JPH1174263A - Thermal oxide film formation of silicon carbide semiconductor device - Google Patents

Thermal oxide film formation of silicon carbide semiconductor device

Info

Publication number
JPH1174263A
JPH1174263A JP18653598A JP18653598A JPH1174263A JP H1174263 A JPH1174263 A JP H1174263A JP 18653598 A JP18653598 A JP 18653598A JP 18653598 A JP18653598 A JP 18653598A JP H1174263 A JPH1174263 A JP H1174263A
Authority
JP
Japan
Prior art keywords
oxide film
oxygen
partial pressure
water vapor
thermal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18653598A
Other languages
Japanese (ja)
Other versions
JP3544123B2 (en
Inventor
Katsunori Ueno
勝典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18653598A priority Critical patent/JP3544123B2/en
Publication of JPH1174263A publication Critical patent/JPH1174263A/en
Application granted granted Critical
Publication of JP3544123B2 publication Critical patent/JP3544123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form an SiO2 film which is 10% or more thicker than that conditions considered to have been the fastest oxidation velocity in a conventional method in an Si surface by setting a vapor partial pressure in a mixed gas of vapor and oxygen at a value in a specific range, when forming a thermal oxide film of a silicon carbide semiconductor device. SOLUTION: When a silicon oxide film is formed on a heated SiC surface by introducing vapor and oxygen, a vapor partial pressure p(H2 O)/[p(H2 O)+pO2 ] is controlled within the range of 0.1 to 0.9. Here, p(H2 O), p(O2 ) express the vapor pressures of vapor and oxygen, respectively. In a thermal oxide film formation method for forming an SiO2 film by pyrogenic oxidation for performing thermal oxidation by introducing hydrogen and oxygen, the flow ratio of hydrogen and oxygen is controlled in the range of 1:0.6 to 1:9.5. Accordingly, a partial pressure of vapor is in the range of 0.1 to 0.9 as oxidation atmosphere in a furmace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化けい素を用い
た炭化けい素半導体装置の熱酸化による酸化けい素膜形
成方法に関する。
The present invention relates to a method for forming a silicon oxide film by thermal oxidation of a silicon carbide semiconductor device using silicon carbide.

【0002】[0002]

【従来の技術】炭化けい素(以下SiCと記す)は、バ
ンドギャップが広く、また最大絶縁電界がシリコンと比
較して一桁も大きいことから、次世代の電力用半導体素
子等への応用が期待されている材料である。そして、6
H−SiCや4H−SiCなどアルファ相の高品質の単
結晶が製造されるようになり、これまでに、ショットキ
ーダイオード、MOS電界効果トランジスタ(MOSF
ET)、サイリスタなどの半導体素子が試作されて、そ
の特性から従来のシリコンと比較して非常に特性が良好
なことが確認されている。
2. Description of the Related Art Silicon carbide (hereinafter referred to as SiC) has a wide band gap and a maximum insulating electric field which is one order of magnitude larger than that of silicon, so that it can be applied to next-generation power semiconductor devices and the like. It is a promising material. And 6
High quality single crystals of alpha phase such as H-SiC and 4H-SiC have been manufactured, and Schottky diodes and MOS field-effect transistors (MOSF
Semiconductor devices such as ET) and thyristors have been prototyped, and it has been confirmed from their characteristics that the characteristics are much better than those of conventional silicon.

【0003】SiCはシリコンと同様に酸化性雰囲気
(例えば、ドライ酸素、水蒸気など)中で、高温(10
00℃〜1200℃)にさらすと表面に、酸化けい素膜
(以下SiO2 膜と記す)が成長する。しかも、良好な
絶縁膜―半導体界面をもつSiO2 膜が得られることが
知られている。このような物性は化合物半導体としては
他に類を見ない特性であり、この特性を利用して比較的
容易にMOSFETの製造ができるので、将来の広い応
用が期待されている。
[0003] Like silicon, SiC is used in an oxidizing atmosphere (eg, dry oxygen, water vapor, etc.) in a high temperature (10
When the substrate is exposed to (00 ° C. to 1200 ° C.), a silicon oxide film (hereinafter referred to as SiO 2 film) grows on the surface. Moreover, it is known that an SiO 2 film having a good insulating film-semiconductor interface can be obtained. Such physical properties are unique to compound semiconductors, and MOSFETs can be manufactured relatively easily by utilizing these properties, so that widespread application in the future is expected.

【0004】熱酸化によるSiC上のSiO2 膜の成長
については、種々の性質があきらかにされている。例え
ば、図3は、M.R.Melloch とJ.A.Cooperによる水蒸気雰
囲気におけるSiCのSiO2 膜成長速度の温度依存性
を示した図である(MRS Bulletin, March 1997,p.4
2)。比較のため、シリコンの酸化膜成長速度も示して
ある。他に、 K.Ueno and Y.Seki: "Silicon Carbide
and Related Materials 1995" IOP publishing p.629
、A.Golz, G.Horstmann, E.Stein von Kamienski and
H.Kurz: "Silicon Carbide and Related Materials 19
95" IOP publishing p.633 にもSiC上のSiO2
の成長に関する報告がなされている。
Various properties have been clarified for the growth of a SiO 2 film on SiC by thermal oxidation. For example, FIG. 3 is a diagram showing the temperature dependence of the growth rate of a SiO 2 film of SiC in a water vapor atmosphere by MRMelloch and JACooper (MRS Bulletin, March 1997, p.4).
2). For comparison, a silicon oxide film growth rate is also shown. K. Ueno and Y. Seki: "Silicon Carbide
and Related Materials 1995 "IOP publishing p.629
A. Golz, G. Horstmann, E. Stein von Kamienski and
H. Kurz: "Silicon Carbide and Related Materials 19
95 "Report on the growth of the SiO 2 film on SiC also IOP publishing p.633 have been made.

【0005】図3に見られるようにSiC上のSiO2
膜の成長速度には結晶方位依存性があり、(0001)
シリコン面(以下Si面と記す)は(000−1)炭素
面(以下C面と記す)と比較して成長速度が非常に小さ
いという特徴がある。このことから、C面を用いてSi
C半導体装置を試作することが考えられる。しかし実際
には、C面はSiO2 膜―SiC界面の界面準位密度
が、Si面と比較してはるかに高く、特にMOS型のS
iC半導体装置には不適であることがわかった。このよ
うな状況から、最近のSiC半導体装置の開発には、S
i面を使用するのが主流となっている。
As shown in FIG. 3, SiO 2 on SiC
The growth rate of the film depends on the crystal orientation.
The silicon surface (hereinafter referred to as Si surface) has a feature that the growth rate is very low as compared with the (000-1) carbon surface (hereinafter referred to as C surface). From this, Si using the C plane
It is conceivable to prototype a C semiconductor device. However, actually, the C plane has a much higher interface state density at the interface between the SiO 2 film and the SiC than the Si plane.
It was found that it was not suitable for an iC semiconductor device. Under such circumstances, recent development of SiC semiconductor devices requires S
The use of i-plane has become mainstream.

【0006】[0006]

【発明が解決しようとする課題】酸化速度が小さいとい
うことは、厚い酸化膜を得ようとした場合、長時間、基
板を高温にさらす必要があることを意味している。例え
ば図3から、1100℃においてSi面で厚さ100n
mの酸化膜を得るためには、約17時間が必要と推定さ
れる。
The fact that the oxidation rate is low means that it is necessary to expose the substrate to a high temperature for a long time in order to obtain a thick oxide film. For example, from FIG.
It is estimated that about 17 hours are required to obtain an oxide film of m.

【0007】このような高温、長時間の熱処理は半導体
基板内への欠陥の導入など、さまざまな障害が発生する
危険性が考えられるので、酸化時間はできるだけ短い方
が望ましい。また従来、SiC半導体装置の熱酸化に
は、純水を加熱し、酸素をバブリングするいわゆるウェ
ット酸化の方法が一般に取られていたが、その方法では
水蒸気の分圧のコントロールが困難なこと、およびバブ
リング時に水滴が巻き込まれて汚染が発生し易いという
問題がある。
Since such a high-temperature and long-time heat treatment may cause various kinds of troubles such as introduction of defects into the semiconductor substrate, it is desirable that the oxidation time be as short as possible. Conventionally, a so-called wet oxidation method of heating pure water and bubbling oxygen has been generally used for thermal oxidation of a SiC semiconductor device. However, it is difficult to control the partial pressure of water vapor by the method, and There is a problem that water droplets are entrained during bubbling and contamination is likely to occur.

【0008】このような状況から本発明の目的は、特に
Si面において短時間で、清浄な、厚い酸化膜を形成で
きる炭化けい素半導体装置の熱酸化膜形成方法を提供す
ることにある。
In view of such circumstances, an object of the present invention is to provide a method for forming a thermal oxide film of a silicon carbide semiconductor device which can form a clean and thick oxide film in a short time, especially on a Si surface.

【0009】[0009]

【課題を解決するための手段】上記課題解決のため本発
明は、加熱されたSiC表面上に、水蒸気と酸素とを導
入して酸化けい素膜を成長させる熱酸化膜形成方法にお
いて、水蒸気の分圧p(H2O)/[ p(H2O) +p(O2)] を
0.1〜0.9の範囲に制御するものとする。ここでp
(H2O) 、p(O2)はそれぞれ水蒸気、酸素の蒸気圧を示
す。
According to the present invention, there is provided a thermal oxide film forming method for growing a silicon oxide film by introducing water vapor and oxygen on a heated SiC surface. The partial pressure p (H 2 O) / [p (H 2 O) + p (O 2 )] is controlled in the range of 0.1 to 0.9. Where p
(H 2 O) and p (O 2 ) indicate the vapor pressures of water vapor and oxygen, respectively.

【0010】水蒸気分圧の影響を説明するメカニズムの
詳細は不明であるが、後述の実験結果が示すように、水
蒸気の分圧を上記の範囲に制御すると、分圧を1.0す
なわち水蒸気100%とした場合より酸化速度が増大
し、容易に厚いSiO2 膜が得られる。特に、水蒸気の
分圧を0.1〜0.4の範囲に制御すると、分圧を1.
0すなわち水蒸気100%とした場合より酸化速度がほ
ぼ倍になる。逆に、ある厚さのSiO2 膜を成長させる
に要する酸化時間は半分に短縮できることになる。
Although the details of the mechanism explaining the effect of the partial pressure of water vapor are unknown, as shown in the experimental results described below, when the partial pressure of water vapor is controlled within the above range, the partial pressure becomes 1.0, that is, 100% of water vapor. %, The oxidation rate is increased, and a thick SiO 2 film can be easily obtained. In particular, when the partial pressure of water vapor is controlled in the range of 0.1 to 0.4, the partial pressure becomes 1.
Oxidation rate is almost doubled as compared to the case of 0, that is, 100% of steam. Conversely, the oxidation time required to grow a SiO 2 film of a certain thickness can be reduced by half.

【0011】水素と酸素を導入して熱酸化するパイロジ
ェニック酸化によってSiO2 膜を成長させる熱酸化膜
形成方法においては、水素と酸素との流量比を1:0.
6〜1:9.5の範囲に制御するものとする。そのよう
にすれば、炉内の酸化雰囲気として、水蒸気の分圧を
0.1〜0.9の範囲に入れることができる。
In a thermal oxide film forming method for growing a SiO 2 film by pyrogenic oxidation in which hydrogen and oxygen are introduced to thermally oxidize, a flow ratio of hydrogen to oxygen is set to 1: 0.
Control is performed in the range of 6-1 to 9.5. By doing so, the partial pressure of water vapor can be set in the range of 0.1 to 0.9 as the oxidizing atmosphere in the furnace.

【0012】また、水素と酸素との流量比を1:2〜
1:9.5の範囲に制御すれば、炉内の酸化雰囲気とし
て、水蒸気の分圧を0.1〜0.4の範囲に入れること
ができる。水素と酸素を導入して熱酸化するパイロジェ
ニック酸化によって酸化けい素膜を成長させる熱酸化膜
形成方法において、水素と酸素との流量比をほぼ1:
4.5として膜厚の大部分を形成した後、水素と酸素と
の流量比をほぼ1:0.55として残りの膜厚を形成す
るとよい。
In addition, the flow ratio of hydrogen to oxygen is 1: 2
If the control is performed in the range of 1: 9.5, the partial pressure of water vapor can be set in the range of 0.1 to 0.4 as the oxidizing atmosphere in the furnace. In a thermal oxide film forming method for growing a silicon oxide film by pyrogenic oxidation in which hydrogen and oxygen are introduced and thermally oxidized, a flow ratio of hydrogen to oxygen is set to about 1:
After forming most of the film thickness at 4.5, the remaining film thickness may be formed at a flow rate ratio of hydrogen to oxygen of approximately 1: 0.55.

【0013】発明者は、水素流量が酸素流量より多い
程、界面凖位密度を低減できることをつきとめた。従っ
て、そのようにすれば、酸化速度の速い条件で膜厚の大
部分を形成して酸化時間を短縮しつつ、界面凖位密度の
低い酸化膜ができる条件で残りの膜厚を形成するので、
低い界面凖位密度を実現できる。
The inventor has found that the interface state density can be reduced as the hydrogen flow rate is higher than the oxygen flow rate. Therefore, by doing so, the remaining film thickness is formed under the condition that an oxide film having a low interface state density can be formed while forming the majority of the film thickness under the condition of high oxidation rate and shortening the oxidation time. ,
A low interface state density can be realized.

【0014】[0014]

【発明の実施の形態】以下に記する本発明の炭化けい素
半導体装置の熱酸化膜形成方法では、パイロジェニック
酸化でおこなった。この方法は気体の水素と酸素を導入
し、反応させて水を生成し、これによってウェット雰囲
気を得るものである。この方法はガスを供給源に用いる
ため、汚染のレベルを非常に小さく抑えることができ
る、かつ、水蒸気の分圧を細かく制御することが可能で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a method for forming a thermal oxide film of a silicon carbide semiconductor device according to the present invention described below, pyrogenetic oxidation is performed. In this method, gaseous hydrogen and oxygen are introduced and reacted to form water, thereby obtaining a wet atmosphere. Since this method uses gas as a supply source, the level of contamination can be kept very low, and the partial pressure of water vapor can be finely controlled.

【0015】以下図を参照しながら、実験結果を説明
し、本発明の熱酸化膜形成方法の詳細を述べる。 [予備実験]導入する水素と酸素の流量を変えることに
より、含まれる水蒸気分圧を変えた雰囲気でのシリコン
の熱酸化実験をおこなった。例えば、パイロジェニック
酸化で水素と酸素との流量比を1:1.5、1:1、
1:0.7として、それぞれ水蒸気分圧が0.5、0.
67、0.83の雰囲気とすることができる。
The experimental results will be described below with reference to the drawings, and the details of the thermal oxide film forming method of the present invention will be described. [Preliminary Experiment] A thermal oxidation experiment of silicon was performed in an atmosphere in which the partial pressure of water vapor was changed by changing the flow rates of hydrogen and oxygen to be introduced. For example, in pyrogenic oxidation, the flow ratio of hydrogen to oxygen is 1: 1.5, 1: 1,
1: 0.7, and the partial pressure of water vapor was 0.5, 0.
67, 0.83 atmosphere.

【0016】図4は、シリコンの熱酸化における、酸化
膜の厚さの分圧依存性を示す図である。熱酸化条件は、
1000℃、160分とした。横軸は雰囲気中の水蒸気
の分圧である。全圧は1気圧であり、水蒸気の残りは酸
素である。この図から、水蒸気の比率を多くする程、酸
化膜厚が厚くなることがわかる。これは、ドライ酸素か
らウェット酸素の雰囲気に近づくほど、酸化膜厚が厚く
なることを示している。そのため、最大の酸化速度は、
水蒸気の分圧が1.0、すなわち水蒸気100%の雰囲
気で得られると予測され、別の実験でも確かめられてい
る。
FIG. 4 is a diagram showing the partial pressure dependence of the thickness of the oxide film in the thermal oxidation of silicon. Thermal oxidation conditions are:
The temperature was set to 1000 ° C. for 160 minutes. The horizontal axis is the partial pressure of water vapor in the atmosphere. The total pressure is one atmosphere and the remainder of the water vapor is oxygen. From this figure, it is understood that the oxide film thickness increases as the ratio of water vapor increases. This indicates that the oxide film thickness increases as the atmosphere approaches from dry oxygen to wet oxygen. Therefore, the maximum oxidation rate is
It is expected that the partial pressure of water vapor will be obtained in an atmosphere of 1.0, that is, 100% water vapor, and it has been confirmed in another experiment.

【0017】[実験1]ドライ酸素からウェット酸素雰
囲気の水蒸気分圧の高くなるほど、酸化膜厚が厚くなる
というシリコンについての実験結果は、SiCにおいて
も同様であろうと、これまで考えられてきたが、それを
立証する実験データは無かった。発明者はこれを確認す
るため、SiCにおいて予備実験と同様に、パイロジェ
ニック酸化で水素と酸素との流量比を変えて、水蒸気の
分圧を変化させた実験をおこなったところ、シリコンと
はまったく異なる特性になることを見出した。実験の条
件としては、水素流量を8リットル/minとして、酸
素流量を変えた。ただし、酸素流量が余り多くなるとこ
ろは、水素流量を4リットル/minとした。
[Experiment 1] It has been thought that the experimental result on silicon, in which the oxide film thickness increases as the water vapor partial pressure in the dry oxygen to wet oxygen atmosphere increases, will be the same in SiC. There was no experimental data to prove it. In order to confirm this, the inventor conducted an experiment in which the partial pressure of water vapor was changed by changing the flow ratio of hydrogen and oxygen by pyrogenic oxidation, as in the preliminary experiment in SiC, and found that silicon was completely different from silicon. It has been found that it has different characteristics. The experimental conditions were such that the hydrogen flow rate was 8 liters / min and the oxygen flow rate was varied. However, where the oxygen flow rate becomes too large, the hydrogen flow rate was set to 4 liter / min.

【0018】試料としては、1×1016cm-3のキャリ
ア濃度のAlドープ、面方位(0001)Si面のp型
SiCを用いた。熱酸化条件は、1100℃、5時間で
ある。図1は、水蒸気の分圧とSiO2 膜厚との関係を
示す図である。横軸は、水蒸気分圧、p(H2O )/[p
(H2O )+p(O2)]である。水素と、水素流量の半分
の酸素とは反応して全部水蒸気になり、残りの酸素は気
体のままであると考えている。SiO2 膜厚はエリプソ
メータで測定した。
As a sample, p-type SiC having a carrier concentration of 1 × 10 16 cm -3 and doped with Al (0001) Si was used. Thermal oxidation conditions are 1100 ° C. for 5 hours. FIG. 1 is a diagram showing the relationship between the partial pressure of water vapor and the SiO 2 film thickness. The horizontal axis is the partial pressure of water vapor, p (H 2 O) / [p
(H 2 O) + p (O 2 )]. It is believed that the hydrogen and oxygen at half the hydrogen flow rate react to form all water vapor, with the remaining oxygen remaining as a gas. The SiO 2 film thickness was measured with an ellipsometer.

【0019】この図からわかるように、水蒸気の分圧が
0.2前後のところで、SiO2 膜厚はピークを示して
いる。水素と酸素とを導入するパイロジェニック酸化法
では、水蒸気分圧が1.0すなわち水蒸気100%の条
件は危険で実現できないが、その付近の傾向から類推し
て、約25nmになると思われる。従って、水蒸気の分
圧が0.2前後の条件では、実験した最大水蒸気分圧
0.95の場合と比較して1.5倍以上、水蒸気100
%の場合と比較すれば、ほぼ2倍にあたる厚い酸化膜が
得られることになる。そして水蒸気分圧が0.1〜0.
9の範囲では、水蒸気分圧0.95の場合と比較して、
20%以上厚いSiO2 膜が得られ、特に、水蒸気分圧
が0.1〜0.4の範囲では、50%以上厚いSiO2
膜が得られることがわかる。
As can be seen from this figure, the SiO 2 film thickness shows a peak when the partial pressure of water vapor is around 0.2. In the pyrogenic oxidation method in which hydrogen and oxygen are introduced, the condition of a partial pressure of water vapor of 1.0, that is, 100% of water vapor is dangerous and cannot be realized. However, by analogy with the tendency in the vicinity thereof, it is considered to be about 25 nm. Therefore, under the condition that the partial pressure of steam is about 0.2, the steam 100% or more is 1.5 times or more as compared with the case of the experimental maximum steam partial pressure of 0.95.
%, It is possible to obtain a thick oxide film which is almost twice as large as that in the case of%. And the partial pressure of water vapor is 0.1-0.
In the range of 9, compared with the case of the partial pressure of water vapor of 0.95,
It obtained 20% or more thick SiO 2 film, in particular, in the range of the water vapor partial pressure from 0.1 to 0.4, 50% or more thick SiO 2
It can be seen that a film is obtained.

【0020】水蒸気分圧の低い条件の方が、厚いSiO
2 膜が成長するというこの現象の機構や物理的な意味は
調査中で、いまのところ不明である。この結果には、ま
た別の意味もある。これまでSiC上のSiO2 膜形成
は、沸騰純水中に酸素をバブリングさせて、湿った酸素
を電気炉内に導入して実施する、というやり方が一般に
実施されてきた。この従来の方法は、特別な設備が不要
なことから、手軽な方法として多用されてきた。しかし
ながら、上記の実験結果からわかるように、このような
簡易的な方法では、水蒸気の分圧制御が困難なため、S
iO2 膜の精密な厚さ制御が難しいことを予想させる。
すなわち水蒸気の分圧が変動すると、SiO2 膜の成長
速度が変動し、結果的にSiO2 膜厚も揺らいでしまう
からである。従って、均質で制御された膜厚のSiO2
膜を得るためには、水蒸気分圧の制御が極めて重要なこ
とがわかる。
The condition of low water vapor partial pressure is better for thick SiO 2
The mechanism and physical meaning of this phenomenon of growing two films is under investigation and is unknown at this time. This result has other implications. Until now, formation of a SiO 2 film on SiC has been generally performed by bubbling oxygen in boiling pure water and introducing wet oxygen into an electric furnace. This conventional method has been frequently used as a simple method since no special equipment is required. However, as can be seen from the above experimental results, it is difficult to control the partial pressure of steam with such a simple method,
Predict that it is difficult to precisely control the thickness of the iO 2 film.
That is, when the partial pressure of water vapor changes, the growth rate of the SiO 2 film changes, and as a result, the SiO 2 film thickness also fluctuates. Therefore, a uniform and controlled thickness of SiO 2
It can be seen that controlling the partial pressure of water vapor is extremely important for obtaining a film.

【0021】[実験2]図2は、異なる水蒸気分圧での
酸化時間とSiO2 膜厚との関係を示した図である。酸
化温度が1100℃の例であり、横軸は時間である。例
えば、50nmのSiO2 膜を得ようとすると、水素と
酸素との流量比を1:0.55とした水蒸気分圧0.9
5の雰囲気では約10時間必要であるが、水素と酸素と
の流量比を1:3.5として水蒸気分圧を0.25まで
低下させると、約5時間と、ほぼ半分の酸化時間で同じ
膜厚が得られることがわかる。
[Experiment 2] FIG. 2 is a graph showing the relationship between the oxidation time at different water vapor partial pressures and the SiO 2 film thickness. This is an example where the oxidation temperature is 1100 ° C., and the horizontal axis is time. For example, in order to obtain a 50 nm SiO 2 film, a water vapor partial pressure of 0.9 with a flow ratio of hydrogen to oxygen of 1: 0.55 is used.
5 atmosphere requires about 10 hours, but when the flow rate ratio between hydrogen and oxygen is 1: 3.5 and the partial pressure of water vapor is reduced to 0.25, the same oxidation time is required for about 5 hours and almost half the oxidation time. It can be seen that a film thickness can be obtained.

【0022】いずれの実験値も直線的であり、約15n
mの急峻な初期酸化段階を示唆している。これはシリコ
ンのドライ酸化における初期酸化段階で見られるものと
同じように見える。 [実験3]発明者は、水素流量の酸素流量に対する比が
大きい程、界面凖位密度が低くなることを見いだしてい
る。従って、酸化速度を速くするために水蒸気分圧の低
い条件でSiO2 膜を形成することは、界面凖位密度の
点からは、むしろ好ましくないことになる。
All experimental values are linear, about 15 n
m suggests a steep initial oxidation stage. This looks similar to what is seen during the initial oxidation stage in dry oxidation of silicon. [Experiment 3] The inventors have found that the higher the ratio of the hydrogen flow rate to the oxygen flow rate, the lower the interface state density. Therefore, it is rather unfavorable to form the SiO 2 film under a condition of a low water vapor partial pressure in order to increase the oxidation rate, in terms of the interface state density.

【0023】例えば、図1において酸化速度が最大に近
い水蒸気分圧が0.2の条件で形成したSiO2 膜の界
面凖位密度は、SiCのC面に形成したSiO2 膜より
は、桁違いに少ないものの、水蒸気分圧が0.95の条
件で形成したSiO2 膜の2倍以上になる。そこで、水
蒸気分圧が0.2の条件で4時間、SiO2 膜を形成し
た後、水蒸気分圧を0.95として、更に1時間、Si
2 膜を形成した。SiO2 膜の厚さは、48nmで、
水蒸気分圧を0.95として5時間酸化したときの30
nmよりはるかに厚く、しかも界面凖位密度は水蒸気分
圧を0.95としたSiO2膜と同等であった。
For example, in FIG. 1, the interface state density of the SiO 2 film formed under the condition that the steam partial pressure is 0.2 at which the oxidation rate is close to the maximum is smaller than that of the SiO 2 film formed on the C plane of SiC. Although the difference is small, the water vapor partial pressure is twice or more that of the SiO 2 film formed under the condition of 0.95. Therefore, after forming a SiO 2 film for 4 hours under the condition that the water vapor partial pressure is 0.2, the water vapor partial pressure is set to 0.95, and the Si 2 film is further formed for 1 hour.
An O 2 film was formed. The thickness of the SiO 2 film is 48 nm,
30 when oxidizing for 5 hours at a steam partial pressure of 0.95
It was much thicker than nm and the interface level density was equivalent to that of a SiO 2 film with a water vapor partial pressure of 0.95.

【0024】このように、水蒸気分圧の低いすなわち酸
化速度の速い条件で、膜厚の大部分を形成した後、水蒸
気分圧の高いすなわち界面凖位密度が低くなる条件で、
更にSiO2 膜を形成することによって、酸化時間を短
縮しつつ、界面凖位密度の低いSiO2 膜を実現するこ
とができる。具体的な条件としては、水蒸気分圧をほぼ
0.2、すなわち水素と酸素との流量比を約1:4.5
としてSiO2 膜を形成した後、水蒸気分圧をほぼ0.
95すなわち水素と酸素との流量比を約1:0.55と
して、更にSiO2 膜を形成するのが良い。
As described above, after most of the film thickness is formed under the condition that the steam partial pressure is low, that is, the oxidation rate is high, the film is formed under the condition that the steam partial pressure is high, that is, the interface state density becomes low.
Further by forming a SiO 2 film, while shortening the oxidation time, it is possible to realize a low SiO 2 film interfacial凖位density. As a specific condition, the partial pressure of water vapor is approximately 0.2, that is, the flow ratio of hydrogen to oxygen is about 1: 4.5.
After forming a SiO 2 film, the partial pressure of water vapor was reduced to approximately 0.
95, that is, the flow ratio of hydrogen to oxygen is preferably about 1: 0.55, and an SiO 2 film is preferably formed.

【0025】なお、水蒸気分圧が1.0すなわち水蒸気
100%の条件は、上述のようにパイロジェニック酸化
法では危険で実現できないが、純水を沸騰させるバブリ
ング法であれば、実現できるので、バブリング法で後の
酸化をおこなっても良い。以上の実験においては、水蒸
気の分圧比の制御が容易なパイロジェニック酸化でおこ
なったが、本発明の本質は、水蒸気分圧を制御して熱酸
化することにあるので、その制御が可能であれば、必ず
しもパイロジェニック酸化によらなくても良いことは勿
論である。
The condition of a partial pressure of water vapor of 1.0, that is, 100% of water vapor is dangerous and cannot be realized by the pyrogenic oxidation method as described above, but can be realized by a bubbling method of boiling pure water. The subsequent oxidation may be performed by a bubbling method. In the above experiments, pyrogenetic oxidation was performed in which the control of the partial pressure ratio of water vapor was easy, but the essence of the present invention is to control the partial pressure of water vapor to perform thermal oxidation. Needless to say, pyrogenic oxidation is not necessarily required.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、炭
化けい素半導体装置の熱酸化膜形成方法において、水蒸
気と酸素との混合気中における水蒸気分圧を、0.1〜
0.9とすることによって、Si面においても従来最も
速い酸化速度が得られると考えられていた条件よりも、
10%以上、最大で50%もの厚いSiO2 膜を得るこ
とができる。逆に、ある厚さのSiO2 膜を得るために
は、短い酸化時間で形成することができる。しかも界面
凖位密度は、低い値を実現できる。
As described above, according to the present invention, in the method of forming a thermal oxide film for a silicon carbide semiconductor device, the partial pressure of water vapor in a mixture of water vapor and oxygen is set to 0.1 to 1.0.
By setting the ratio to 0.9, the condition that the highest oxidation rate was conventionally considered to be obtained even on the Si surface was obtained.
A SiO 2 film as thick as 10% or more and as large as 50% can be obtained. Conversely, to obtain a SiO 2 film of a certain thickness, it can be formed in a short oxidation time. In addition, a low interface state density can be realized.

【0027】SiO2 膜は、特にMOS型半導体装置の
重要な構成要素であり、本発明により界面凖位密度の低
いSiO2 膜を短時間で得られることは、炭化けい素の
MOS型半導体装置の実用化に資するところ大である。
The SiO 2 film is an important constituent element of a MOS semiconductor device in particular, and the fact that the present invention can provide a SiO 2 film having a low interface state density in a short time requires the silicon carbide MOS semiconductor device. It is a place that contributes to the practical application of.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SiCのSi面における酸化膜厚と水蒸気分圧
との関係を示す特性図
FIG. 1 is a characteristic diagram showing a relationship between an oxide film thickness on a Si surface of SiC and a partial pressure of water vapor.

【図2】SiCのSi面における酸化時間と酸化膜厚と
の関係を示す特性図
FIG. 2 is a characteristic diagram showing a relationship between an oxidation time and an oxide film thickness on a Si surface of SiC.

【図3】SiCおよびシリコンの酸化時間と酸化膜厚と
の関係を示す特性図
FIG. 3 is a characteristic diagram showing a relationship between an oxidation time of SiC and silicon and an oxide film thickness.

【図4】シリコンにおける酸化膜厚と水蒸気分圧との関
係を示す特性図
FIG. 4 is a characteristic diagram showing a relationship between an oxide film thickness and a water vapor partial pressure in silicon.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】加熱された炭化けい素表面上に、水蒸気と
酸素とを導入して酸化けい素膜を成長させる熱酸化膜形
成方法において、水蒸気の分圧を0.1〜0.9の範囲
に制御することを特徴とする炭化けい素半導体装置の熱
酸化膜形成方法。
1. A method for forming a thermal oxide film by introducing water vapor and oxygen on a heated silicon carbide surface to grow a silicon oxide film, wherein the partial pressure of water vapor is 0.1 to 0.9. A method for forming a thermal oxide film for a silicon carbide semiconductor device, wherein the thermal oxide film is controlled within a range.
【請求項2】加熱された炭化けい素表面上に、水蒸気と
酸素とを導入して酸化けい素膜を成長させる熱酸化膜形
成方法において、水蒸気の分圧を0.1〜0.4の範囲
に制御することを特徴とする炭化けい素半導体装置の熱
酸化膜形成方法。
2. A thermal oxide film forming method for growing a silicon oxide film by introducing water vapor and oxygen on a heated silicon carbide surface, wherein the partial pressure of the water vapor is 0.1 to 0.4. A method for forming a thermal oxide film for a silicon carbide semiconductor device, wherein the thermal oxide film is controlled within a range.
【請求項3】水素と酸素を導入して熱酸化するパイロジ
ェニック酸化によって酸化けい素膜を成長させる熱酸化
膜形成方法において、水素と酸素との流量比を1:0.
6〜1:9.5の範囲に制御することを特徴とする請求
項1記載の炭化けい素半導体装置の熱酸化膜形成方法。
3. A thermal oxide film forming method for growing a silicon oxide film by pyrogenic oxidation in which hydrogen and oxygen are introduced and thermally oxidized, wherein a flow ratio of hydrogen to oxygen is 1: 0.
2. The method for forming a thermal oxide film on a silicon carbide semiconductor device according to claim 1, wherein the control is performed in the range of 6-1 to 9.5.
【請求項4】水素と酸素を導入して熱酸化するパイロジ
ェニック酸化によって酸化けい素膜を成長させる熱酸化
膜形成方法において、水素と酸素との流量比を1:2〜
1:9.5の範囲に制御することを特徴とする請求項2
記載の炭化けい素半導体装置の熱酸化膜形成方法。
4. A thermal oxide film forming method for growing a silicon oxide film by pyrogenic oxidation in which hydrogen and oxygen are introduced and thermally oxidized, wherein the flow ratio of hydrogen and oxygen is 1: 2 to 2.
3. The method according to claim 2, wherein the control is performed in a range of 1: 9.5.
A method for forming a thermal oxide film for a silicon carbide semiconductor device according to the above.
【請求項5】加熱された炭化けい素表面上に、水蒸気と
酸素とを導入して酸化けい素膜を成長させる熱酸化膜形
成方法において、水蒸気の分圧の低い条件で酸化膜を形
成した後、水蒸気の分圧の高い条件で更に酸化膜を形成
することを特徴とする炭化けい素半導体装置の熱酸化膜
形成方法。
5. A thermal oxide film forming method for growing a silicon oxide film by introducing water vapor and oxygen on a heated silicon carbide surface, wherein an oxide film is formed under a condition of a low partial pressure of water vapor. Thereafter, a method of forming a thermal oxide film for a silicon carbide semiconductor device, further comprising forming an oxide film under a high partial pressure of water vapor.
【請求項6】水素と酸素を導入して熱酸化するパイロジ
ェニック酸化によって酸化けい素膜を成長させる熱酸化
膜形成方法において、水素と酸素との流量比をほぼ1:
4.5として膜厚の大部分を形成し、水素と酸素との流
量比をほぼ1:0.55として残りの膜厚を形成するこ
とを特徴とする炭化けい素半導体装置の熱酸化膜形成方
法。
6. A thermal oxide film forming method for growing a silicon oxide film by pyrogenic oxidation in which hydrogen and oxygen are introduced and thermally oxidized, wherein a flow ratio of hydrogen to oxygen is substantially 1: 1.
A thermal oxide film formation of a silicon carbide semiconductor device, wherein most of the film thickness is formed at 4.5 and the remaining film thickness is formed at a flow rate ratio of hydrogen to oxygen of about 1: 0.55. Method.
JP18653598A 1997-07-04 1998-07-01 Method for forming thermal oxide film on silicon carbide semiconductor device Expired - Fee Related JP3544123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18653598A JP3544123B2 (en) 1997-07-04 1998-07-01 Method for forming thermal oxide film on silicon carbide semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17876697 1997-07-04
JP9-178766 1997-07-04
JP18653598A JP3544123B2 (en) 1997-07-04 1998-07-01 Method for forming thermal oxide film on silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JPH1174263A true JPH1174263A (en) 1999-03-16
JP3544123B2 JP3544123B2 (en) 2004-07-21

Family

ID=26498855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18653598A Expired - Fee Related JP3544123B2 (en) 1997-07-04 1998-07-01 Method for forming thermal oxide film on silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP3544123B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003989A1 (en) * 2002-06-28 2004-01-08 National Institute Of Advanced Industrial Science And Technology Semiconductor device and its manufacturing method
JP2004511101A (en) * 2000-10-03 2004-04-08 クリー インコーポレイテッド Method for producing oxide layer on silicon carbide layer using N2O
US6815299B2 (en) 2000-08-31 2004-11-09 Nissan Motor Co., Ltd. Method for manufacturing silicon carbide device using water rich anneal
JP2008053418A (en) 2006-08-24 2008-03-06 National Institute Of Advanced Industrial & Technology Manufacturing method of silicon carbide semiconductor device
JP2010129627A (en) * 2008-11-26 2010-06-10 Stanley Electric Co Ltd Method of growing zinc oxide semiconductor, and method of manufacturing semiconductor element
US7880173B2 (en) 2002-06-28 2011-02-01 National Institute Of Advanced Industrial Science And Technology Semiconductor device and method of manufacturing same
KR101028441B1 (en) 2007-09-24 2011-04-14 어플라이드 머티어리얼스, 인코포레이티드 Method of improving oxide growth rate of selective oxidation processes
JP2020083734A (en) * 2018-11-30 2020-06-04 クアーズテック株式会社 Method of manufacturing sic member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815299B2 (en) 2000-08-31 2004-11-09 Nissan Motor Co., Ltd. Method for manufacturing silicon carbide device using water rich anneal
JP2004511101A (en) * 2000-10-03 2004-04-08 クリー インコーポレイテッド Method for producing oxide layer on silicon carbide layer using N2O
WO2004003989A1 (en) * 2002-06-28 2004-01-08 National Institute Of Advanced Industrial Science And Technology Semiconductor device and its manufacturing method
US7338869B2 (en) 2002-06-28 2008-03-04 National Institute Of Advanced Industrial Science And Technology Semiconductor device and its manufacturing method
US7880173B2 (en) 2002-06-28 2011-02-01 National Institute Of Advanced Industrial Science And Technology Semiconductor device and method of manufacturing same
JP2008053418A (en) 2006-08-24 2008-03-06 National Institute Of Advanced Industrial & Technology Manufacturing method of silicon carbide semiconductor device
KR101028441B1 (en) 2007-09-24 2011-04-14 어플라이드 머티어리얼스, 인코포레이티드 Method of improving oxide growth rate of selective oxidation processes
JP2010129627A (en) * 2008-11-26 2010-06-10 Stanley Electric Co Ltd Method of growing zinc oxide semiconductor, and method of manufacturing semiconductor element
JP2020083734A (en) * 2018-11-30 2020-06-04 クアーズテック株式会社 Method of manufacturing sic member

Also Published As

Publication number Publication date
JP3544123B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
US6265326B1 (en) Method for forming thermal oxide film of silicon carbide semiconductor device
JP4558489B2 (en) Method for treating nitrided oxide layer formed on silicon carbide layer
EP0010910B1 (en) Method for forming an insulating film layer on a semiconductor substrate surface
US5880041A (en) Method for forming a dielectric layer using high pressure
JPH11186256A (en) Method of forming thermal oxide film of silicon carbide semiconductor device
JP2000252461A (en) Manufacture of semiconductor device
CA1070027A (en) Method for manufacturing an oxide of semiconductor
EP0258394B1 (en) Fabrication of solid-state devices having thin dielectric layers
JPS6051847B2 (en) How to form an oxide layer
EP1935011B1 (en) Methods of fabricating oxide layers on silicon carbide layers utilizing atomic oxygen
JP3491050B2 (en) Method for forming thermal oxide film on silicon carbide semiconductor device
JP3544123B2 (en) Method for forming thermal oxide film on silicon carbide semiconductor device
EP0023911B1 (en) Controlling the properties of native films using selective growth chemistry
JP3420876B2 (en) Method of improving thermal oxide film of SiC
JPH10261615A (en) Surface morphology control method of sic semiconductor and growing method of sic semiconductor thin film
JPH11307526A (en) Forming method of oxide film
JP2001077030A (en) Manufacture of silicon carbide semiconductor device
Balk 40 years MOS technology—from empiricism to science
JP3221129B2 (en) Semiconductor device manufacturing method
US6967176B1 (en) Method for making silicon containing dielectric films
JPH1126457A (en) Formation of silicon oxynitride film of semiconductor device
KR20100125464A (en) Film forming method and semiconductor device manufacturing method
Palmour et al. WET and Dry Oxidation of Single Crystal β-SiC: Kinetics and Interface Characteristics
JP2002093800A (en) Method of manufacturing silicon carbide semiconductor device
US5275692A (en) Method for fabricating integrated circuits

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees