JPH10326903A - Fine particle coating film and photoelectric conversion element using it and light dispersion body - Google Patents

Fine particle coating film and photoelectric conversion element using it and light dispersion body

Info

Publication number
JPH10326903A
JPH10326903A JP9150167A JP15016797A JPH10326903A JP H10326903 A JPH10326903 A JP H10326903A JP 9150167 A JP9150167 A JP 9150167A JP 15016797 A JP15016797 A JP 15016797A JP H10326903 A JPH10326903 A JP H10326903A
Authority
JP
Japan
Prior art keywords
fine particle
coating film
binder
particle coating
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9150167A
Other languages
Japanese (ja)
Other versions
JP3416024B2 (en
Inventor
Yasue Nagano
尉絵 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15016797A priority Critical patent/JP3416024B2/en
Publication of JPH10326903A publication Critical patent/JPH10326903A/en
Application granted granted Critical
Publication of JP3416024B2 publication Critical patent/JP3416024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Photovoltaic Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the light dispersion effect and adhesion strength and to prevent a crack from occurring, by using the same material as that of a binder for one type of fine particle when forming a fine particle coating film and using a material that is different from that of the binder for another fine particle. SOLUTION: A fine particle coating film 2 is formed by applying the mixed liquid of a plurality of types of fine particles A and B and a binder C onto a glass substrate 1. SiO2 is used for one of the formation molecular constituents of the binder C, the same SiO2 as the formation molecular constituent of the binder C is used for one type of fine particle A out of the fine particles, and TiO2 is used for the other fine particle B. Therefore, incident light is scattered due to the small recesses and projections on the surface of the fine particle coating film 2 that is formed by mixing the fine particles A and B into the binder C, and the fine particle coating film 2 functions as a light diffusion layer, thus obtaining a light confinement effect by an amorphous semiconductor layer 4, improving the adhesion strength with the glass substrate 1, and forming. the fine particle coating film 2 without any cracks.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池、光セン
サーまたは表示素子等に適用され、複数種類の微粒子と
バインダーとを混合させた混合液を基体上に塗布するこ
とにより成膜される微粒子塗布膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a solar cell, an optical sensor, a display element, or the like, and is formed by applying a mixture of a plurality of kinds of fine particles and a binder to a substrate to form a film. It relates to a coating film.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従来
より、太陽電池、光センサー、表示素子等の光電変換素
子においては、微粒子を含む塗布液により基体表面に形
成された凹凸によって、入射した光の反射を防止した
り、入射した光を散乱させることにより非晶質半導体層
等に閉じ込めて光を吸収し変換効率を高めたりしてい
る。この凹凸を形成する方法としては、直接、基体に凹
凸を形成する方法、あるいは表面に凹凸を有する膜を基
体上に形成する方法等がある。
2. Description of the Related Art Conventionally, in a photoelectric conversion element such as a solar cell, an optical sensor, a display element, etc., incident light is caused by unevenness formed on a substrate surface by a coating solution containing fine particles. Is prevented or the incident light is scattered so as to be confined in an amorphous semiconductor layer or the like to absorb the light and increase the conversion efficiency. As a method of forming the unevenness, there is a method of directly forming the unevenness on the base, a method of forming a film having the unevenness on the surface on the base, and the like.

【0003】直接、基体に凹凸を形成する方法として
は、例えば、サンドブラスト等の砥粒を基体に吹きつけ
るといった方法がある。一方、表面に凹凸を有する膜を
基体上に形成する方法としては、真空蒸着法、スパッタ
リング法等の化学的気相法または物理的気相法等があ
る。しかし、従来の真空蒸着法やスパッタリング法は、
高真空チャンバーを必要とする等、装置コストが高く、
また、一定の膜質を保った状態で薄膜の大面積化が困難
であるという問題点があった。
As a method of forming irregularities directly on a substrate, for example, there is a method of spraying abrasive grains such as sandblast on the substrate. On the other hand, as a method for forming a film having unevenness on the surface on a substrate, there are a chemical vapor method such as a vacuum evaporation method and a sputtering method, a physical vapor method, and the like. However, conventional vacuum evaporation and sputtering methods
Equipment cost is high, such as requiring a high vacuum chamber,
Another problem is that it is difficult to increase the area of the thin film while maintaining a certain film quality.

【0004】また、表面に凹凸を有する膜を基体上に形
成する他の方法として、微粒子の混入されたコーティン
グ液を塗布するという方法が、例えば、特開平2−18
0081号公報に開示されている。この公報に記載の方
法では、有機シリケートを主成分とするコーティング材
の中に平均粒径が0.1〜0.9μmの絶縁性微粒子を
含む原料を用い、これを硬化させたシリカ被膜からなる
絶縁膜を金属基体上に形成している。
As another method for forming a film having an uneven surface on a substrate, a method of applying a coating liquid mixed with fine particles is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-18 / 1990.
No. 0081. In the method described in this publication, a raw material containing insulating fine particles having an average particle size of 0.1 to 0.9 μm is used in a coating material containing an organic silicate as a main component, and the coating material is formed of a cured silica coating. An insulating film is formed on a metal substrate.

【0005】絶縁膜のコーティング材に含まれる絶縁性
微粒子には、SiO2、TiO2、Al23、ZrO2の少な
くとも1つが用いられ、上記絶縁膜は、これらの金属酸
化物等の微粒子によって表面に凹凸が形成された膜にな
る。その後、背面電極、非晶質半導体層、透明導電膜お
よび保護膜を順次形成して非晶質半導体太陽電池として
いる。
As the insulating fine particles contained in the coating material of the insulating film, at least one of SiO 2 , TiO 2 , Al 2 O 3 , and ZrO 2 is used. As a result, a film having irregularities formed on the surface is obtained. Thereafter, a back electrode, an amorphous semiconductor layer, a transparent conductive film, and a protective film are sequentially formed to obtain an amorphous semiconductor solar cell.

【0006】上記方法では、太陽電池に入射した光がこ
の凹凸により散乱をおこし、非晶質半導体層での光閉じ
込め効果を得ることができる。
In the above method, the light incident on the solar cell is scattered by the unevenness, and the light confinement effect in the amorphous semiconductor layer can be obtained.

【0007】しかしながら、上記のように、バインダー
(結合剤)として有機シリケートを用い、微粒子として
バインダーの形成分子成分と同じSiO2のみを用い、バ
インダーおよび微粒子を混合した混合液を作製し、その
混合液を基体上に塗布し硬化させると、硬化を目的とし
た焼成の段階で微粒子がバインダー中に組み込まれるた
め、表面の凹凸は形成されにくくなる。
However, as described above, an organic silicate is used as a binder (binder), and only SiO 2 which is the same as a molecular component forming the binder is used as fine particles, and a mixed liquid in which the binder and the fine particles are mixed is prepared. When the liquid is applied to the substrate and cured, fine particles are incorporated into the binder at the stage of baking for the purpose of curing, so that it is difficult to form irregularities on the surface.

【0008】また、上記のようなバインダーおよび微粒
子を用いると、応力分散剤としての効果が小さいため、
膜厚が0.2μm以上の場合、クラック(亀裂)が発生
するという問題点がある。また、膜厚が0.2μm以下
の場合でも、表面の凹凸の平均的な高低差は200nm
程度となるが、密着強度の高い膜を形成することはでき
ない。
Further, when the above-mentioned binder and fine particles are used, the effect as a stress dispersant is small.
When the film thickness is 0.2 μm or more, there is a problem that cracks (cracks) occur. Even when the film thickness is 0.2 μm or less, the average height difference of the surface irregularities is 200 nm.
However, a film having high adhesion strength cannot be formed.

【0009】一般に、上記凹凸は上述したように光閉じ
込め効果を得ることができるが、特に高低差が100〜
500nm程度の凹凸は、入射光の拡散を高め、太陽電
池のエネルギー変換効率を向上させるという光拡散効果
を奏することができる。ところが、バインダーの形成分
子成分と同じ原料からなる微粒子のみをバインダーと混
合させた混合液を塗布すると、クラックの発生がなくか
つ高低差が100〜500nm程度の凹凸を有するよう
な塗布膜を得ることができないという問題点があった。
Generally, the unevenness can provide the light confinement effect as described above.
Irregularities of about 500 nm can exhibit the light diffusion effect of increasing the diffusion of incident light and improving the energy conversion efficiency of the solar cell. However, when a mixed solution in which only the fine particles made of the same raw material as the forming molecular component of the binder are mixed with the binder is applied, it is possible to obtain a coating film having no crack and having a height difference of about 100 to 500 nm. There was a problem that can not be.

【0010】一方、バインダーとして有機シリケートを
用い、微粒子としてバインダーの形成分子成分と異なる
TiO2、Al23、ZrO2のいずれかのみを用い、その
微粒子とバインダーとを混合させて塗布膜を形成する場
合、応力分散剤としての効果は得られるため、膜厚が1
μm程度までならクラックの発生を抑えることは可能で
ある。しかし、この塗布膜では、膜表面で微粒子が凝集
をおこし、基体との密着強度が低下するという問題点が
あった。
On the other hand, an organic silicate is used as a binder, and only one of TiO 2 , Al 2 O 3 , and ZrO 2 which is different from a molecular component forming the binder is used as fine particles, and the fine particles and the binder are mixed to form a coating film. When formed, since the effect as a stress dispersant is obtained,
It is possible to suppress the generation of cracks up to about μm. However, in this coating film, there is a problem that the fine particles aggregate on the film surface, and the adhesion strength to the substrate is reduced.

【0011】また、このとき、微粒子として粒径が10
0nm以上のものを使用すると、膜を硬化させるための
乾燥、焼成の工程で微粒子の凝集がおこるため、高低差
が数百nm程度の凹凸を得ることができなかったり、凹
凸の大きさが不均一になったりするという問題点があっ
た。
At this time, the fine particles having a particle size of 10
When a particle having a thickness of 0 nm or more is used, fine particles are aggregated in a drying and baking process for curing the film, so that unevenness with a height difference of about several hundred nm cannot be obtained, or the size of the unevenness is not sufficient. There has been a problem of uniformity.

【0012】ところで、微粒子が混入されたコーティン
グ膜を塗布することにより、反射防止や帯電防止といっ
た機能をもたせた膜の研究は、これまでも数多く行われ
てきている。特に、微粒子膜の外表面に微細凹凸を形成
して透明性の板表面の反射率を低減する膜(反射防止
膜)は、古くから研究されており、カメラ、メガネ等の
レンズ、最近ではVDT(Visual Display Terminal)
等の反射防止フィルタ等にも用いられている。
By the way, many studies have been made on a film having a function of preventing reflection and antistatic by applying a coating film mixed with fine particles. In particular, a film (anti-reflection film) for reducing the reflectance of the surface of a transparent plate by forming fine irregularities on the outer surface of a fine particle film has been studied for a long time. (Visual Display Terminal)
It is also used for anti-reflection filters and the like.

【0013】上記反射防止膜を得る方法は、例えば、特
開平3−150501号公報に開示されている。この公
報によれば、2種類以上の無機酸化物より構成されるコ
ンポジットな粒状物であって、2種類以上の酸化物が相
互に入り混じっているか、または一方の無機酸化物が他
方の無機酸化物に包含される粒状構造を形成する、平均
粒径が0.1μm以下の微粒子を用いている。
A method for obtaining the above antireflection film is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-150501. According to this publication, a composite granular material composed of two or more types of inorganic oxides, wherein two or more types of oxides are mixed with each other or one of the inorganic oxides is Fine particles having an average particle size of 0.1 μm or less that form a granular structure included in the object are used.

【0014】上記微粒子は、少なくとも1種類の無機酸
化物が反射防止機能を有し、他の無機酸化物が導電機能
を有している。このような微粒子を主体とする薄膜を基
体上に形成した後、エッチング処理を行い、薄膜表面に
微細な凹凸を形成する。この場合、形成される表面の凹
凸は0.1μm以下とされている。
In the fine particles, at least one kind of inorganic oxide has an antireflection function, and another inorganic oxide has a conductive function. After a thin film mainly composed of such fine particles is formed on a substrate, an etching process is performed to form fine irregularities on the surface of the thin film. In this case, the unevenness of the formed surface is set to 0.1 μm or less.

【0015】上記のように微粒子を主体とする薄膜を基
体上に形成した後、エッチング処理を行うことで、薄膜
表面に微細な凹凸を形成するという方法では、エッチン
グというプロセスが増えるだけでなく、用いられる基体
はエッチングの影響を受けないものに限定されるという
問題点があった。また、この場合、薄膜表面の凹凸が1
00nm以下では防眩膜としての反射防止効果を得るこ
とはできても、十分な光拡散効果は得られないという問
題点があった。
In the method of forming fine irregularities on the surface of a thin film by forming a thin film mainly composed of fine particles on a substrate as described above and then performing etching, not only the number of processes of etching increases, There was a problem that the substrate used was limited to those that were not affected by etching. Further, in this case, the unevenness of the thin film surface is 1
When the thickness is less than 00 nm, there is a problem that even if an antireflection effect as an antiglare film can be obtained, a sufficient light diffusion effect cannot be obtained.

【0016】本発明は、上記問題点に鑑み、十分な光拡
散効果が得られ、基体との密着強度が高く、クラックの
発生のない微粒子塗布膜の提供を目的とする。
In view of the above problems, an object of the present invention is to provide a fine particle coating film which has a sufficient light diffusion effect, has high adhesion strength to a substrate, and does not generate cracks.

【0017】[0017]

【課題を解決するための手段】本発明による課題解決手
段は、複数種類の微粒子とバインダーとを混合させた混
合液を基体上に塗布することにより成膜され、表面に微
粒子による凹凸が形成された微粒子塗布膜において、少
なくとも1種類の微粒子はバインダーの形成分子成分と
同じ原料からなり、他の微粒子はバインダーの形成分子
成分と異なる原料からなるものである。
The object of the present invention is to form a film by applying a mixed solution obtained by mixing a plurality of kinds of fine particles and a binder on a substrate, and forming irregularities due to the fine particles on the surface. In the fine particle coating film, at least one type of fine particles is composed of the same raw material as the molecular component of the binder, and the other fine particles are composed of a raw material different from the molecular component of the binder.

【0018】具体的には、バインダーの形成分子成分の
1つにSiO2が用いられ、微粒子にSiO2が用いられ
る。そして、他の微粒子に、TiO2,Al23,Zr
2,ITO,SnO2またはMgF2のうちのいずれかが
用いられる。このような構成にすれば、十分な光拡散効
果を得ることができる上、基体との密着強度が高く、ク
ラックの発生のない微粒子塗布膜とすることができる。
[0018] to be specific, SiO 2 is used for one of the forming molecule component of the binder, SiO 2 is used in the microparticles. TiO 2 , Al 2 O 3 , Zr
One of O 2 , ITO, SnO 2 and MgF 2 is used. With such a configuration, a sufficient light diffusion effect can be obtained, and a fine particle coating film having high adhesion strength to the substrate and free from cracks can be obtained.

【0019】また、この場合、凹凸の高低差が100〜
500nmであったり、微粒子の粒径が10〜90nm
であったり、バインダーと全ての微粒子との質量比が
1:1〜1:10であったりすることが光拡散効果を得
る上で望ましい。
Further, in this case, the height difference between the irregularities is 100 to 100.
500 nm or fine particles having a particle size of 10 to 90 nm
Or a mass ratio of the binder to all the fine particles of 1: 1 to 1:10 is desirable for obtaining the light diffusion effect.

【0020】また、上記微粒子塗布膜を入射光を閉じ込
めるための光拡散層として、特に、ガラス基体やプラス
チック基体等の透光性基体と透明導電膜との間に形成し
て、太陽電池のような光電変換素子に適用してもよい。
あるいは、微粒子塗布膜を透光性基体に塗布した光拡散
体に適用してもよい。
Further, the fine particle coating film is formed as a light diffusion layer for confining incident light, in particular, between a transparent substrate such as a glass substrate and a plastic substrate and a transparent conductive film, and is used as in a solar cell. It may be applied to a simple photoelectric conversion element.
Or you may apply to the light diffuser which apply | coated the fine particle application film to the translucent substrate.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0022】図1は、本発明の一実施形態にかかる微粒
子塗布膜が適用された薄膜太陽電池の概略断面を示す図
である。この薄膜太陽電池は、ガラス基体1、微粒子塗
布膜2、透明導電膜3、非晶質半導体層4であるp層
5、i層6、n層7、裏面電極8および金属薄膜裏面電
極9が積層されて構成されている。
FIG. 1 is a diagram showing a schematic cross section of a thin film solar cell to which a fine particle coating film according to one embodiment of the present invention is applied. In this thin-film solar cell, a glass substrate 1, a fine particle coating film 2, a transparent conductive film 3, an amorphous semiconductor layer 4, a p-layer 5, an i-layer 6, an n-layer 7, a back electrode 8, and a metal thin-film back electrode 9 are formed. It is configured to be laminated.

【0023】微粒子塗布膜2は、複数種類(図1では2
種類)の微粒子A,BとバインダーCとを混合させた混
合液をガラス基体1上に塗布されて形成されたものであ
る。バインダーCの形成分子成分の1つにはシリコンの
アルコキシドを原料とするSiO2(酸化ケイ素)が用い
られ、複数種類の微粒子のうち1種類の微粒子Aにバイ
ンダーCの形成分子成分と同じ原料であるSiO2が用い
られている。このように、微粒子AにSiO2を用いるこ
とにより、低コストでかつ比較的低温での薄膜形成が可
能となる。ここで、バインダーの組成構成を表1に示
す。
The fine particle coating film 2 has a plurality of types (2 in FIG. 1).
The mixture is formed by applying a mixed solution obtained by mixing fine particles A and B of the above type) and a binder C onto the glass substrate 1. SiO 2 (silicon oxide) using silicon alkoxide as a raw material is used as one of the molecular components forming the binder C, and one type of fine particles A among a plurality of types of fine particles is formed of the same raw material as the molecular component forming the binder C. Certain SiO 2 is used. Thus, by using SiO 2 for the fine particles A, it is possible to form a thin film at a low cost and at a relatively low temperature. Here, the composition of the binder is shown in Table 1.

【0024】[0024]

【表1】 また、微粒子塗布膜2では、他の微粒子BにTiO2(酸
化チタン)が用いられている。なお、他の微粒子Bには
TiO2の代わりに、Al23(酸化アルミニウム)、Zr
2(酸化ジルコニウム)、ITO(酸化インジウム
錫)、SnO2(酸化錫)またはMgF2(フッ化マグネシ
ウム)等のうちのいずれか1つあるいは複数種類が用い
られてもよい。上記他の微粒子Bを用いることにより、
透光性の高い微粒子塗布膜2を得ることができる。
[Table 1] In the fine particle coating film 2, TiO 2 (titanium oxide) is used for the other fine particles B. The other fine particles B are made of Al 2 O 3 (aluminum oxide), Zr instead of TiO 2.
Any one or more of O 2 (zirconium oxide), ITO (indium tin oxide), SnO 2 (tin oxide), MgF 2 (magnesium fluoride) and the like may be used. By using the other fine particles B,
The finely-coated fine particle coating film 2 can be obtained.

【0025】このように、微粒子A,BをバインダーC
に混合させることにより微粒子塗布膜2の表面に微細な
凹凸が形成される。この凹凸によって、例えば、太陽電
池に入射した光は散乱をおこし、微粒子塗布膜2は、い
わゆる光拡散層として機能する。そのため、非晶質半導
体層4での光閉じ込め効果を得ることができる。さら
に、凹凸の高低差は100〜500nmが好ましく、こ
のような凹凸を形成すれば、光拡散効果が得られ、太陽
電池のエネルギー変換効率を向上させることができる。
また、この凹凸によって、ガラス基体1との密着強度が
高く、クラックの発生のない微粒子塗布膜2を形成する
ことができる。
As described above, the fine particles A and B are combined with the binder C
, Fine irregularities are formed on the surface of the fine particle coating film 2. Due to the unevenness, for example, light incident on the solar cell is scattered, and the fine particle coating film 2 functions as a so-called light diffusion layer. Therefore, a light confinement effect in the amorphous semiconductor layer 4 can be obtained. Further, the height difference of the unevenness is preferably 100 to 500 nm. If such unevenness is formed, a light diffusion effect can be obtained, and the energy conversion efficiency of the solar cell can be improved.
Further, due to the unevenness, the fine particle coating film 2 having high adhesion strength to the glass substrate 1 and free from cracks can be formed.

【0026】なお、微粒子Aの粒径は10〜90nmが
より好ましい。これは、粒径が10nmより小さい、あ
るいは90nmより大きいものを用いると、微粒子Aの
凝集により凹凸の高低差が500nmより大きくなっ
て、全体的に不均一になるためである。
The particle size of the fine particles A is more preferably from 10 to 90 nm. This is because, if a particle having a particle diameter smaller than 10 nm or larger than 90 nm is used, the height difference of the irregularities becomes larger than 500 nm due to the aggregation of the fine particles A, and the whole becomes non-uniform.

【0027】次に、微粒子塗布膜2の作製方法について
説明する。ここでは、まず、微粒子A,Bを分散媒中に
分散させて微粒子分散液を作製する。この場合、2種類
の微粒子A,Bをそれぞれの分散液中に分散させ作製し
た後、それぞれの分散液を混合してもよいし、1つの分
散液中に2種類の微粒子A,Bを分散させてもよい。
Next, a method for forming the fine particle coating film 2 will be described. Here, first, fine particles A and B are dispersed in a dispersion medium to prepare a fine particle dispersion. In this case, after preparing two kinds of fine particles A and B in each dispersion liquid, the respective dispersion liquids may be mixed, or two kinds of fine particles A and B may be dispersed in one dispersion liquid. May be.

【0028】ここで、分散に必要な溶媒としては、水、
アルコール類またはエタノール類等の有機溶媒を使用す
る。微粒子A,Bを分散液中に分散させる方法として
は、ボールミル、ビーズミル、超音波振動またはスター
ラー等を用いる。
Here, the solvent necessary for dispersion is water,
Use organic solvents such as alcohols or ethanols. As a method of dispersing the fine particles A and B in the dispersion, a ball mill, a bead mill, ultrasonic vibration, a stirrer, or the like is used.

【0029】また、分散液中で微粒子A,Bが凝集して
2次粒子の粒径が大きくなったり、巨大化して沈殿した
りするのを防ぐために、カップリング剤を使用してもよ
い。カップリング剤としては、シラン系、チタン系、ア
ルミニウム系、ジルコニウム系またはマグネシウム系等
を用いることができる。あるいは、界面活性剤等を使用
してもよい。
Further, a coupling agent may be used to prevent the fine particles A and B from aggregating in the dispersion and increasing the particle diameter of the secondary particles, or preventing the particles from becoming large and sedimenting. As the coupling agent, a silane-based, titanium-based, aluminum-based, zirconium-based, or magnesium-based coupling agent can be used. Alternatively, a surfactant or the like may be used.

【0030】次に、このようにして作製したSiO2の微
粒子分散液(微粒子の平均粒径20nm、固形分10質
量%、分散媒エチルアルコール)、およびTiO2の微粒
子分散液(微粒子の平均粒径15nm、固形分10質量
%、分散媒エチルアルコール)とバインダーCとを混合
させる。
Next, the fine particle dispersion of SiO 2 (average particle diameter of fine particles: 20 nm, solid content: 10 mass%, dispersion medium ethyl alcohol) and the fine particle dispersion of TiO 2 (average particle of fine particles) (A diameter of 15 nm, a solid content of 10% by mass, a dispersion medium ethyl alcohol) and a binder C are mixed.

【0031】混合液中のそれぞれの微粒子分散液とバイ
ンダーCとの質量比は、SiO2の微粒子分散液:TiO2
の微粒子分散液:バインダーC=1:1:2である。す
なわち、混合液中の2種類の微粒子A,Bの合計質量と
バインダーCの質量との比は、微粒子分散液中の固形
分:バインダーC=1:1の割合で一定とされている。
なお、微粒子A,Bの合計質量とバインダーCの質量と
の比としては、1:1〜10:1程度の割合であること
がより望ましい。なぜなら、微粒子分散液中の固形分の
質量比が1:1より小さいと、塗布膜表面の凹凸が形成
されにくく、10:1より大きいとガラス基体1に混合
液が密着しにくくなるからである。
The mass ratio of each fine particle dispersion in the mixed solution to the binder C is as follows: the fine particle dispersion of SiO 2 : TiO 2
Fine particle dispersion: Binder C = 1: 1: 2. That is, the ratio between the total mass of the two types of fine particles A and B in the mixed solution and the mass of the binder C is constant at a ratio of solid content in the fine particle dispersion: binder C = 1: 1.
The ratio between the total mass of the fine particles A and B and the mass of the binder C is more preferably about 1: 1 to 10: 1. This is because if the mass ratio of the solid content in the fine particle dispersion is less than 1: 1, unevenness on the surface of the coating film is not easily formed, and if the mass ratio is more than 10: 1, the mixed solution does not easily adhere to the glass substrate 1. .

【0032】なお、2種類の微粒子A,Bとバインダー
Cとを混合させる場合、微粒子A,Bに対してそれぞれ
の分散液を作製して混合させる代わりに、2種類の微粒
子A,Bを直接バインダーC中に分散させるという方法
でもよい。混合させた後は、スターラー等を使用して撹
拌すると微粒子A,Bが混合液全体に均一に分散する。
When the two types of fine particles A and B are mixed with the binder C, the two types of fine particles A and B are directly mixed instead of preparing and mixing the respective dispersions with the fine particles A and B. A method of dispersing in the binder C may be used. After mixing, the particles A and B are uniformly dispersed throughout the mixture by stirring using a stirrer or the like.

【0033】次いで、混合液をガラス基体1の上に公知
の方法、例えばスピンコート法、ディップコート法、ス
プレーコート法、ロールコート法、スクリーン印刷法、
カーテンコート法またはワイヤーバーコート法等で塗布
する。
Next, the mixed solution is applied onto the glass substrate 1 by a known method, for example, a spin coating method, a dip coating method, a spray coating method, a roll coating method, a screen printing method,
It is applied by a curtain coating method or a wire bar coating method.

【0034】なお、ガラス基体1の形状は、平面、曲面
を問わず、どのような形状でもよい。また、基体の材料
としては、ガラスの他に、透光性を有するフィルム、金
属等を使用することができる。
The shape of the glass substrate 1 may be any shape regardless of whether it is flat or curved. In addition, as a material of the base, a film having transparency, metal, or the like can be used in addition to glass.

【0035】ガラス基体1上に塗布を行った後、乾燥、
硬化を行う。この方法としては加熱法を用いる。具体的
には、混合液をガラス基体1上に室温、大気中で、例え
ばスピンコート法により1000rpmの回転速度で9
0秒間かけて塗布し、その後、大気中で100℃、15
分間の加熱後さらに昇温し、300℃、20分間の加熱
を行う。なお、加熱雰囲気は、大気中の代わりに、不活
性雰囲気中(例えば、N2雰囲気中)、還元雰囲気中
(例えば、H2を含有するN2雰囲気中)または真空中で
もあってもよい。
After coating on the glass substrate 1, drying,
Perform curing. As this method, a heating method is used. Specifically, the mixed solution is applied onto the glass substrate 1 at room temperature and in the air at a rotation speed of 1000 rpm by a spin coating method, for example.
Coating for 0 seconds, then 100 ° C, 15
After heating for one minute, the temperature is further raised, and heating is performed at 300 ° C. for 20 minutes. The heating atmosphere may be an inert atmosphere (for example, an N 2 atmosphere), a reducing atmosphere (for example, an N 2 atmosphere containing H 2 ), or a vacuum, instead of the air.

【0036】得られた微粒子塗布膜2の特性は、膜厚約
0.5μm、可視光領域での光透過率85〜90%、ヘ
ーズ率12.5%であった。ここで、ヘーズ率とは曇り
度のことであり、直進透過光に対する拡散透過光の割合
を示す値(単位:%)である。
The characteristics of the obtained fine particle coated film 2 were about 0.5 μm in thickness, 85 to 90% in light transmittance in the visible light region, and 12.5% in haze. Here, the haze ratio is a degree of haze, and is a value (unit:%) indicating a ratio of diffuse transmitted light to straight transmitted light.

【0037】そして、微粒子塗布膜2の表面形状をST
M(Scanning Tunneling Microscope)を用いて測定す
ると、微粒子塗布膜2の凹凸の高低差が約100〜50
0nmの透明な膜を観察することができた。図2に、微
粒子塗布膜2の表面の状態を示す。
Then, the surface shape of the fine particle coating film 2 is changed to ST.
When measured using an M (Scanning Tunneling Microscope), the height difference between the irregularities of the fine particle coating film 2 is about 100 to 50.
A 0 nm transparent film could be observed. FIG. 2 shows a state of the surface of the fine particle coating film 2.

【0038】図3は、SiO2およびTiO2の合計質量に
対するTiO2の質量の割合と、微粒子塗布膜2表面に形
成された凹凸の高低差との関係を示す図である。ここ
で、膜厚は約600nmとしている。
[0038] FIG. 3 is a diagram showing the ratio of the mass TiO 2 to the total mass of SiO 2 and TiO 2, the relationship between the height difference of the irregularities formed on the fine particle coating film 2 surface. Here, the film thickness is about 600 nm.

【0039】実験によると、TiO2の質量比が小さくな
るほど、すなわち、SiO2の質量比が大きくなるほど、
ガラス基体1と微粒子塗布膜2との密着性が向上した。
また、SiO2の質量比が大きくなるほど、凹凸の高低差
は小さくなり、微粒子がSiO2のみとなった場合、微粒
子塗布膜2にクラックの発生が観察された。また、逆
に、TiO2の質量比が大きくなるほど、凹凸の形状が大
きくなる傾向にあることが観察され、微粒子がTiO2
みとなった場合、微粒子塗布膜2のガラス基体1からの
剥離が観察された。
According to the experiment, as the mass ratio of TiO 2 becomes smaller, that is, as the mass ratio of SiO 2 becomes larger,
The adhesion between the glass substrate 1 and the fine particle coating film 2 was improved.
Further, as the mass ratio of SiO 2 is large, the height difference of the unevenness is reduced, if the fine particles becomes only SiO 2, generation of crack is observed in the fine particle coating film 2. Conversely, it is observed that as the mass ratio of TiO 2 increases, the shape of the irregularities tends to increase. When the fine particles are only TiO 2 , the fine particle coating film 2 is not separated from the glass substrate 1. Was observed.

【0040】なお、ガラス基体1に代えてプラスチック
基体を使用して、上述したような方法で成膜を行ったと
ころ、表面の凹凸の高低差が100〜500nmでヘー
ズ率13.1%となる微粒子塗布膜を得た。この場合の
膜厚は約600nmであった。このように、プラスチッ
ク基体に形成された微粒子塗布膜でも光拡散層として使
用することが可能となる。
When a film was formed by the above-described method using a plastic substrate instead of the glass substrate 1, the haze ratio was 13.1% when the height difference between the surface irregularities was 100 to 500 nm. A fine particle coating film was obtained. The film thickness in this case was about 600 nm. Thus, even a fine particle coating film formed on a plastic substrate can be used as a light diffusion layer.

【0041】次に、図1に示した微粒子塗布膜2が適用
された薄膜太陽電池の作製手順を説明する。ガラス基体
1上に、凹凸を有する微粒子塗布膜2を作製し、次い
で、例えば、スパッタリング法により透明導電膜3を形
成する。上記スパッタリング法に代えて蒸着法やCVD
法を用いてもよい。また、透明導電膜3の原料として
は、ITO、SnO2またはZnO(酸化亜鉛)等を用い
ることができる。
Next, a procedure for manufacturing a thin-film solar cell to which the fine particle coating film 2 shown in FIG. 1 is applied will be described. A fine particle coating film 2 having irregularities is formed on a glass substrate 1, and then a transparent conductive film 3 is formed by, for example, a sputtering method. Evaporation method or CVD instead of the above sputtering method
Method may be used. In addition, as a raw material of the transparent conductive film 3, ITO, SnO 2, ZnO (zinc oxide), or the like can be used.

【0042】その後、プラズマCVD装置等で非晶質半
導体層4のp層5、i層6、n層7を形成する。この場
合、p層5は150nm、i層6は500nm、n層7
は350nmの膜厚に形成する。各層の形成条件の一例
を表2に示す。
Thereafter, the p-layer 5, the i-layer 6, and the n-layer 7 of the amorphous semiconductor layer 4 are formed by a plasma CVD apparatus or the like. In this case, the p layer 5 is 150 nm, the i layer 6 is 500 nm, and the n layer 7
Is formed to a thickness of 350 nm. Table 2 shows an example of the conditions for forming each layer.

【0043】[0043]

【表2】 次いで、裏面電極8としてスパッタリング法によりZn
Oを膜厚約50nm、金属薄膜裏面電極9としてAg
(銀)を膜厚約500nmで製膜した。
[Table 2] Next, Zn was formed as the back electrode 8 by sputtering.
O is about 50 nm in film thickness, and Ag
(Silver) was formed to a thickness of about 500 nm.

【0044】以上のようにして、薄膜太陽電池を形成
し、面積1cm2、AM1.5における特性を測定し
た。具体的数値を示すと、短絡電流Isc=16.8mA
/cm2、開放電圧Voc=0.94V、フィル・ファク
ターF.F=0.75、出力電圧Pmax=11.8mW
/cm2、光電変換効率η=11.8%が得られた。
As described above, a thin-film solar cell was formed, and characteristics at an area of 1 cm 2 and AM 1.5 were measured. Specifically, the short-circuit current Isc = 16.8 mA
/ Cm 2 , open circuit voltage Voc = 0.94 V, fill factor F.F. F = 0.75, output voltage Pmax = 11.8 mW
/ Cm 2 and photoelectric conversion efficiency η = 11.8%.

【0045】短絡電流は、表面の凹凸の形成を行わなか
った薄膜太陽電池と比較して、30%上昇していた。ま
た、凹凸の高低差が100〜500nmの薄膜太陽電池
においては、短絡電流が16.2〜16.98mA/c
2という値が得られ、変換効率を向上することができ
た。また、同じ条件で薄膜太陽電池を100枚作製して
みたところ、97%という高い歩留まりを得ることがで
きた。
The short-circuit current was increased by 30% as compared with a thin-film solar cell in which surface irregularities were not formed. In a thin-film solar cell having a height difference of 100 to 500 nm, the short-circuit current is 16.2 to 16.98 mA / c.
m 2 was obtained, and the conversion efficiency was improved. When 100 thin film solar cells were manufactured under the same conditions, a high yield of 97% could be obtained.

【0046】また、これらの薄膜太陽電池と比較するた
めに、バインダーと2種類の微粒子の合計質量比とを一
定にし、SiO2とTiO2との質量比を変えて作製した微
粒子塗布膜を用いた薄膜太陽電池を作製した。そして、
面積1cm2、AM1.5における特性を測定した。
For comparison with these thin-film solar cells, a fine particle coating film produced by changing the mass ratio of SiO 2 and TiO 2 while keeping the total mass ratio of the binder and the two kinds of fine particles constant was used. A thin-film solar cell was manufactured. And
Characteristics in an area of 1 cm 2 and AM 1.5 were measured.

【0047】SiO2とTiO2との質量比が50%の場
合、微粒子塗布膜2を形成しなかった場合と比較して、
短絡電流の値は30%上昇した。しかし、TiO2の割合
が20%の場合、短絡電流の値は5%程度しか上昇しな
かった。これは、微粒子塗布膜2の凹凸の高低差が50
nm程度と小さいため、光拡散効果が得られなかったた
めである。そして、微粒子がSiO2のみになると、微粒
子塗布膜2にクラックが発生し、可視光領域におけるガ
ラス基体1の透過率が50〜60%程度に低下し、短絡
電流の値は25%低下した。
When the mass ratio between SiO 2 and TiO 2 is 50%, the fine particle coating film 2 is not formed,
The value of the short circuit current increased by 30%. However, when the proportion of TiO 2 was 20%, the value of the short-circuit current increased only about 5%. This is because the height difference of the unevenness of the fine particle coating film 2 is 50
This is because the light diffusion effect could not be obtained because it was as small as about nm. When the fine particles were only SiO 2 , cracks occurred in the fine particle coating film 2, the transmittance of the glass substrate 1 in the visible light region was reduced to about 50 to 60%, and the value of the short-circuit current was reduced by 25%.

【0048】逆に、TiO2の質量の割合が80%の場
合、凹凸の高低差が600nm程度と大きくなり、光拡
散効果はあるが同時にリークの原因ともなり、開放電圧
が17〜20%程度減少した。そして、同じ条件で薄膜
太陽電池を100枚作製したところ、歩留まりも63%
しか得られなかった。
[0048] Conversely, if the proportion of TiO 2 mass of 80%, the height difference of the unevenness becomes large as about 600 nm, the light diffusion effect is but also cause a leak at the same time, the open circuit voltage of about 17 to 20% Diminished. When 100 thin-film solar cells were manufactured under the same conditions, the yield was 63%.
I could only get it.

【0049】なお、本発明は、上記実施形態に限定され
るものではなく、本発明の範囲内で上記実施形態に多く
の修正および変更を加え得ることができる。例えば、上
記の実施形態では微粒子塗布膜を薄膜太陽電池に適用さ
せて説明したが、薄膜太陽電池に限らず、光センサーや
表示素子等に適用することができる。
The present invention is not limited to the above embodiment, and many modifications and changes can be made to the above embodiment within the scope of the present invention. For example, in the above embodiment, the description has been made by applying the fine particle coating film to a thin film solar cell.

【0050】また、上記薄膜太陽電池に適用された微粒
子塗布膜2の形成位置は上記に限らず、例えば図4に示
すように、非晶質半導体層4と裏面電極8との間に形成
してもよい。この構成においても上記薄膜太陽電池と同
様の光拡散効果を得ることができる。なお、図中、10
は保護層である。
The formation position of the fine particle coating film 2 applied to the above-mentioned thin film solar cell is not limited to the above, and is formed between the amorphous semiconductor layer 4 and the back electrode 8 as shown in FIG. You may. Also in this configuration, a light diffusion effect similar to that of the above-described thin film solar cell can be obtained. In the figure, 10
Is a protective layer.

【0051】また、微粒子塗布膜2をガラス基体やプラ
スチック基体等の透光性基体1上に塗布することによ
り、図5に示すような光拡散体として用いることもでき
る。これは、例えばブラウン管の表面、カメラ、メガネ
のレンズまたはVDTの反射防止フィルタ等に使用する
ことができる。
The fine particle coating film 2 can be used as a light diffuser as shown in FIG. 5 by coating it on a light transmitting substrate 1 such as a glass substrate or a plastic substrate. This can be used, for example, for the surface of a cathode ray tube, a lens of a camera or glasses, or an antireflection filter of a VDT.

【0052】また、バインダーには、その形成分子成分
の1つにTiO2、Al23、ZrO2、ITO、SnO2
たはMgF2等が用いられてもよい。
In the binder, TiO 2 , Al 2 O 3 , ZrO 2 , ITO, SnO 2 or MgF 2 may be used as one of the molecular components forming the binder.

【0053】[0053]

【発明の効果】以上のように、本発明によると、複数種
類の微粒子とバインダーとを混合させた混合液を基体上
に塗布して微粒子塗布膜を形成する場合に、少なくとも
1種類の微粒子にバインダーの形成分子成分と同じ原料
を用い、他の微粒子にバインダーの形成分子成分と異な
る原料を用いるので、表面に光拡散効果のある凹凸が形
成され、その凹凸により基体との密着強度が高く、クラ
ックの発生のない微粒子塗布膜を提供することができ
る。
As described above, according to the present invention, when a mixed solution in which a plurality of types of fine particles and a binder are mixed is coated on a substrate to form a fine particle coating film, at least one type of fine particles is formed. Since the same raw material as the molecular component of the binder is used, and the raw material different from the molecular component of the binder is used for the other fine particles, irregularities having a light diffusion effect are formed on the surface, and the adhesiveness to the substrate is high due to the irregularities. A fine particle coating film free from cracks can be provided.

【0054】また、バインダーの形成分子成分の1つに
SiO2を用い、微粒子に同じSiO2を用いた微粒子塗布
膜とすることにより、低コストでかつ比較的低温での薄
膜形成が可能となる。また、他の微粒子に、TiO2、A
l23、ZrO2、ITO、SnO2、MgF2のうちいずれ
かを使用することにより、透光性が高い微粒子塗布膜を
得ることができ、透光性の必要な条件下で使用すること
ができる。
Further, by using SiO 2 as one of the molecular components of the binder and forming a fine particle coating film using the same SiO 2 as the fine particles, a thin film can be formed at low cost and at a relatively low temperature. . In addition, TiO 2 , A
l 2 O 3, ZrO 2, ITO, by using one of SnO 2, MgF 2, can be translucent to obtain a high fine particle coating film, using the required conditions of the translucent be able to.

【0055】また、凹凸の高低差が100〜500nm
となる微粒子塗布膜とすることにより、十分な光拡散効
果を得ることができる。
Further, the height difference between the irregularities is 100 to 500 nm.
A sufficient light diffusion effect can be obtained by forming a fine particle coating film as follows.

【0056】また、微粒子に10〜90nmの粒径のも
のを用いたり、微粒子とバインダーとの質量比を1:1
〜10:1にすることにより、高低差が100〜500
nmでかつ形状の小さい凹凸を有する微粒子塗布膜を提
供することができる。
Further, fine particles having a particle size of 10 to 90 nm may be used, or the mass ratio of the fine particles to the binder may be 1: 1.
By setting the ratio to 〜1010: 1, the height difference is 100〜500.
It is possible to provide a fine particle coating film having small irregularities in nm.

【0057】また、上記の微粒子塗布膜を、例えば、太
陽電池等の光電変換素子に適用すれば、入射光を閉じ込
めるための光拡散層として十分な光拡散効果を得ること
でき、歩留まりのよい光電変換素子等を製造できる。特
に、微粒子塗布膜をガラス、プラスチック基体等の透光
性基体と透明導電膜との間に形成すると、光電変換素子
の変換効率を向上させることができる。
When the above-mentioned fine particle coating film is applied to a photoelectric conversion element such as a solar cell, for example, a sufficient light diffusion effect can be obtained as a light diffusion layer for confining incident light, and a photoelectric conversion with a good yield can be obtained. A conversion element or the like can be manufactured. In particular, when a fine particle coating film is formed between a transparent substrate and a light-transmitting substrate such as a glass or plastic substrate, the conversion efficiency of the photoelectric conversion element can be improved.

【0058】また、上記の微粒子塗布膜を透光性基体に
塗布することにより、光拡散効果の大きい光拡散体を提
供することができる。
Further, a light diffuser having a large light diffusion effect can be provided by applying the above-mentioned fine particle coating film to a light transmitting substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る微粒子塗布膜が適用
される薄膜太陽電池の概略断面を示す図
FIG. 1 is a diagram showing a schematic cross section of a thin film solar cell to which a fine particle coating film according to an embodiment of the present invention is applied.

【図2】微粒子塗布膜の表面の状態を示す図FIG. 2 is a diagram showing a state of a surface of a fine particle coating film.

【図3】SiO2およびTiO2の合計質量に対するTiO2
の質量の割合と、微粒子塗布膜表面に形成された凹凸の
高低差との関係を示す図
FIG. 3: TiO 2 with respect to the total mass of SiO 2 and TiO 2
Figure showing the relationship between the mass ratio of and the height difference of the irregularities formed on the surface of the fine particle coating film.

【図4】他の実施形態に係る薄膜太陽電池の概略断面を
示す図
FIG. 4 is a diagram showing a schematic cross section of a thin-film solar cell according to another embodiment.

【図5】本発明の微粒子塗布膜が透光性基体上に塗布さ
れた光拡散体を示す図
FIG. 5 is a view showing a light diffuser in which a fine particle coating film of the present invention is coated on a light transmitting substrate.

【符号の説明】[Explanation of symbols]

1 ガラス基体 2 微粒子塗布膜 3 透明導電膜 4 非晶質半導体層 A,B 微粒子 C バインダー DESCRIPTION OF SYMBOLS 1 Glass base 2 Fine particle coating film 3 Transparent conductive film 4 Amorphous semiconductor layer A, B Fine particle C Binder

フロントページの続き (51)Int.Cl.6 識別記号 FI G02B 5/02 G09F 9/00 318A G09F 9/00 318 G02B 1/10 A Continued on the front page (51) Int.Cl. 6 Identification code FI G02B 5/02 G09F 9/00 318A G09F 9/00 318 G02B 1/10 A

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 複数種類の微粒子とバインダーとを混合
させた混合液を基体上に塗布することにより成膜され、
表面に前記微粒子による凹凸が形成された微粒子塗布膜
において、少なくとも1種類の微粒子は前記バインダー
の形成分子成分と同じ原料からなり、他の微粒子は前記
バインダーの形成分子成分と異なる原料からなることを
特徴とする微粒子塗布膜。
1. A film is formed by applying a mixture of a plurality of types of fine particles and a binder to a substrate,
In the fine particle coating film on the surface of which the irregularities are formed by the fine particles, at least one type of fine particles is made of the same raw material as the molecular component of the binder, and the other fine particles are made of a raw material different from the molecular component of the binder. Characterized fine particle coating film.
【請求項2】 前記バインダーの形成分子成分の1つに
SiO2が用いられ、前記微粒子にSiO2が用いられたこ
とを特徴とする請求項1記載の微粒子塗布膜。
Wherein SiO 2 is used for one of the forming molecule component of the binder, fine particle coating film according to claim 1, wherein the SiO 2 is used in the fine particles.
【請求項3】 前記他の微粒子に、TiO2,Al23
ZrO2,ITO,SnO2またはMgF2のうちのいずれか
が用いられたことを特徴とする請求項2記載の微粒子塗
布膜。
3. The method according to claim 1, wherein the other fine particles include TiO 2 , Al 2 O 3 ,
3. The fine particle coating film according to claim 2, wherein any one of ZrO 2 , ITO, SnO 2 and MgF 2 is used.
【請求項4】 前記凹凸の高低差が100〜500nm
であることを特徴とする請求項1ないし3のいずれかに
記載の微粒子塗布膜。
4. The height difference between the irregularities is 100 to 500 nm.
The fine particle coating film according to any one of claims 1 to 3, wherein
【請求項5】 前記微粒子の粒径が10〜90nmであ
ることを特徴とする請求項1ないし4のいずれかに記載
の微粒子塗布膜。
5. The fine particle coating film according to claim 1, wherein the fine particles have a particle size of 10 to 90 nm.
【請求項6】 前記バインダーと全ての微粒子との質量
比が1:1〜1:10であることを特徴とする請求項1
ないし5のいずれかに記載の微粒子塗布膜。
6. The mass ratio of the binder to all fine particles is from 1: 1 to 1:10.
6. The fine particle-coated film according to any one of items 1 to 5.
【請求項7】 請求項1ないし6のいずれかに記載の微
粒子塗布膜が入射光を閉じ込めるための光拡散層として
設けられたことを特徴とする光電変換素子。
7. A photoelectric conversion element, wherein the fine particle coating film according to claim 1 is provided as a light diffusion layer for confining incident light.
【請求項8】 前記微粒子塗布膜が透光性基体と透明導
電膜との間に形成されたことを特徴とする請求項7記載
の光電変換素子。
8. The photoelectric conversion device according to claim 7, wherein said fine particle coating film is formed between a light transmitting substrate and a transparent conductive film.
【請求項9】 請求項1ないし6のいずれかに記載の微
粒子塗布膜が透光性基体に塗布されて形成されたことを
特徴とする光拡散体。
9. A light diffuser formed by applying the fine particle coating film according to claim 1 to a light transmitting substrate.
JP15016797A 1997-05-23 1997-05-23 Fine particle coating film in thin film solar cell Expired - Fee Related JP3416024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15016797A JP3416024B2 (en) 1997-05-23 1997-05-23 Fine particle coating film in thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15016797A JP3416024B2 (en) 1997-05-23 1997-05-23 Fine particle coating film in thin film solar cell

Publications (2)

Publication Number Publication Date
JPH10326903A true JPH10326903A (en) 1998-12-08
JP3416024B2 JP3416024B2 (en) 2003-06-16

Family

ID=15490977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15016797A Expired - Fee Related JP3416024B2 (en) 1997-05-23 1997-05-23 Fine particle coating film in thin film solar cell

Country Status (1)

Country Link
JP (1) JP3416024B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062113A3 (en) * 1999-04-09 2001-02-01 Multioptical Kft Apparatus for improvement of the optical qualities of magnifying instruments
WO2001042156A1 (en) * 1999-12-13 2001-06-14 Nippon Sheet Glass Co., Ltd. Low-reflection film and solar cell panel
US6384318B1 (en) 1999-05-31 2002-05-07 Kaneka Corporation Solar battery module
JP2002214411A (en) * 2001-01-19 2002-07-31 Fujitsu Ltd Optical sheet, illuminator and optical member
JP2002529937A (en) * 1998-11-06 2002-09-10 パシフィック ソーラー ピー ティ ワイ リミテッド Glass texturing with SiO2 film
US6706960B2 (en) 2001-05-17 2004-03-16 Canon Kabushiki Kaisha Coating material and photovoltaic element
JP2005079405A (en) * 2003-09-01 2005-03-24 Nippon Steel Corp Stainless steel foil coated with silica-based inorganic polymer film and its manufacturing method
WO2006046397A1 (en) * 2004-10-28 2006-05-04 Kaneka Corporation Substrate for thin film photoelectric converter and integrated thin film photoelectric converter employing it
JP2006128478A (en) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd Photoelectric converter
JP2006319250A (en) * 2005-05-16 2006-11-24 Keiwa Inc Back sheet for solar cell module and solar cell module using the same
WO2007040065A1 (en) * 2005-09-30 2007-04-12 Sanyo Electric Co., Ltd. Solar battery and solar battery module
JP2008506249A (en) * 2004-07-07 2008-02-28 サン−ゴバン グラス フランス Solar cell and solar module
WO2008041489A1 (en) * 2006-09-29 2008-04-10 Sanyo Electric Co., Ltd. Solar cell module
WO2008146896A1 (en) * 2007-05-23 2008-12-04 Teijin Dupont Films Japan Limited Multilayer film for solar cell base
WO2009142156A1 (en) * 2008-05-23 2009-11-26 株式会社カネカ Substrate for thin-film photoelectric conversion device, thin-film photoelectric conversion including the same, and method for producing substrate for thin-film photoelectric conversion device
JP2010087479A (en) * 2008-08-08 2010-04-15 Mitsubishi Materials Corp Composite film for substraight type solar cell and method of manufacturing the same
WO2010074477A2 (en) * 2008-12-26 2010-07-01 주성엔지니어링(주) Thin-film solar cell and method for manufacturing same
KR100972115B1 (en) * 2009-03-04 2010-07-23 주성엔지니어링(주) Flexible thin film type solar cell and method for manufacturing the same
KR100973676B1 (en) * 2008-12-26 2010-08-03 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same
KR100977726B1 (en) * 2008-12-26 2010-08-24 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same
JP2010186845A (en) * 2009-02-12 2010-08-26 Sumitomo Bakelite Co Ltd Resin composition, wavelength conversion composition, wavelength conversion layer, and photovoltaic device including the same
CN101826563A (en) * 2009-03-03 2010-09-08 E.I.内穆尔杜邦公司 Packaging material and solar battery assembly made of same
WO2010086135A3 (en) * 2009-01-29 2010-10-14 Schott Ag Thin film solar cell
WO2011010572A1 (en) * 2009-07-22 2011-01-27 東レエンジニアリング株式会社 Substrate provided with thin film, and solar cell using the substrate
WO2011010573A1 (en) * 2009-07-22 2011-01-27 東レエンジニアリング株式会社 Substrate provided with thin film, and solar cell using the substrate
KR101032433B1 (en) * 2010-06-14 2011-05-03 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same
JP2011142318A (en) * 2009-12-11 2011-07-21 Konica Minolta Holdings Inc Organic photoelectric conversion element and method of manufacturing the same
US8129611B2 (en) 2004-12-10 2012-03-06 Mitsubishi Heavy Industries, Ltd. Light-scattering film and optical device using the same
CN102646726A (en) * 2011-02-22 2012-08-22 三菱综合材料株式会社 Transparent substrate with composite film for solar battery and manufacturing method thereof
KR101241332B1 (en) 2011-06-08 2013-03-11 주성엔지니어링(주) A Solar Cell and A Manufacturing Method thereof
JP2013101349A (en) * 2000-05-31 2013-05-23 Nitto Denko Corp Particle dispersion system resin substrate, liquid crystal display device, electroluminescence device, and solar cell
KR101273059B1 (en) * 2011-09-20 2013-06-10 엘지이노텍 주식회사 Solar cell and method of fabricating the same
KR101281005B1 (en) * 2011-07-20 2013-07-08 (주)에스티아이 Thin film solar cell device
JP2013175506A (en) * 2012-02-23 2013-09-05 Shimane Univ Light scattering film and production method therefor, solar cell
US8921688B2 (en) 2007-09-12 2014-12-30 Mitsubishi Materials Corporation Composite film for superstrate solar cell having conductive film and electroconductive reflective film formed by applying composition containing metal nanoparticles and comprising air pores of preset diameter in contact surface

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619524A4 (en) * 2003-04-28 2009-05-20 Takiron Co Electromagnetic-shielding light diffusion sheet
KR101856211B1 (en) * 2011-01-25 2018-05-09 엘지이노텍 주식회사 Solar and methdo of fabricating the same

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529937A (en) * 1998-11-06 2002-09-10 パシフィック ソーラー ピー ティ ワイ リミテッド Glass texturing with SiO2 film
WO2000062113A3 (en) * 1999-04-09 2001-02-01 Multioptical Kft Apparatus for improvement of the optical qualities of magnifying instruments
US6384318B1 (en) 1999-05-31 2002-05-07 Kaneka Corporation Solar battery module
US6607936B2 (en) 1999-05-31 2003-08-19 Kaneka Corporation Solar battery module
WO2001042156A1 (en) * 1999-12-13 2001-06-14 Nippon Sheet Glass Co., Ltd. Low-reflection film and solar cell panel
JP4841782B2 (en) * 1999-12-13 2011-12-21 日本板硝子株式会社 Low reflective film and solar panel
JP2013101349A (en) * 2000-05-31 2013-05-23 Nitto Denko Corp Particle dispersion system resin substrate, liquid crystal display device, electroluminescence device, and solar cell
JP2002214411A (en) * 2001-01-19 2002-07-31 Fujitsu Ltd Optical sheet, illuminator and optical member
JP4597390B2 (en) * 2001-01-19 2010-12-15 シャープ株式会社 Optical sheet, illumination device, and liquid crystal display device
US6706960B2 (en) 2001-05-17 2004-03-16 Canon Kabushiki Kaisha Coating material and photovoltaic element
JP2005079405A (en) * 2003-09-01 2005-03-24 Nippon Steel Corp Stainless steel foil coated with silica-based inorganic polymer film and its manufacturing method
JP4676686B2 (en) * 2003-09-01 2011-04-27 新日本製鐵株式会社 Stainless steel foil coated with silica-based inorganic polymer film and method for producing the same
JP2008506249A (en) * 2004-07-07 2008-02-28 サン−ゴバン グラス フランス Solar cell and solar module
WO2006046397A1 (en) * 2004-10-28 2006-05-04 Kaneka Corporation Substrate for thin film photoelectric converter and integrated thin film photoelectric converter employing it
JP2006128478A (en) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd Photoelectric converter
US8129611B2 (en) 2004-12-10 2012-03-06 Mitsubishi Heavy Industries, Ltd. Light-scattering film and optical device using the same
JP2006319250A (en) * 2005-05-16 2006-11-24 Keiwa Inc Back sheet for solar cell module and solar cell module using the same
JPWO2007040065A1 (en) * 2005-09-30 2009-04-16 三洋電機株式会社 Solar cell and solar cell module
EP1956659A4 (en) * 2005-09-30 2012-07-25 Sanyo Electric Co Solar battery and solar battery module
EP1956659A1 (en) * 2005-09-30 2008-08-13 Sanyo Electric Co., Ltd. Solar battery and solar battery module
US7947893B2 (en) 2005-09-30 2011-05-24 Sanyo Electric Co., Ltd. Solar cell and solar cell module
WO2007040065A1 (en) * 2005-09-30 2007-04-12 Sanyo Electric Co., Ltd. Solar battery and solar battery module
WO2008041489A1 (en) * 2006-09-29 2008-04-10 Sanyo Electric Co., Ltd. Solar cell module
EP2068373A1 (en) * 2006-09-29 2009-06-10 Sanyo Electric Co., Ltd. Solar cell module
JP2008091531A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Solar battery module
EP2068373A4 (en) * 2006-09-29 2014-08-13 Sanyo Electric Co Solar cell module
AU2008255673B2 (en) * 2007-05-23 2013-08-29 Teijin Dupont Films Japan Limited Multilayer film for solar cell base
WO2008146896A1 (en) * 2007-05-23 2008-12-04 Teijin Dupont Films Japan Limited Multilayer film for solar cell base
JP5156739B2 (en) * 2007-05-23 2013-03-06 帝人デュポンフィルム株式会社 Multilayer film for solar cell substrate
US8921688B2 (en) 2007-09-12 2014-12-30 Mitsubishi Materials Corporation Composite film for superstrate solar cell having conductive film and electroconductive reflective film formed by applying composition containing metal nanoparticles and comprising air pores of preset diameter in contact surface
US8658885B2 (en) 2008-05-23 2014-02-25 Kaneka Corporation Substrate for thin-film photoelectric conversion device, thin film photoelectric conversion device including the same, and method for producing substrate for thin-film photoelectric conversion device
JP5069790B2 (en) * 2008-05-23 2012-11-07 株式会社カネカ Thin film photoelectric conversion device substrate, thin film photoelectric conversion device including the same, and method for manufacturing thin film photoelectric conversion device substrate
WO2009142156A1 (en) * 2008-05-23 2009-11-26 株式会社カネカ Substrate for thin-film photoelectric conversion device, thin-film photoelectric conversion including the same, and method for producing substrate for thin-film photoelectric conversion device
JP2010087479A (en) * 2008-08-08 2010-04-15 Mitsubishi Materials Corp Composite film for substraight type solar cell and method of manufacturing the same
CN102257631A (en) * 2008-12-26 2011-11-23 周星工程股份有限公司 Thin-film solar cell and method for manufacturing same
WO2010074477A2 (en) * 2008-12-26 2010-07-01 주성엔지니어링(주) Thin-film solar cell and method for manufacturing same
KR100973676B1 (en) * 2008-12-26 2010-08-03 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same
KR100977726B1 (en) * 2008-12-26 2010-08-24 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same
WO2010074477A3 (en) * 2008-12-26 2010-09-30 주성엔지니어링(주) Thin-film solar cell and method for manufacturing same
WO2010086135A3 (en) * 2009-01-29 2010-10-14 Schott Ag Thin film solar cell
JP2010186845A (en) * 2009-02-12 2010-08-26 Sumitomo Bakelite Co Ltd Resin composition, wavelength conversion composition, wavelength conversion layer, and photovoltaic device including the same
CN101826563A (en) * 2009-03-03 2010-09-08 E.I.内穆尔杜邦公司 Packaging material and solar battery assembly made of same
KR100972115B1 (en) * 2009-03-04 2010-07-23 주성엔지니어링(주) Flexible thin film type solar cell and method for manufacturing the same
WO2011010572A1 (en) * 2009-07-22 2011-01-27 東レエンジニアリング株式会社 Substrate provided with thin film, and solar cell using the substrate
WO2011010573A1 (en) * 2009-07-22 2011-01-27 東レエンジニアリング株式会社 Substrate provided with thin film, and solar cell using the substrate
JP2011142318A (en) * 2009-12-11 2011-07-21 Konica Minolta Holdings Inc Organic photoelectric conversion element and method of manufacturing the same
KR101032433B1 (en) * 2010-06-14 2011-05-03 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same
JP2012174899A (en) * 2011-02-22 2012-09-10 Mitsubishi Materials Corp Transparent substrate with composite film for solar cell and manufacturing method therefor
CN102646726A (en) * 2011-02-22 2012-08-22 三菱综合材料株式会社 Transparent substrate with composite film for solar battery and manufacturing method thereof
CN102646726B (en) * 2011-02-22 2017-09-08 三菱综合材料株式会社 Transparency carrier and its manufacture method with composite membrane used for solar batteries
KR101241332B1 (en) 2011-06-08 2013-03-11 주성엔지니어링(주) A Solar Cell and A Manufacturing Method thereof
KR101281005B1 (en) * 2011-07-20 2013-07-08 (주)에스티아이 Thin film solar cell device
KR101273059B1 (en) * 2011-09-20 2013-06-10 엘지이노텍 주식회사 Solar cell and method of fabricating the same
JP2013175506A (en) * 2012-02-23 2013-09-05 Shimane Univ Light scattering film and production method therefor, solar cell

Also Published As

Publication number Publication date
JP3416024B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JPH10326903A (en) Fine particle coating film and photoelectric conversion element using it and light dispersion body
JP4841782B2 (en) Low reflective film and solar panel
US6620454B2 (en) Processes for forming a faceplate having a transparent substrate with diffuser surface
JPH1145619A (en) Conductive composition, transparent conductive film formed by using this, and its manufacture
CN1580823A (en) Optical layer system having antireflection properties
JP5063926B2 (en) Method for producing antireflection substrate
US5725957A (en) Transparent substrate with diffuser surface
US20110126890A1 (en) Textured superstrates for photovoltaics
CN1356562A (en) Process for preparing composition used for vapor-phase deposition, composition for vapor-phase deposition, and process for preparing optical element with anti-reflect film
CN112919819B (en) Manufacturing method of anti-glare glass without flash point
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
EP1363142A1 (en) Reflection reducing coating, base material and photoelectric transducer with the reflection reducing coating
JPH1012059A (en) Manufacture of transparent conductive film and thin film solar battery using the same
KR20010041423A (en) Light-transmissive substrate having a light-transmissive, low-ohmic coating
JPH11263639A (en) Coating liquid for formation of heat ray shielding film, and heat ray shielding film
JP2858821B2 (en) Anti-reflection film, its manufacturing method and image display face plate
JPH05107403A (en) High refractivity conductive film or low reflective anti-static film and manufacture thereof
US7189453B2 (en) Functional surface member
JPH02175601A (en) Ultrafine particle, production thereof and ultrafine-particle film-utilizing device
JPH0413301B2 (en)
TWI429099B (en) Substrate with broadband light scattering and method of fabricating the same
JPH06228500A (en) Antistatic and antireflecting film and coating for forming thereof
JPH09178903A (en) Antireflection film
KR102072903B1 (en) A method for preparing a coating composition having improved light transmittance and anti-static functions and light reflection reduction functions and a coating filme using the coating composition prepared by the same
JPH06139822A (en) Transparent conducting film, reflection-proof electrification preventing film, and their manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees