JPH1173995A - Cylindrical nonaqueous electrolyte solution secondary battery and manufacture thereof - Google Patents

Cylindrical nonaqueous electrolyte solution secondary battery and manufacture thereof

Info

Publication number
JPH1173995A
JPH1173995A JP9232176A JP23217697A JPH1173995A JP H1173995 A JPH1173995 A JP H1173995A JP 9232176 A JP9232176 A JP 9232176A JP 23217697 A JP23217697 A JP 23217697A JP H1173995 A JPH1173995 A JP H1173995A
Authority
JP
Japan
Prior art keywords
current
positive electrode
negative electrode
extraction
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9232176A
Other languages
Japanese (ja)
Inventor
Hideyuki Inomata
秀行 猪俣
Naoya Nakanishi
直哉 中西
Mitsuzo Nogami
光造 野上
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9232176A priority Critical patent/JPH1173995A/en
Publication of JPH1173995A publication Critical patent/JPH1173995A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To drastically reduce the internal resistance of a battery, even if for a large battery, and enhance its productivity. SOLUTION: Circular current delivery parts integrally formed with a positive electrode current collector 7 and protrusively formed from the end of separators are disposed in every winding circuit so as to provide aside in a radial direction of a volute electrode body, and the current delivery parts are overlapped with each other and fused, whereby a delivery terminal 6 is flush with at least one surface is formed, and moreover an upper end surface 6a whose surface is flushed with the delivery terminal 6 and a current terminal 7 are fused, and both the surfaces are welded with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒型非水電解液
二次電池及びその製造方法に関し、詳しくは電気自動車
等に用いられる高出力密度を必要とする円筒型非水電解
液二次電池及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical non-aqueous electrolyte secondary battery and a method of manufacturing the same, and more particularly to a cylindrical non-aqueous electrolyte secondary battery used in electric vehicles and the like, which requires a high output density. And its manufacturing method.

【0002】[0002]

【従来の技術】この種電池では、帯状の正極と負極とが
セパレータを介して渦巻き状に巻回される渦巻き電極体
を有しており、この渦巻き電極体からの集電方法として
は、上記正負極の端部に各々導電性タブを取り付け、こ
れら導電性タブと電流端子とを電気的に接続することに
より行われていた。このような構造の電池では、電流値
が小さな小型の円筒型非水電解液二次電池であれば、集
電効果を十分に発揮することができるが、電流値が大き
な大型の円筒型非水電解液二次電池では、電極面積が大
きくなることから、集電効果を十分に発揮することがで
きなくなるという課題を有していた。
2. Description of the Related Art A battery of this type has a spiral electrode body in which a belt-like positive electrode and a negative electrode are spirally wound with a separator interposed therebetween. This has been done by attaching conductive tabs to the ends of the positive and negative electrodes, respectively, and electrically connecting these conductive tabs to current terminals. In a battery having such a structure, a small cylindrical non-aqueous electrolyte secondary battery having a small current value can sufficiently exhibit a current collecting effect, but a large cylindrical non-aqueous electrolyte having a large current value. The electrolyte secondary battery has a problem that the current collecting effect cannot be sufficiently exhibited because the electrode area is large.

【0003】そこで、以下に示すような集電方法を備え
た円筒型非水電解液二次電池が提案されている。 特開平6−267528号公報に示すように、帯状の
正極及び帯状の負極の集電体の長手方向の両端部には、
それぞれセパレータから突出する正極のリード取付部と
負極のリード取付部とが形成され、これら両リード取付
部には、各々複数の正極リードと複数の負極リードとが
溶接される構造の円筒型非水電解液二次電池。
Therefore, a cylindrical non-aqueous electrolyte secondary battery provided with the following current collecting method has been proposed. As shown in JP-A-6-267528, at both ends in the longitudinal direction of a current collector of a band-shaped positive electrode and a band-shaped negative electrode,
A positive electrode lead mounting portion and a negative electrode lead mounting portion protruding from the separator are formed, and these two lead mounting portions have a cylindrical non-aqueous structure in which a plurality of positive electrode leads and a plurality of negative electrode leads are welded. Electrolyte secondary battery.

【0004】特開平8−115744号公報に示すよ
うに、帯状の正極及び帯状の負極の集電体の長手方向の
両端部には、それぞれセパレータから突出する正極集電
体の露出部と負極集電体の露出部とが形成され、上記正
極集電体の露出部は正極リードにより接続される一方、
上記負極集電体の露出部は負極リードにより接続され、
且つ正極リード及び負極リードが、接続部材を介して或
いは直接的に電流端子と接続される構造の円筒型非水電
解液二次電池。
As shown in Japanese Patent Application Laid-Open No. HEI 8-115744, an exposed portion of a positive electrode current collector projecting from a separator and a negative electrode An exposed portion of the current collector is formed, and the exposed portion of the positive electrode current collector is connected by a positive electrode lead,
The exposed portion of the negative electrode current collector is connected by a negative electrode lead,
A cylindrical non-aqueous electrolyte secondary battery having a structure in which a positive electrode lead and a negative electrode lead are connected to a current terminal via a connecting member or directly.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の円筒型非水電解液二次電池では、以下に示すような
課題を有していた。 の電池の課題 上記の電池では、正極リードと正極のリード取付部及
び負極リードと負極のリード取付部とは、溶接法にて接
続されているため、当該接続部分において接触抵抗が発
生する結果、電池の内部抵抗を飛躍的に低減することは
できない。加えて、複数の正極リード及び複数の負極リ
ードを各々電流端子と接続する際の作業が困難であるた
め、生産性が低下するという課題もある。
However, the conventional cylindrical non-aqueous electrolyte secondary battery has the following problems. In the above battery, since the positive electrode lead and the positive electrode lead mounting portion and the negative electrode lead and the negative electrode lead mounting portion are connected by welding, contact resistance occurs at the connection portion, The internal resistance of the battery cannot be reduced dramatically. In addition, since it is difficult to connect each of the plurality of positive leads and the plurality of negative leads to the current terminal, there is a problem that productivity is reduced.

【0006】の電池の課題 上記の電池では、金属箔から成る正極リード及び負極
リードと、正極集電体の露出部及び負極集電体の露出部
とを一様に接続するのは困難であり、しかも、各リード
と各集電体とから形成される接続面は面状になっていな
いため、当該接続面において接続部材又は電流端子とを
レーザー法等により溶接する際、点状の溶接となる結
果、両者の接触面積が小さくなる。これらのことから、
生産性が悪く、しかも電池の内部抵抗を飛躍的に低減す
ることはできないという課題を有していた。
In the above battery, it is difficult to uniformly connect the positive electrode lead and the negative electrode lead made of metal foil to the exposed portions of the positive and negative electrode current collectors. Furthermore, since the connection surface formed by each lead and each current collector is not planar, when welding the connection member or the current terminal to the connection surface by a laser method or the like, a point-like welding is performed. As a result, the contact area between them becomes small. from these things,
There was a problem that productivity was poor and the internal resistance of the battery could not be reduced dramatically.

【0007】本発明は、上記従来の課題を考慮して成さ
れたものであって、大型電池であっても電池の内部抵抗
を飛躍的に低減することができ、且つ生産性を高めるこ
とができる円筒型非水電解液二次電池及びその製造方法
の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned conventional problems, and it is possible to drastically reduce the internal resistance of a large battery and increase productivity. An object of the present invention is to provide a cylindrical non-aqueous electrolyte secondary battery that can be manufactured and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の円筒型非水電解液二次電池は、帯状の正極
集電体の両面に正極活物質層が形成された正極と、帯状
の負極集電体の両面に負極活物質層が形成された負極と
が、帯状のセパレータを介して渦巻き状に巻回される渦
巻き電極体を備え、上記正極及び負極が、直接的に或い
はリード線を介して電流端子と電気的に接続される構造
の円筒型非水電解液二次電池において、上記正極集電体
又は上記負極集電体のうち、少なくとも一方の集電体と
一体的に形成されると共に上記セパレータの端部より突
出形成された円弧状の電流取出部が、上記渦巻き電極体
の径方向に並設されるように各周回毎に設けられ、更に
上記電流取出部を重ね合わせて溶着することにより、少
なくとも一つの面が面一となる取出端子が形成され、し
かも、この取出端子の上記面一となる取出面と上記電流
端子又は上記リード線とが溶着により面接合されること
を特徴とする。
Means for Solving the Problems To achieve the above object, a cylindrical nonaqueous electrolyte secondary battery of the present invention comprises a positive electrode having a positive electrode active material layer formed on both sides of a belt-shaped positive electrode current collector. A negative electrode in which a negative electrode active material layer is formed on both sides of a strip-shaped negative electrode current collector, and a spiral electrode body that is spirally wound via a strip-shaped separator, wherein the positive electrode and the negative electrode are directly Alternatively, in a cylindrical nonaqueous electrolyte secondary battery having a structure electrically connected to a current terminal via a lead wire, the cylindrical nonaqueous electrolyte secondary battery is integrated with at least one of the positive electrode current collector and the negative electrode current collector. Arc-shaped current extracting portions formed in a manner to project from the end of the separator are provided in each turn so as to be juxtaposed in the radial direction of the spiral electrode body, and the current extracting portions are further provided. At least one surface by overlapping and welding Lead terminal to be flush is formed, moreover, with the above flush become extracting surface of the lead terminal and the current terminal or the lead wires is characterized in that-joined by welding.

【0009】上記構成であれば、電流取出部を重ね合わ
せて溶着することにより形成される取出端子と正極集電
体及び/又は負極集電体とが一体的に形成され、しかも
取出端子と電流端子またはリード線との接合が面接合と
なっている。したがって、正極集電体及び/又は負極集
電体と電流端子との間の接触抵抗が大幅に減少し、電池
の内部抵抗が格段に減少する。また、各周回毎に電流取
出部が形成され、この電流取出部により形成される取出
端子が電流端子と電気的に接合されるため、集電体内で
の電位勾配が小さくて電流分布が偏ることがない。
With the above configuration, the extraction terminal and the positive electrode current collector and / or the negative electrode current collector, which are formed by overlapping and welding the current extraction portions, are integrally formed, and the extraction terminal and the current The connection with the terminal or the lead wire is a surface connection. Therefore, the contact resistance between the positive electrode current collector and / or the negative electrode current collector and the current terminal is greatly reduced, and the internal resistance of the battery is significantly reduced. In addition, a current extraction portion is formed for each round, and the extraction terminal formed by the current extraction portion is electrically connected to the current terminal, so that the potential gradient in the current collector is small and the current distribution is biased. There is no.

【0010】請求項2記載の発明は、請求項1記載の円
筒型非水電解液二次電池において、正極集電体と一体的
に形成された正極側の電流取出部と、負極集電体と一体
的に形成された負極側の電流取出部とを有し、且つ一方
の電流取出部は他方の電流取出部とは反対側に突出形成
されていることを特徴とする。このように一方の電流取
出部は他方の電流取出部とは反対側に突出形成されてい
れば、電池内部での短絡を防止できる。
According to a second aspect of the present invention, there is provided the cylindrical non-aqueous electrolyte secondary battery according to the first aspect, wherein a current extracting portion on the positive electrode side integrally formed with the positive electrode current collector; And a current extracting portion on the negative electrode side integrally formed, and one current extracting portion is formed so as to protrude to the opposite side to the other current extracting portion. As described above, if one of the current extracting portions is formed so as to protrude on the opposite side to the other current extracting portion, a short circuit inside the battery can be prevented.

【0011】請求項3記載の発明は、請求項1または2
記載の円筒型非水電解液二次電池において、渦巻き電極
体の各周回における円周長さに対する電流取出部の円弧
長さの割合が、5%以上であることを特徴とする。渦巻
き電極体の各周回における円周長さに対する電流取出部
の円弧長さの割合が5%未満になると急激に放電容量が
低下するが、電流取出部の円弧長さの割合が5%以上で
あれば放電容量の差異は認められない。
[0011] The invention according to claim 3 is the invention according to claim 1 or 2.
In the cylindrical nonaqueous electrolyte secondary battery described above, the ratio of the arc length of the current extracting portion to the circumferential length in each round of the spiral electrode body is 5% or more. When the ratio of the arc length of the current extracting portion to the circumferential length in each revolution of the spiral electrode body is less than 5%, the discharge capacity sharply decreases. However, when the ratio of the arc length of the current extracting portion is 5% or more. If so, no difference in discharge capacity is recognized.

【0012】請求項4記載の発明は、請求項3記載の円
筒型非水電解液二次電池において、取出端子が複数形成
されていることを特徴とする。このように取出端子を複
数形成すれば、渦巻き電極体の各周回における円周長さ
に対する電流取出部の円弧長さの割合を、容易に5%以
上とすることができる。
According to a fourth aspect of the present invention, in the cylindrical non-aqueous electrolyte secondary battery according to the third aspect, a plurality of extraction terminals are formed. If a plurality of extraction terminals are formed in this manner, the ratio of the arc length of the current extraction portion to the circumferential length in each round of the spiral electrode body can be easily set to 5% or more.

【0013】また、上記目的を達成するために、本発明
の円筒型非水電解液二次電池の製造方法は、帯状の正極
集電体の両面に正極活物質層が形成された正極と、帯状
の負極集電体の両面に負極活物質層が形成された負極と
のうち、少なくとも一方の極における集電体に活物質層
が形成されていない露出部が形成され、この露出部が帯
状のセパレータの端部より突出形成するように、上記両
極を上記セパレータを介して渦巻き状に巻回する第1ス
テップと、上記集電体の露出部の一部を残して露出部を
切断し、円弧状の電流取出部が上記渦巻き電極体の径方
向に並設されるように各周回毎に設ける第2ステップ
と、上記電流取出部を重ね合わせて溶着することによ
り、少なくとも一つの面が面一となる取出端子を形成す
る第3ステップと、上記取出端子の上記面一となる取出
面と上記電流端子又は上記リード線とを溶着により面接
合する第4ステップとを有することを特徴とする。
In order to achieve the above object, a method of manufacturing a cylindrical nonaqueous electrolyte secondary battery according to the present invention comprises: a positive electrode having a positive electrode active material layer formed on both sides of a belt-shaped positive electrode current collector; Of the negative electrode in which the negative electrode active material layer is formed on both surfaces of the strip-shaped negative electrode current collector, an exposed portion where the active material layer is not formed on the current collector in at least one of the electrodes is formed, and the exposed portion is formed in a strip shape. A first step of spirally winding both electrodes through the separator so as to protrude from the end of the separator, and cutting the exposed portion while leaving a part of the exposed portion of the current collector; A second step in which arc-shaped current extraction portions are provided in each revolution so as to be arranged in parallel in the radial direction of the spiral electrode body, and at least one surface is formed by overlapping and welding the current extraction portions. A third step of forming a single extraction terminal; And having a fourth step of surface joined by welding and the lead surface and the current terminal or said lead wire to be the surface one lead terminal.

【0014】上記の方法であれば、露出部を加工するだ
けで取出端子を形成することができるので、電池の生産
性が向上する。また、取出端子を形成するための露出部
だけが残存する(即ち、露出部の大半は切断される)の
で、電池の重量増が最低限に抑えられ、電池の重量エネ
ルギー密度が向上する。
According to the above-described method, since the extraction terminal can be formed only by processing the exposed portion, the productivity of the battery is improved. In addition, since only the exposed portion for forming the extraction terminal remains (that is, most of the exposed portion is cut), the weight increase of the battery is minimized, and the weight energy density of the battery is improved.

【0015】請求項6記載の発明は、請求項5記載の円
筒型非水電解液二次電池の製造方法において、第3ステ
ップにおける溶着は、非接触溶着法により行われること
を特徴とする。このように非接触溶着法により溶着すれ
ば、取出端子の作製時に、薄くて強度が小さな電流取出
部が変形するのを防止することができる。
According to a sixth aspect of the present invention, in the method for manufacturing a cylindrical nonaqueous electrolyte secondary battery according to the fifth aspect, the welding in the third step is performed by a non-contact welding method. When the welding is performed by the non-contact welding method as described above, it is possible to prevent a thin, low-strength current extracting portion from being deformed when the extracting terminal is manufactured.

【0016】請求項7記載の発明は、請求項6記載の円
筒型非水電解液二次電池の製造方法において、非接触溶
着法がレーザー溶着法であることを特徴とする。このよ
うに、非接触溶着法としてレーザー溶着法を用いれば、
ビーム溶着法の如く真空状態で溶着する必要がないの
で、作業性が向上する。加えて、溶接深さが大きいの
で、溶着強度を向上させることができる。
According to a seventh aspect of the present invention, in the method for manufacturing a cylindrical nonaqueous electrolyte secondary battery according to the sixth aspect, the non-contact welding method is a laser welding method. Thus, if the laser welding method is used as the non-contact welding method,
Since there is no need to perform welding in a vacuum state unlike the beam welding method, workability is improved. In addition, since the welding depth is large, the welding strength can be improved.

【0017】請求項8記載の発明は、請求項5記載の円
筒型非水電解液二次電池の製造方法において、第4ステ
ップにおける取出端子と上記電流端子との接続又は取出
端子とリード線との接続は、超音波溶着法、ビーム溶着
法、及びレーザー溶着法から成る群から選択される溶着
法により行われることを特徴とする。
According to an eighth aspect of the present invention, in the method for manufacturing a cylindrical non-aqueous electrolyte secondary battery according to the fifth aspect, the connection between the extraction terminal and the current terminal or the extraction terminal and the lead wire in the fourth step is performed. Is performed by a welding method selected from the group consisting of an ultrasonic welding method, a beam welding method, and a laser welding method.

【0018】[0018]

【発明の実施の形態】本発明の実施の形態を、図1〜図
12に基づいて、以下に説明する。先ず、図1に示すよ
うに、アルミニウムから成る帯状の正極集電体1a(厚
さ:0.02mm)の両面に、LiCoO2 から成る正
極活物質と炭素から成る導電助剤とポリフッ化ビニリデ
ン(PVdF)から成るバインダーとを混合した正極合
剤を塗布することにより、正極集電体1aの両面に正極
活物質層1bが形成された正極1を作製する。尚、この
際、正極集電体1aの長手方向の一方の端部には、正極
活物質層1bが存在しない未塗布部1cを形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. First, as shown in FIG. 1, on both sides of a strip-shaped positive electrode current collector 1a (thickness: 0.02 mm) made of aluminum, a positive electrode active material made of LiCoO 2 , a conductive additive made of carbon, and polyvinylidene fluoride ( A positive electrode 1 in which a positive electrode active material layer 1b is formed on both surfaces of a positive electrode current collector 1a is produced by applying a positive electrode mixture mixed with a binder made of PVdF). At this time, an uncoated portion 1c in which the positive electrode active material layer 1b does not exist is formed at one end in the longitudinal direction of the positive electrode current collector 1a.

【0019】これと並行して、図2に示すように、銅か
ら成る帯状の負極集電体2a(厚さ:0.018mm)
の両面に、天然黒鉛から成る負極活物質とPVdFから
成るバインダーとを混合した負極合剤を塗布することに
より、負極集電体2aの両面に負極活物質層2bが形成
された負極2を作製する。尚、この際、負極集電体2a
の長手方向の他方の端部(上記正極1とは反対方向の端
部)には、負極活物質層2bが存在しない未塗布部2c
を形成する。次に、図3に示すように、幅L3 が、上記
正極活物質層1bの幅L1 及び上記負極活物質層2bの
幅L2 より若干大きくなるように形成されたセパレータ
3を用意する。尚、このセパレータ3は、多孔性のポリ
エチレン又はポリプロピレンから成る。
In parallel with this, as shown in FIG. 2, a strip-shaped negative electrode current collector 2a (thickness: 0.018 mm) made of copper
A negative electrode 2 in which a negative electrode active material layer 2b is formed on both surfaces of a negative electrode current collector 2a is prepared by applying a negative electrode mixture obtained by mixing a negative electrode active material composed of natural graphite and a binder composed of PVdF to both surfaces of the negative electrode current collector 2a. I do. At this time, the negative electrode current collector 2a
At the other end in the longitudinal direction (the end in the direction opposite to the positive electrode 1), the uncoated portion 2c where the negative electrode active material layer 2b does not exist
To form Next, as shown in FIG. 3, the width L 3, to prepare a width L 1 and the separator 3 formed to be slightly larger than the width L 2 of the negative electrode active material layer 2b of the positive electrode active material layer 1b . The separator 3 is made of porous polyethylene or polypropylene.

【0020】次いで、図4及び図5に示すようにして正
極1、負極2、及びセパレータ3を重ね合わせつつ、図
6に示すように、これらを渦巻き状に巻回して渦巻き電
極体4を形成する。この際、正極側の未塗布部1cと、
負極側の未塗布部2c(図6においては、未塗布部2c
は図示せず)とを、セパレータ3の端部より突出するよ
うに形成する。この後、図6に示すように、渦巻き電極
体4の上端面と平行にレーザー光を照射しつつ、レーザ
ー光をC1方向に半回転移動させ、更にB1方向に渦巻
き電極体4の上端まで移動させて、未塗布部1cの右半
分を切除する。しかる後、渦巻き電極体4の上端面と平
行にレーザー光を照射しつつ、レーザー光をC2方向に
半回転移動させ、更にB2方向に渦巻き電極体4の上端
まで移動させて、未塗布部1cの左半分を切除する。こ
れにより、図7に示すように、セパレータ3の端部より
突出形成された円弧状の電流取出部5…が、各周回毎に
且つ上記渦巻き電極体4の径方向に並設されることにな
る。尚、上記図7及び後述の図8においては、理解の容
易のため、渦巻き電極体4の正極集電体1aのみを図示
し、負極2及びセパレータ3等については省略してい
る。
Next, as shown in FIG. 4 and FIG. 5, the positive electrode 1, the negative electrode 2, and the separator 3 are overlapped, and these are spirally wound to form a spiral electrode body 4 as shown in FIG. I do. At this time, the uncoated portion 1c on the positive electrode side,
The uncoated portion 2c on the negative electrode side (in FIG. 6, the uncoated portion 2c
(Not shown) are formed so as to protrude from the end of the separator 3. Thereafter, as shown in FIG. 6, while irradiating the laser light in parallel with the upper end surface of the spiral electrode body 4, the laser light is moved half a turn in the C1 direction, and further moved to the upper end of the spiral electrode body 4 in the B1 direction. Then, the right half of the uncoated portion 1c is cut off. Thereafter, while irradiating the laser light in parallel with the upper end surface of the spiral electrode body 4, the laser light is moved half a turn in the C2 direction, and further moved in the B2 direction to the upper end of the spiral electrode body 4, and the uncoated portion 1c Cut out the left half of the. As a result, as shown in FIG. 7, arc-shaped current extraction portions 5 projecting from the end of the separator 3 are arranged in parallel with each other and in the radial direction of the spiral electrode body 4. Become. In FIG. 7 and FIG. 8 described later, only the positive electrode current collector 1a of the spiral electrode body 4 is shown for easy understanding, and the negative electrode 2, the separator 3, and the like are omitted.

【0021】この後、図8に示すように、電流取出部5
…を重ね合わせて、レーザー光にて溶着することによ
り、少なくとも一つの面(本例では上端面6a)が面一
となる正極側の取出端子6が形成される。尚、図示しな
いが、負極側の未塗布部2cについても同様の処理がな
されている。最後に、図9に示すように、上記正極側の
取出端子6の上端面6a(電流取出面)とアルミニウム
から成る正極電流端子7とをレーザーにより溶着せし
め、両者を面接合し、更に負極側の取出端子8の下端面
8a(電流取出面)と銅から成る負極電流端子9とをレ
ーザーにより溶着せしめ、両者を面接合した。
Thereafter, as shown in FIG.
Are overlapped and welded by a laser beam to form a positive electrode-side extraction terminal 6 having at least one surface (the upper end surface 6a in this example) flush with the surface. Although not shown, the same processing is performed on the uncoated portion 2c on the negative electrode side. Finally, as shown in FIG. 9, the upper end surface 6a (current extraction surface) of the extraction terminal 6 on the positive electrode side and the positive electrode current terminal 7 made of aluminum are welded by a laser, and the two are surface-bonded. The lower end surface 8a (current extraction surface) of the extraction terminal 8 and the negative electrode current terminal 9 made of copper were welded by a laser, and the two were surface-joined.

【0022】ここで、電流を円滑に取り出すためには、
渦巻き電極体4の各周回における円周長さに対する、前
記電流取出部5…の円弧長さの割合は、5%以上となる
ように構成するのが望ましい。ところが、渦巻き電極体
4の径が極めて大きい場合には、上記発明の実施の形態
の如く、渦巻き電極体4の中心部と外周部とにおける電
流取出部5…の円弧長さを同様としたのでは、円周長さ
の大きな外周部においては、円弧長さの割合が5%以下
となる。そこで、このような場合には、図10に示すよ
うに、渦巻き電極体4の中心部から外周部にいくにつれ
て電流取出部5…の円弧長さを大きくするような構造と
するか、または図11に示すように、正極側の取出端子
6と負極側の取出端子8とを2個或いはそれ以上形成す
るような構造とすれば良い。
Here, in order to take out the current smoothly,
It is desirable that the ratio of the arc length of the current extracting portions 5 to the circumferential length in each round of the spiral electrode body 4 be 5% or more. However, in the case where the diameter of the spiral electrode body 4 is extremely large, the arc lengths of the current extracting portions 5 at the center portion and the outer peripheral portion of the spiral electrode body 4 are set to be the same as in the embodiment of the present invention. Then, in the outer peripheral portion having a large circumferential length, the ratio of the arc length becomes 5% or less. Therefore, in such a case, as shown in FIG. 10, a structure in which the arc length of the current extraction portions 5 is increased from the center to the outer periphery of the spiral electrode body 4, or FIG. As shown in FIG. 11, the structure may be such that two or more of the positive electrode side extraction terminal 6 and the negative electrode side extraction terminal 8 are formed.

【0023】また、上記発明の実施の形態では、レーザ
ー溶接法によって、少なくとも一つの面が面一となる取
出端子6・8を形成しているが、ビーム溶接法によっ
て、このような取出端子6・8を形成しても良い。但
し、ビーム溶接法においては、真空状態で作業をしなけ
ればならないため、作業性が低下する。加えて、ビーム
溶接法はレーザー溶接法に比べて溶接深さが小さいの
で、溶着強度が小さくなる。したがって、取出端子6・
8の形成時には、レーザー溶接法を用いるのが望まし
い。尚、これら溶接法を用いる場合において、上端面6
aと下端面8a(共に、電流取出面)との面積は、電池
容量から決定される最大電流値に応じて、適切に決定す
る必要がある。
In the embodiment of the present invention, the extraction terminals 6 and 8 having at least one surface flush with each other are formed by the laser welding method. However, such extraction terminals 6 and 8 are formed by the beam welding method. 8 may be formed. However, in the beam welding method, work must be performed in a vacuum state, so that workability is reduced. In addition, since the welding depth of the beam welding method is smaller than that of the laser welding method, the welding strength is reduced. Therefore, take out terminal 6
When forming 8, it is desirable to use a laser welding method. When these welding methods are used, the upper end face 6
It is necessary to appropriately determine the area between “a” and the lower end surface 8 a (both are current extraction surfaces) according to the maximum current value determined from the battery capacity.

【0024】更に、正極側の取出端子6の上端面6aと
正極電流端子7との接合、及び負極側の取出端子8の上
端面8aと負極電流端子9との面接合はレーザー溶接法
にて行っているが、ビーム溶接法又は超音波溶接法を用
いて行っても良い。但し、上記の如くビーム溶接法にお
いては作業性が低下するという問題を有し、超音波溶接
法では両取出端子6・8が圧力により破損することがあ
るという問題を有するので、レーザー溶接法にて両者を
接合するのが望ましい。加えて、上記発明の実施の形態
では、両取出端子6・8と両電流端子7・9とをそれぞ
れ直接接合しているが、このような構造に限定するもの
ではなく、例えば図12に示すように、正極リード線1
1及び負極リード線10を介して両取出端子6・8と両
電流端子7・9とを電気的に接続するような構造であっ
ても良い。尚、この場合には、正極側の取出端子6と正
極リード線11及び負極側の取出端子8と負極リード線
10とが面接合されることになる。
Further, the upper end surface 6a of the positive side extraction terminal 6 and the positive electrode current terminal 7 and the upper surface 8a of the negative electrode side extraction terminal 8 and the negative surface current terminal 9 are bonded by laser welding. Although it is performed, it may be performed using a beam welding method or an ultrasonic welding method. However, the beam welding method has a problem that the workability is reduced as described above, and the ultrasonic welding method has a problem that both the extraction terminals 6 and 8 may be damaged by pressure. It is desirable to join the two. In addition, in the embodiment of the present invention, both the takeout terminals 6 and 8 and the both current terminals 7 and 9 are directly joined, respectively. However, the present invention is not limited to such a structure. So that the positive lead 1
A structure may be employed in which both the takeout terminals 6 and 8 and the two current terminals 7.9 are electrically connected via the first and negative lead wires 10. In this case, the extraction terminal 6 on the positive electrode side and the positive electrode lead wire 11 and the extraction terminal 8 on the negative electrode side and the negative electrode lead wire 10 are surface-bonded.

【0025】また、正極活物質としては、上述のLiC
oO2 に限定するものではなく、LiNiO2 、LiM
2 4 等を用いることができ、更に負極活物質として
は、上述の天然黒鉛に限定するものではなく、人造黒鉛
等の他の炭素材料を用いることができる。加えて、正極
リード線11としては、上述のアルミニウムに限定する
ものではなく、鉄、ステンレス鋼、ニッケル等を用いる
ことができ、また負極リード線10としては、上述の銅
に限定するものではなく、鉄、ステンレス鋼、ニッケル
等を用いることができる。
As the positive electrode active material, the above-described LiC
It is not limited to oO 2 , but LiNiO 2 , LiM
n 2 O 4 or the like can be used, and the negative electrode active material is not limited to the above-mentioned natural graphite, and other carbon materials such as artificial graphite can be used. In addition, the positive electrode lead wire 11 is not limited to the above-described aluminum, but may be iron, stainless steel, nickel, or the like. The negative electrode lead wire 10 is not limited to the above-described copper. , Iron, stainless steel, nickel and the like can be used.

【0026】[0026]

【実施例】【Example】

〔実施例〕実施例としては、上記発明の実施の形態に示
した円筒型非水電解液二次電池を用いた。尚、この電池
の高さは400mm、直径は60mmであり、更に公称
容量は70Ah、電池電圧は3.6Vである。このよう
な構造の電池を、以下本発明電池Aと称する。
[Example] As an example, the cylindrical nonaqueous electrolyte secondary battery described in the above embodiment of the present invention was used. The height of this battery was 400 mm, the diameter was 60 mm, the nominal capacity was 70 Ah, and the battery voltage was 3.6 V. The battery having such a structure is hereinafter referred to as Battery A of the present invention.

【0027】〔比較例〕比較例としては、前記従来の技
術で示した円筒型非水電解液二次電池(特開平6−26
7528号公報に示す電池)を用いた。尚、電池高さ等
については、上記実施例と同様に形成した。このような
構造の電池を、以下比較電池Xと称する。
[Comparative Example] As a comparative example, a cylindrical non-aqueous electrolyte secondary battery (Japanese Patent Laid-Open No. Hei 6-26
No. 7528). The battery height and the like were formed in the same manner as in the above example. A battery having such a structure is hereinafter referred to as a comparative battery X.

【0028】〔実験1〕上記本発明電池Aと比較電池X
とにおける、放電容量と電池電圧との関係を調べたの
で、その結果を図13に示す。尚、本実験における充放
電条件は、0.14C(9.8A)の電流で電池電圧が
4.2Vとなるまで定電流充電した後、2C(140
A)の電流で電池電圧が2.7Vとなるまで定電流放電
するという条件である。
[Experiment 1] Battery A of the present invention and Comparative Battery X
The relationship between the discharge capacity and the battery voltage in the above was examined, and the results are shown in FIG. The charge and discharge conditions in this experiment were as follows: a constant current charge was performed at a current of 0.14 C (9.8 A) until the battery voltage reached 4.2 V;
The condition is that the battery is discharged at a constant current until the battery voltage becomes 2.7 V with the current A).

【0029】図13から明らかなように、比較電池Xで
は放電容量が62.3Ahであるのに対して、本発明電
池Aでは放電容量が68.9Ahであって、格段に容量
が大きくなっていることが認められる。これは、本発明
電池Aでは、集電体と取出端子とが一体的に形成され、
しかも取出端子と電流端子との接合が面接合となってい
るので、集電体と電流端子との間の接触抵抗が大幅に減
少し、電池の内部抵抗が格段に減少するという理由によ
るものと考えられる。
As is clear from FIG. 13, the discharge capacity of the comparative battery X is 62.3 Ah, whereas the discharge capacity of the battery A of the present invention is 68.9 Ah, and the capacity is significantly increased. Is admitted. This is because, in the battery A of the present invention, the current collector and the extraction terminal are integrally formed,
In addition, since the connection between the extraction terminal and the current terminal is a surface junction, the contact resistance between the current collector and the current terminal is greatly reduced, and the internal resistance of the battery is significantly reduced. Conceivable.

【0030】〔実験2〕渦巻き電極体の円周長さに対す
る電流取出部の円弧長さの割合(以下、単に電流取出部
の円弧長さの割合と略する)と放電容量との関係につい
て調べたので、その結果を図14に示す。図14から明
らかなように、電流取出部の円弧長さの割合が5%未満
になると急激に放電容量が低下するが、電流取出部の円
弧長さの割合が5%以上であれば放電容量の差異は認め
られない。したがって、電流取出部の円弧長さの割合は
5%以上であることが望ましい。
[Experiment 2] The relationship between the ratio of the arc length of the current extracting portion to the circumferential length of the spiral electrode body (hereinafter simply referred to as the ratio of the arc length of the current extracting portion) and the discharge capacity is examined. Therefore, the result is shown in FIG. As is clear from FIG. 14, the discharge capacity sharply decreases when the ratio of the arc length of the current extracting portion is less than 5%, but the discharge capacity decreases when the ratio of the arc length of the current extracting portion is 5% or more. No difference is observed. Therefore, it is desirable that the ratio of the arc length of the current extracting portion is 5% or more.

【0031】このような実験結果となるのは、電流取出
部の円弧長さの割合が5%未満であれば集電効果を十分
に発揮できないため、電池の内部抵抗が増大する一方、
電流取出部の円弧長さの割合が5%以上であればいくら
割合を大きくしても電池の内部抵抗が減少しないという
理由によるものと考えられる。
The result of such an experiment is that if the ratio of the arc length of the current extracting portion is less than 5%, the current collecting effect cannot be sufficiently exhibited, so that the internal resistance of the battery increases,
This is considered to be because the internal resistance of the battery does not decrease even if the ratio of the arc length of the current extracting portion is 5% or more, even if the ratio is increased.

【0032】[0032]

【発明の効果】以上で説明したように本発明によれば、
電池の内部抵抗が格段に減少するので、電池の放電容量
を飛躍的に増大することができる。また、露出部を加工
するだけで取出端子を形成することができるので、電池
の生産性が向上し、しかも取出端子を形成するための露
出部だけが残存する(即ち、露出部の大半は切断され
る)ので、電池の重量増が最低限に抑えられ、電池の重
量エネルギー密度が向上するといった優れた効果を奏す
る。
According to the present invention as described above,
Since the internal resistance of the battery is significantly reduced, the discharge capacity of the battery can be dramatically increased. Further, since the extraction terminal can be formed only by processing the exposed portion, the productivity of the battery is improved, and only the exposed portion for forming the extracted terminal remains (that is, most of the exposed portion is cut off). Therefore, the weight increase of the battery is suppressed to the minimum, and an excellent effect of improving the weight energy density of the battery is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる正極の正面図である。FIG. 1 is a front view of a positive electrode used in the present invention.

【図2】本発明に用いる負極の正面図である。FIG. 2 is a front view of a negative electrode used in the present invention.

【図3】本発明に用いるセパレータの正面図である。FIG. 3 is a front view of a separator used in the present invention.

【図4】正極、負極、及びセパレータを重ね合わせたと
きの正面図である。
FIG. 4 is a front view when a positive electrode, a negative electrode, and a separator are overlapped.

【図5】図4のA−A線矢視断面図である。FIG. 5 is a sectional view taken along line AA of FIG. 4;

【図6】電池の製造工程を示す斜視図である。FIG. 6 is a perspective view showing a manufacturing process of the battery.

【図7】電池の製造工程を示す斜視図である。FIG. 7 is a perspective view showing a manufacturing process of the battery.

【図8】電池の製造工程を示す斜視図である。FIG. 8 is a perspective view showing a battery manufacturing process.

【図9】電池の製造工程を示す断面図である。FIG. 9 is a cross-sectional view showing a manufacturing process of the battery.

【図10】本発明の変形例を示す斜視図である。FIG. 10 is a perspective view showing a modification of the present invention.

【図11】本発明の変形例を示す断面図である。FIG. 11 is a sectional view showing a modification of the present invention.

【図12】本発明の変形例を示す断面図である。FIG. 12 is a sectional view showing a modification of the present invention.

【図13】本発明電池Aと比較電池Xとにおける、放電
容量と電池電圧との関係を示すグラフである。
FIG. 13 is a graph showing a relationship between a discharge capacity and a battery voltage in a battery A of the present invention and a comparative battery X.

【図14】渦巻き電極体の円周長さに対する電流取出部
の円弧長さの割合と放電容量との関係を示すグラフであ
る。
FIG. 14 is a graph showing the relationship between the ratio of the arc length of the current extracting portion to the circumferential length of the spiral electrode body and the discharge capacity.

【符号の説明】[Explanation of symbols]

1:正極 1a:正極集電体 1b:正極活物質層 1c:未塗布部 2:負極 2a:負極集電体 2b:負極活物質層 2c:未塗布部 3:セパレータ 4:渦巻き電極体 5:電流取取出部 6:取出端子 7:正極電流端子 8:取出端子 9:負極電流端子 1: Positive electrode 1a: Positive electrode current collector 1b: Positive electrode active material layer 1c: Uncoated portion 2: Negative electrode 2a: Negative electrode current collector 2b: Negative electrode active material layer 2c: Uncoated portion 3: Separator 4: Spiral electrode body 5: Current extractor 6: Extract terminal 7: Positive current terminal 8: Extract terminal 9: Negative current terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ikuro Yonezu 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 帯状の正極集電体の両面に正極活物質層
が形成された正極と、帯状の負極集電体の両面に負極活
物質層が形成された負極とが、帯状のセパレータを介し
て渦巻き状に巻回される渦巻き電極体を備え、上記正極
及び負極が、直接的に或いはリード線を介して電流端子
と電気的に接続される構造の円筒型非水電解液二次電池
において、 上記正極集電体又は上記負極集電体のうち、少なくとも
一方の集電体と一体的に形成されると共に上記セパレー
タの端部より突出形成された円弧状の電流取出部が、上
記渦巻き電極体の径方向に並設されるように各周回毎に
設けられ、更に上記電流取出部を重ね合わせて溶着する
ことにより、少なくとも一つの面が面一となる取出端子
が形成され、しかも、この取出端子の上記面一となる取
出面と上記電流端子又は上記リード線とが溶着により面
接合されることを特徴とする円筒型非水電解液二次電
池。
A positive electrode in which a positive electrode active material layer is formed on both sides of a belt-shaped positive electrode current collector and a negative electrode in which a negative electrode active material layer is formed on both sides of a band-shaped negative electrode current collector form a band-shaped separator. Cylindrical non-aqueous electrolyte secondary battery having a structure in which the positive electrode and the negative electrode are electrically connected to a current terminal directly or via a lead wire, comprising a spiral electrode body spirally wound through In the positive electrode current collector or the negative electrode current collector, the arc-shaped current extraction portion formed integrally with at least one of the current collectors and formed so as to protrude from an end of the separator is formed in the spiral shape. Provided for each revolution so as to be juxtaposed in the radial direction of the electrode body, and furthermore, by overlapping and welding the current extraction portions, an extraction terminal is formed in which at least one surface is flush, and The extraction surface that is flush with the extraction terminal Serial current terminal or cylindrical non-aqueous electrolyte secondary battery in which the lead line is characterized in that-joined by welding.
【請求項2】 前記正極集電体と一体的に形成された正
極側の電流取出部と、前記負極集電体と一体的に形成さ
れた負極側の電流取出部とを有し、且つ一方の電流取出
部は他方の電流取出部とは反対側に突出形成されてい
る、請求項1記載の円筒型非水電解液二次電池。
2. A positive electrode current extracting portion integrally formed with the positive electrode current collector, and a negative electrode current extracting portion formed integrally with the negative electrode current collector, and 2. The cylindrical non-aqueous electrolyte secondary battery according to claim 1, wherein the current extracting portion is formed so as to protrude on a side opposite to the other current extracting portion.
【請求項3】 前記渦巻き電極体の各周回における円周
長さに対する、前記電流取出部の円弧長さの割合が、5
%以上である、請求項1または2記載の円筒型非水電解
液二次電池。
3. A method according to claim 1, wherein the ratio of the arc length of said current extraction portion to the circumference of each spiral of said spiral electrode body is 5%.
%. The cylindrical nonaqueous electrolyte secondary battery according to claim 1, wherein
【請求項4】 前記取出端子が複数形成されている、請
求項3記載の円筒型非水電解液二次電池。
4. The cylindrical non-aqueous electrolyte secondary battery according to claim 3, wherein a plurality of the extraction terminals are formed.
【請求項5】 帯状の正極集電体の両面に正極活物質層
が形成された正極と、帯状の負極集電体の両面に負極活
物質層が形成された負極とのうち、少なくとも一方の極
における集電体に活物質層が形成されていない露出部が
形成され、この露出部が帯状のセパレータの端部より突
出形成するように、上記両極を上記セパレータを介して
渦巻き状に巻回する第1ステップと、 上記集電体の露出部の一部を残して露出部を切断し、円
弧状の電流取出部が上記渦巻き電極体の径方向に並設さ
れるように各周回毎に設ける第2ステップと、 上記電流取出部を重ね合わせて溶着することにより、少
なくとも一つの面が面一となる取出端子を形成する第3
ステップと、 上記取出端子の上記面一となる取出面と上記電流端子又
は上記リード線とを溶着により面接合する第4ステップ
と、 を有することを特徴とする円筒型非水電解液二次電池の
製造方法。
5. A positive electrode in which a positive electrode active material layer is formed on both sides of a belt-shaped positive electrode current collector, and a negative electrode in which a negative electrode active material layer is formed on both sides of a band-shaped negative electrode current collector. The current collector in the pole is formed with an exposed portion on which the active material layer is not formed, and the electrodes are spirally wound through the separator so that the exposed portion protrudes from an end of the strip-shaped separator. A first step of cutting the exposed portion while leaving a part of the exposed portion of the current collector, so that the arc-shaped current extracting portion is arranged in each turn so as to be arranged in the radial direction of the spiral electrode body. A third step of forming an extraction terminal in which at least one surface is flush with the current extraction portion by overlapping and welding the current extraction portion.
A cylindrical non-aqueous electrolyte secondary battery, comprising: a step; and welding the surface of the extraction terminal, which is flush with the extraction terminal, to the current terminal or the lead wire by surface welding. Manufacturing method.
【請求項6】 前記第3ステップにおける溶着は、非接
触溶着法により行われる、請求項5記載の円筒型非水電
解液二次電池の製造方法。
6. The method for manufacturing a cylindrical nonaqueous electrolyte secondary battery according to claim 5, wherein the welding in the third step is performed by a non-contact welding method.
【請求項7】 前記非接触溶着法がレーザー溶着法であ
る、請求項6記載の円筒型非水電解液二次電池の製造方
法。
7. The method for manufacturing a cylindrical nonaqueous electrolyte secondary battery according to claim 6, wherein the non-contact welding method is a laser welding method.
【請求項8】 前記第4ステップにおける取出端子と上
記電流端子との接続又は取出端子とリード線との接続
は、超音波溶着法、ビーム溶着法、及びレーザー溶着法
から成る群から選択される溶着法により行われる、請求
項5記載の円筒型非水電解液二次電池の製造方法。
8. The connection between the extraction terminal and the current terminal or the connection between the extraction terminal and the lead wire in the fourth step is selected from the group consisting of an ultrasonic welding method, a beam welding method, and a laser welding method. The method for producing a cylindrical nonaqueous electrolyte secondary battery according to claim 5, which is performed by a welding method.
JP9232176A 1997-08-28 1997-08-28 Cylindrical nonaqueous electrolyte solution secondary battery and manufacture thereof Pending JPH1173995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9232176A JPH1173995A (en) 1997-08-28 1997-08-28 Cylindrical nonaqueous electrolyte solution secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9232176A JPH1173995A (en) 1997-08-28 1997-08-28 Cylindrical nonaqueous electrolyte solution secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH1173995A true JPH1173995A (en) 1999-03-16

Family

ID=16935204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9232176A Pending JPH1173995A (en) 1997-08-28 1997-08-28 Cylindrical nonaqueous electrolyte solution secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH1173995A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312517A (en) * 1998-04-28 1999-11-09 Shin Kobe Electric Mach Co Ltd Manufacture of battery electrode
JP2001102033A (en) * 1999-09-30 2001-04-13 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2008218234A (en) * 2007-03-05 2008-09-18 Toyota Motor Corp Battery, vehicle on which this battery is mounted, and battery-mounted equipment mounted with this battery
JP2011077105A (en) * 2009-09-29 2011-04-14 Nippon Chemicon Corp Electric double-layer capacitor and method of manufacturing the same
CN102024936A (en) * 2009-09-18 2011-04-20 三星Sdi株式会社 Method of manufacturing electrode assembly for rechargeable battery
JP2011096620A (en) * 2009-11-02 2011-05-12 Samsung Sdi Co Ltd Secondary battery, method for manufacturing the same, and cutting die
JP2012513076A (en) * 2008-11-27 2012-06-07 エムプラス コーポレーション Secondary battery manufacturing method and secondary battery
JP2013543236A (en) * 2010-10-15 2013-11-28 エー123 システムズ, インコーポレイテッド Integrated battery tab
JP2018166080A (en) * 2017-03-28 2018-10-25 株式会社Soken Manufacturing method of secondary battery
CN114566609A (en) * 2022-02-16 2022-05-31 江苏海基新能源股份有限公司 Positive plate structure with variable spacing, cylindrical battery and production process of cylindrical battery
WO2023096389A1 (en) * 2021-11-24 2023-06-01 주식회사 엘지에너지솔루션 Electrode assembly, method and apparatus for manufacturing same, cylindrical battery comprising electrode assembly, and battery pack and vehicle comprising cylindrical battery
WO2023171600A1 (en) * 2022-03-11 2023-09-14 パナソニックエナジ-株式会社 Nonaqueous electrolyte secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312517A (en) * 1998-04-28 1999-11-09 Shin Kobe Electric Mach Co Ltd Manufacture of battery electrode
JP2001102033A (en) * 1999-09-30 2001-04-13 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2008218234A (en) * 2007-03-05 2008-09-18 Toyota Motor Corp Battery, vehicle on which this battery is mounted, and battery-mounted equipment mounted with this battery
JP2012513076A (en) * 2008-11-27 2012-06-07 エムプラス コーポレーション Secondary battery manufacturing method and secondary battery
CN102024936A (en) * 2009-09-18 2011-04-20 三星Sdi株式会社 Method of manufacturing electrode assembly for rechargeable battery
JP2011077105A (en) * 2009-09-29 2011-04-14 Nippon Chemicon Corp Electric double-layer capacitor and method of manufacturing the same
JP2011096620A (en) * 2009-11-02 2011-05-12 Samsung Sdi Co Ltd Secondary battery, method for manufacturing the same, and cutting die
US8900742B2 (en) 2009-11-02 2014-12-02 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing the secondary battery
JP2013543236A (en) * 2010-10-15 2013-11-28 エー123 システムズ, インコーポレイテッド Integrated battery tab
JP2018166080A (en) * 2017-03-28 2018-10-25 株式会社Soken Manufacturing method of secondary battery
WO2023096389A1 (en) * 2021-11-24 2023-06-01 주식회사 엘지에너지솔루션 Electrode assembly, method and apparatus for manufacturing same, cylindrical battery comprising electrode assembly, and battery pack and vehicle comprising cylindrical battery
CN114566609A (en) * 2022-02-16 2022-05-31 江苏海基新能源股份有限公司 Positive plate structure with variable spacing, cylindrical battery and production process of cylindrical battery
WO2023171600A1 (en) * 2022-03-11 2023-09-14 パナソニックエナジ-株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US7976979B2 (en) Secondary battery and method for manufacturing secondary battery
US20110086258A1 (en) Method for manufacturing secondary battery and secondary battery
EP1134819A2 (en) Nonaqueous electrolyte secondary cells
KR20100089092A (en) Secondary battery
JP2007227137A (en) Sealed storage battery
JPH11111261A (en) Manufacture of cylindrical non-aqueous electrolyte secondary battery
JPWO2007142040A1 (en) Secondary battery
JPH1173995A (en) Cylindrical nonaqueous electrolyte solution secondary battery and manufacture thereof
JP2008066075A (en) Non-aqueous secondary battery
JP3831595B2 (en) Cylindrical secondary battery
JP4020544B2 (en) Non-aqueous electrolyte secondary battery
JP3768026B2 (en) Non-aqueous electrolyte secondary battery
KR20090108633A (en) Secondary battery and method for manufacturing secondary battery
JPH11339758A (en) Electrode winding type battery
JP2001257002A (en) Nonaqueous electrolyte secondary battery
JP5334429B2 (en) Lithium secondary battery
JP4679046B2 (en) Battery and battery unit using the same
JP3540585B2 (en) Cylindrical battery
JP2000243372A (en) Secondary battery
JP2001256950A (en) Nonaqueous electrolyte secondary battery
JP2009289714A (en) Lithium-ion secondary battery and method of manufacturing the same
JPH11307128A (en) Lithium ion secondary battery
JPH1064588A (en) Cylindrical lithium secondary battery
JP3511476B2 (en) Lithium secondary battery
JP3906872B2 (en) Battery device