜24に集められ、この間に電圧を発生す
る。このような太陽電池の起電力は動作時に0.4〜
0.5V程度に止どまるため、例えば電子腕時計の電源
として用いる場合、1個の素子では電圧が回路を動作さ
せるのに足りないから、基板上に複数の太陽電池(例え
ば4個分)を配置し、これらの素子を直列接続した構成
にして、加算された起電力を得る構造が取られる。
2. Description of the Related Art Solar cells formed by laminating electrodes and an amorphous silicon film on a transparent solar cell substrate are used in various electronic devices today. The basic structure is as shown in FIG. 2, where 21 is a transparent solar cell substrate, 22 is a transparent conductive film formed on the solar cell substrate 21, and 23 is a P-I-N formed on the transparent conductive film 22. A junction type amorphous silicon film (abbreviated as an a-Si film), 24 is a metal electrode film formed on the a-Si film 23. When light is incident from the solar cell substrate 21 side, free electrons and holes are generated in the a-Si film 23, and the transparent conductive film 22 is generated by the electric field created by the PIN junction.
And the metal electrode film 24 to generate a voltage. The electromotive force of such a solar cell is 0.4 ~
For example, when used as a power source for an electronic wristwatch, the voltage is not enough to operate the circuit, so that a plurality of solar cells (for example, for four) are mounted on a substrate. A configuration is adopted in which these elements are arranged and these elements are connected in series to obtain an added electromotive force.

【0003】太陽電池が効率よく発電するには、太陽電
池基板21からの入射光が失われることなくa−Si膜
に達して、光電作用を行うことが必要である。しかし、
太陽電池基板21と透明導電膜22の接合面、あるいは
透明導電膜22とa−Si膜23の接合面等は光学特性
の異なる層の境界面であるから、入射光の一部にこれら
の接合面で反射されてa−Si膜23に達せず、発電に
寄与しない部分が生じる。接合面が平であると、光の入
射角度によっては全反射を起こしやすい。そこで接合面
を凹凸の多い面、すなわち粗面にすることが光の利用効
率を高めるのに有効である。接合面を粗面にすることに
よって、反射されずに接合面を通り抜ける光の分量が多
くなるとともに、一旦接合面を通り抜けた光が次の接合
面で反射されて外部に放出されそうになっても、再度接
合面で反射されて内部に留まる率が高まる。いわゆる光
の閉じ込め効果を有することとなる。
In order for the solar cell to efficiently generate power, it is necessary that incident light from the solar cell substrate 21 reaches the a-Si film without loss and performs a photoelectric action. But,
The bonding surface between the solar cell substrate 21 and the transparent conductive film 22 or the bonding surface between the transparent conductive film 22 and the a-Si film 23 is a boundary surface between layers having different optical characteristics. There is a portion that is reflected by the surface and does not reach the a-Si film 23 and does not contribute to power generation. If the bonding surface is flat, total reflection is likely to occur depending on the incident angle of light. Therefore, it is effective to make the joint surface a surface with many irregularities, that is, a rough surface, in order to enhance the light use efficiency. By making the bonding surface rough, the amount of light that passes through the bonding surface without being reflected increases, and light that once passes through the bonding surface is likely to be reflected to the next bonding surface and emitted to the outside However, the rate of reflection at the joining surface again and remaining inside increases. It has a so-called light confinement effect.

【0004】接合面を粗くして太陽電池の性能、すなわ
ち光閉じこめ効果を上げることについては、例えば「第
9回太陽光発電国際会議(1996年)」における提出
論文の「Amorphous Silicon Solar Cell on Textured T
empered Glass Substrate (Taniguchi 他)」に見られ
るように、従来、前記の透明導電膜22としてSnO2
膜を太陽電池基板21上にCVD法によって結晶化させ
て形成し、成膜条件の選択によってSnO2 膜を粗面化
してこれを利用するのが一つの方法であった。
[0004] To improve the performance of the solar cell, that is, to improve the light confinement effect by roughening the bonding surface, is described in, for example, "Amorphous Silicon Solar Cell on Textured" in a paper submitted at the "9th International Conference on Photovoltaic Power Generation (1996)". T
empered Glass Substrate (Taniguchi et al.), SnO 2 has been conventionally used as the transparent conductive film 22.
One method is to form a film on the solar cell substrate 21 by crystallization by a CVD method, roughen the SnO 2 film by selecting film forming conditions, and use this.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記論
文にもあるように、SnO2 膜を形成するのに500℃
以上の高温でCVD法を行う必要があるため、軟化点の
高いガラスを使わねばならず、コスト増となった。そこ
で上記論文は透明導電膜2で粗面を作るのでなく、太陽
電池基板21の膜形成面をサンドブラストして凹凸をつ
けることにより、必要な粗面を常温で得る方法を示して
いる。これによれば、従来のように太陽電池基板上に透
明導電膜としてCVD法でSnO2 膜を形成するのでな
く、スパッタリング法でITO膜を形成すれば足りる。
However, as described in the above-mentioned paper, the formation of the SnO 2 film requires 500 ° C.
Since it is necessary to perform the CVD method at such a high temperature, glass having a high softening point must be used, and the cost has increased. Therefore, the above-mentioned paper shows a method of obtaining a necessary rough surface at room temperature by forming a rough surface by sandblasting a film forming surface of the solar cell substrate 21 instead of forming a rough surface with the transparent conductive film 2. According to this, it is sufficient to form an ITO film by a sputtering method instead of forming a SnO 2 film as a transparent conductive film on a solar cell substrate by a CVD method as in the related art.

【0006】しかし、所望の表面粗さを得るには大小の
研磨剤をいずれも確実に加工面に到達させることが必要
であるが、サンドブラストではノズルから研磨剤を吹き
付けるから、微小な研磨剤は空気抵抗のため加工面に到
達しにくくて、表面粗さを制御することが難しく、粗さ
のばらつきが大きくなる。また吹き付けによって多くの
研磨剤微粒子や削られた研磨屑が太陽電池基板表面に付
着するため、処理後に念入りな洗浄工程を設けねばなら
ず、製造コスト上昇の一因になっていた。本発明はこれ
らの問題の解決を図るものである。
[0006] However, in order to obtain the desired surface roughness, it is necessary to ensure that both large and small abrasives reach the work surface. However, in sandblasting, the abrasive is sprayed from a nozzle. Due to the air resistance, it is difficult to reach the processing surface, it is difficult to control the surface roughness, and the variation in the roughness increases. Further, since many abrasive fine particles and shaved polishing dust adhere to the surface of the solar cell substrate by spraying, a careful cleaning step must be provided after the treatment, which has contributed to an increase in manufacturing cost. The present invention addresses these problems.

【0007】[0007]

【課題を解決するための手段】本発明では、太陽電池基
板の表面を粗面化すること、すなわち、太陽電池基板の
少なくとも透明導電膜が形成される表面に、選択的な凹
凸形状をなす拡散反射面を形成したことを特徴とし、更
に、拡散反射面を形成するために、液体ホーニング法を
用いることにした。これは研磨剤を含む水を加工面に吹
き付ける方法であるから、粒径の小さな研磨剤も水流に
乗って確実に加工面に到達し、サンドブラスト法に比較
して面粗さの制御が容易になる。また研磨剤と水を吹き
付けるから研磨と洗浄を同時に行っているのであり、加
工後の面は清浄度が高くて、簡単に洗浄するだけで後工
程を行うことができる。これにより加工が容易になると
ともに、光の閉じ込め効果の大きな接合面が得られ、太
陽電池の性能を上げることが可能となる。
According to the present invention, the surface of a solar cell substrate is roughened, that is, a diffusion having a selective unevenness is formed on at least the surface of the solar cell substrate on which a transparent conductive film is formed. The present invention is characterized in that a reflection surface is formed, and a liquid honing method is used to form a diffuse reflection surface. This is a method in which water containing an abrasive is sprayed onto the processing surface, so that the abrasive with a small particle size can reliably reach the processing surface by riding on the water flow, and the surface roughness can be controlled more easily than in the sandblasting method. Become. In addition, since the abrasive and the water are sprayed, the polishing and the cleaning are performed at the same time. Therefore, the surface after processing has a high degree of cleanliness, and the post-process can be performed by simply cleaning. This facilitates processing, provides a bonding surface with a large light confinement effect, and improves the performance of the solar cell.

【0008】[0008]

【発明の実施の形態】本発明による太陽電池によれば、
図1に示す拡散反射面5を形成するに当たり、太陽電池
基板1の透明導電膜側の表面を液体ホーニングして形成
してなることを特徴としている。これは、研磨剤を含む
水をノズルから加工物に吹き付ける加工で、これにより
平坦だった太陽電池基板表面を所望の凹凸のついた粗面
にする。このとき、研磨剤は所定の種類、粒度等のもの
を選択し、その他の加工条件を選択制御する事により、
充分な光閉じこめ効果を奏することが可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the solar cell of the present invention,
In forming the diffuse reflection surface 5 shown in FIG. 1, the surface of the solar cell substrate 1 on the transparent conductive film side is formed by liquid honing. This is a process in which water containing an abrasive is sprayed from a nozzle onto a workpiece, thereby making the flat solar cell substrate surface rough with desired irregularities. At this time, the abrasive is selected of a predetermined type, particle size and the like, and by selectively controlling other processing conditions,
It is possible to achieve a sufficient light confinement effect.

【0009】さらに、前述のように、液体ホーニングは
水で洗浄しながら研削するのに等しいから、加工面は砥
粒や汚れの付着がほとんどなく、加工後に簡単に洗浄す
るだけでよい。
Further, as described above, since liquid honing is equivalent to grinding while washing with water, the processing surface has little adhesion of abrasive grains and dirt, and it is only necessary to simply wash after processing.

【0010】また、この方法により太陽電池基板表面上
に形成された拡散反射面5は、所望の光閉じこめ効果を
有しているために、太陽電池の発電特性の向上が得られ
ることになる。
Further, since the diffuse reflection surface 5 formed on the solar cell substrate surface by this method has a desired light confinement effect, the power generation characteristics of the solar cell can be improved.

【0011】[0011]

【実施例】以下に、本発明における一実施例を図1を用
いて説明する。まず、図1に示す拡散反射面5を形成す
るに当たり、太陽電池基板1の透明導電膜2側の表面を
液体ホーニング法により形成するわけであるが、本実施
例においては、太陽電池基板として、ホウケイ酸系のガ
ラス基板を用いた。また、研磨剤としてアルミナA#2
000(最大粒子径19μm)を使用し、加工条件は、
エアー圧を1.2〜1.8Kgf/cm2、ポンプ圧を
0.8〜1.0Kgf/cm2、投射角を90度、処理回
数を1〜5回とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG. First, in forming the diffuse reflection surface 5 shown in FIG. 1, the surface of the solar cell substrate 1 on the side of the transparent conductive film 2 is formed by a liquid honing method. A borosilicate glass substrate was used. Alumina A # 2 is used as an abrasive.
000 (maximum particle diameter 19 μm), and the processing conditions were:
The air pressure 1.2~1.8Kgf / cm 2, 0.8~1.0Kgf / cm 2 the pump pressure, projection angle 90 degrees, the processing count was 1-5 times.

【0012】その結果の一例を図3に示す。縦軸に平均
粗さ(Ra)をとり、横軸に吐出圧であるところのポン
プ圧及びエアー圧との関係を図示した。この図から明ら
かなように、処理回数と吐出圧力を制御する事により、
従来と比較して有効な光閉じこめ効果を有する拡散反射
面5を形成することができた。なお、研磨剤として、ア
ルミナを用いたが、所望の光閉じ込め効果を有するもの
で有ればこれに限定されるものではないことはいうまで
もない。
FIG. 3 shows an example of the result. The vertical axis shows the average roughness (Ra), and the horizontal axis shows the relationship between the discharge pressure, ie, the pump pressure and the air pressure. As is clear from this figure, by controlling the number of treatments and the discharge pressure,
The diffuse reflection surface 5 having an effective light confinement effect as compared with the related art was able to be formed. Although alumina was used as the polishing agent, it goes without saying that the polishing agent is not limited to this as long as it has a desired light confinement effect.

【0013】次いで、粗面化した太陽電池基板上に形成
された拡散反射面5の上にスパッタリング法により、透
明導電膜2であるところの酸化インジウム・錫(IT
O)膜を形成する。さらに、その上にCVD法によって
a−Si膜3を形成し、金属電極膜4を真空蒸着やスパ
ッタリングで形成する。この後、必要に応じて保護膜の
塗布等を行って太陽電池を完成させる。
Next, indium tin oxide (IT) which is the transparent conductive film 2 is formed on the diffuse reflection surface 5 formed on the roughened solar cell substrate by sputtering.
O) Form a film. Further, an a-Si film 3 is formed thereon by a CVD method, and a metal electrode film 4 is formed by vacuum deposition or sputtering. Thereafter, a solar cell is completed by applying a protective film or the like as necessary.

【0014】以上、本発明による太陽電池を評価するに
当たり、発電特性のうち、変換効率を測定したところ絶
対値で12〜13%(ITO上)および、18〜20%
(SnO2上)の特性の改善がみられた。このことか
ら、本発明による太陽電池によれば、発電特性が従来の
太陽電池と比較して、著しい効果が得られることとな
る。
As described above, when the solar cell according to the present invention was evaluated, the conversion efficiency of the power generation characteristics was measured to be 12 to 13% (on ITO) and 18 to 20% in absolute value.
(On SnO 2), the characteristics were improved. From this, according to the solar cell of the present invention, a remarkable effect is obtained in the power generation characteristics as compared with the conventional solar cell.

【0015】[0015]

【発明の効果】本発明によって得られる太陽電池は、積
層部の接合面すなわち、拡散反射面が凹凸のある形状を
有しているために、光が接合面で乱反射して積層部に閉
じ込められる率が高くなり、光の利用効率が上がる。ま
た液体ホーニング法によれば、洗浄しつつ研削するか
ら、加工面が清浄であって、洗浄工程を簡略化できる。
According to the solar cell obtained by the present invention, since the bonding surface of the laminated portion, that is, the diffuse reflection surface has an uneven shape, light is irregularly reflected on the bonded surface and confined in the laminated portion. Efficiency is increased, and light utilization efficiency is increased. In addition, according to the liquid honing method, since the grinding is performed while cleaning, the processed surface is clean and the cleaning process can be simplified.

【0016】また、太陽電池基板をサンドブラストする
方法では、空気抵抗のため微小な研磨剤粒子が加工面に
届かず、表面粗さにばらつきを生じ、先の論文によれば
太陽電池基板をサンドブラストした太陽電池の性能は、
必ずしもSnO2 膜を粗面にした構造のものと同等に至
ってないが、液体ホーニング法を用いる本発明の太陽電
池は、微小な研磨剤粒子も水流とともに確実に加工面に
当てることができるから、太陽電池基板における拡散反
射面の表面粗さを細かく制御でき、SnO2 膜を用いた
太陽電池に迫る性能が得られるという効果を奏する。
In the method of sand blasting a solar cell substrate, fine abrasive particles do not reach a processing surface due to air resistance, causing a variation in surface roughness. According to the above-mentioned paper, the solar cell substrate was sand blasted. The performance of solar cells is
Although not necessarily equivalent to that of the structure in which the SnO 2 film is roughened, the solar cell of the present invention using the liquid honing method can reliably apply the fine abrasive particles to the processing surface together with the water flow, The surface roughness of the diffuse reflection surface in the solar cell substrate can be finely controlled, and an effect that a performance approaching that of a solar cell using a SnO 2 film can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による太陽電池の断面図である。FIG. 1 is a sectional view of a solar cell according to the present invention.

【図2】従来の太陽電池の断面図である。FIG. 2 is a cross-sectional view of a conventional solar cell.

【図3】平均粗さと、吐出圧との関係を示した線図であ
る。
FIG. 3 is a diagram showing a relationship between an average roughness and a discharge pressure.

【符号の説明】[Explanation of symbols]

1 太陽電池基板 2 透明導電膜 3 a−Si膜 4 金属電極膜 5 拡散反射面 REFERENCE SIGNS LIST 1 solar cell substrate 2 transparent conductive film 3 a-Si film 4 metal electrode film 5 diffuse reflection surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池基板上に透明導電膜、非晶質シ
リコン膜および金属電極膜を積層してなる太陽電池であ
って、前記太陽電池基板の少なくとも前記透明導電膜が
形成される表面には選択的な凹凸形状をなす拡散反射面
を有してなることを特徴とする太陽電池。
1. A solar cell comprising a transparent conductive film, an amorphous silicon film and a metal electrode film laminated on a solar cell substrate, wherein at least a surface of the solar cell substrate on which the transparent conductive film is formed is formed. Is a solar cell having a diffuse reflection surface having a selective uneven shape.
【請求項2】 太陽電池基板上に透明導電膜、非晶質シ
リコン膜および金属電極膜を積層してなる太陽電池の製
造方法であって、前記太陽電池基板の少なくとも前記透
明導電膜が形成される表面を液体ホーニング法により選
択的に凹凸形状である拡散反射面を形成してなることを
特徴とする太陽電池の製造方法。
2. A method for manufacturing a solar cell, comprising laminating a transparent conductive film, an amorphous silicon film, and a metal electrode film on a solar cell substrate, wherein at least the transparent conductive film of the solar cell substrate is formed. A method for manufacturing a solar cell, characterized in that a diffuse reflection surface having a concave-convex shape is selectively formed on a surface of the substrate by a liquid honing method.
JP9230967A 1997-08-27 1997-08-27 Solar battery and its manufacture Pending JPH1174548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9230967A JPH1174548A (en) 1997-08-27 1997-08-27 Solar battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9230967A JPH1174548A (en) 1997-08-27 1997-08-27 Solar battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH1174548A true JPH1174548A (en) 1999-03-16

Family

ID=16916136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9230967A Pending JPH1174548A (en) 1997-08-27 1997-08-27 Solar battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH1174548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074066A (en) * 2011-09-27 2013-04-22 Pv Crystalox Solar Plc Method of manufacturing semiconductor wafer and semiconductor wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074066A (en) * 2011-09-27 2013-04-22 Pv Crystalox Solar Plc Method of manufacturing semiconductor wafer and semiconductor wafer

Similar Documents

Publication Publication Date Title
US10857764B2 (en) Method for improving adhesion between glass cover and encapsulant for solar roof tiles
JP3271990B2 (en) Photovoltaic device and method for manufacturing the same
JP2008300440A (en) Solar cell, and solar cell module
US20130025661A1 (en) Thin Film Type Solar Cell and Method for Manufacturing the Same
JPH1070294A (en) Substrate for solar cell and production thereof
JPH10326903A (en) Fine particle coating film and photoelectric conversion element using it and light dispersion body
JPH11298030A (en) Solar cell cover glass, manufacture thereof and solar cell
KR20120099744A (en) Textured superstrates for photovoltaics
WO2012162446A1 (en) Light scattering articles by abrasion and etch
JPH1168131A (en) Manufacture of solar battery
JP2010205804A (en) Photoelectric converter
CN111009590A (en) HJT solar cell and preparation method thereof
JP4340031B2 (en) Surface roughening method for solar cell substrate
KR20150133243A (en) Photovoltaic element and manufacturing method therefor
JPWO2017212759A1 (en) SOLAR CELL, SOLAR CELL MANUFACTURING SYSTEM, AND SOLAR CELL MANUFACTURING METHOD
TW201140867A (en) Method of manufacturing solar cell and solar cell
JPH1174548A (en) Solar battery and its manufacture
JP2000223724A (en) Amorphous silicon solar battery and its manufacture
JP2006005021A (en) Substrate with rough thin-film and its manufacturing method
JP2002111017A (en) Thin film crystalline silicon solar cell
JPH03125481A (en) Photovoltaic device
JP2002314106A (en) Method of finishing solar cell panel
JP2013119512A (en) Method for producing glass substrate and method for producing solar cell
CN204391137U (en) A kind of amorphous silicon thin-film solar cell
JP2002198549A (en) Thin-film crystalline silicon solar cell