JPH1173975A - Manufacture of cell of solid electrolyte fuel cell - Google Patents

Manufacture of cell of solid electrolyte fuel cell

Info

Publication number
JPH1173975A
JPH1173975A JP9233441A JP23344197A JPH1173975A JP H1173975 A JPH1173975 A JP H1173975A JP 9233441 A JP9233441 A JP 9233441A JP 23344197 A JP23344197 A JP 23344197A JP H1173975 A JPH1173975 A JP H1173975A
Authority
JP
Japan
Prior art keywords
solid electrolyte
cell
interconnector
partial pressure
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9233441A
Other languages
Japanese (ja)
Inventor
Akihiro Yamashita
晃弘 山下
Tsutomu Hashimoto
勉 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9233441A priority Critical patent/JPH1173975A/en
Publication of JPH1173975A publication Critical patent/JPH1173975A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • H01M8/0219Chromium complex oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the denseness of an interconnector, without adversely affecting thermally other members by laminating a plurality of single elements consisting of a fuel electrode, a solid electrolyte and an air electrode on a base substance, connecting each single element by the interconnector, and integrally sintering this in a gas flow having a low oxygen partial pressure. SOLUTION: A plurality of fuel electrodes 2 are formed on a base substance 1 at prescribed intervals. A solid electrolyte 3 is formed on each of the fuel electrodes 2, and a porous air electrode 4 is formed on each solid electrolyte 3. An interconnector 5, consisting of a LaCrO3 base perovskite oxide, is formed between respective single elements consisting of the fuel electrode 2, the solid electrolyte 3 and the air electrode 4 so as to electrically connect the single elements to each other. This is integrally sintered in an air flow with low oxygen partial pressure. The reaction of LaCrO3 with oxygen is suppressed through the sintering in the air flow with low oxygen partial pressure for reducing the formation of CrO3 , and denseness is promoted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池のセルの製造方法に関する。
The present invention relates to a method for manufacturing a cell of a solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、固体電解質を
多孔質性の空気極および燃料極で挟んだ単素子を多孔質
性の基体上に上記燃料極を当接させるように複数配設
し、当該単素子間をインタコネクタで電気的に接続して
構成したセルを備えてなっている。
2. Description of the Related Art In a solid oxide fuel cell, a plurality of single elements in which a solid electrolyte is sandwiched between a porous air electrode and a fuel electrode are arranged on a porous substrate such that the fuel electrode is in contact with the porous element. And a cell configured by electrically connecting the single elements with an interconnector.

【0003】このようなセルは、燃料極、固体電解質、
空気極、インタコネクタの各材料のスラリを基体上にそ
れぞれ被覆した後、約1400℃で一体的に焼結(スラ
リ一体焼結法)して成膜することにより製造される。
Such a cell comprises an anode, a solid electrolyte,
It is manufactured by coating a slurry of each material of the air electrode and the interconnector on a substrate, and then sintering them integrally at about 1400 ° C. (slurry integrated sintering method) to form a film.

【0004】このようなセルを備えた固体電解質型燃料
電池では、基体の外側に空気や酸素などの酸化ガスを流
通させ、基体の内側に水素やメタンなどの燃料ガスを流
通させる一方、温度を約800〜1000℃まで上昇さ
せると、燃料ガスが基体および燃料極を透過すると共
に、酸化ガスが空気極を透過して、これらガスが固体電
解質で電気化学的に反応し、電力を得ることができる。
In a solid oxide fuel cell equipped with such a cell, an oxidizing gas such as air or oxygen flows through the outside of the base, and a fuel gas such as hydrogen or methane flows through the inside of the base. When the temperature is raised to about 800 to 1000 ° C., the fuel gas permeates the substrate and the fuel electrode, and the oxidizing gas permeates the air electrode, and these gases react electrochemically with the solid electrolyte to obtain electric power. it can.

【0005】[0005]

【発明が解決しようとする課題】前述したような固体電
解質型燃料電池のセルにおいて、そのインタコネクタに
は、電子導電性はもちろんのこと、他の部材との作動雰
囲気下での未反応性および熱膨張率の同等性を始めとし
て、酸化雰囲気(酸化ガス)と還元雰囲気(燃料ガス)
との遮断性(緻密性)などが要求されるため、LaCr
3 系のペロブスカイト型酸化物が用いられている。し
かしながら、発電性能をさらに向上させるため、上記イ
ンタコネクタの緻密性(焼結密度)をさらに高めようと
すると、上記酸化物材料が難焼結性であることから、1
600℃以上の温度で焼結しなければならず、他の部材
に熱的に悪影響を与えてしまうという問題を生じてい
た。
In the solid electrolyte fuel cell described above, the interconnector has not only electronic conductivity but also non-reactivity under operating atmosphere with other members. Oxidizing atmosphere (oxidizing gas) and reducing atmosphere (fuel gas), including the equivalent thermal expansion coefficient
LaCr is required because of its high barrier property (density).
An O 3 -based perovskite oxide is used. However, in order to further increase the denseness (sintering density) of the interconnector in order to further improve the power generation performance, the oxide material is difficult to sinter.
Sintering must be performed at a temperature of 600 ° C. or more, which has a problem that other members are adversely affected thermally.

【0006】このようなことから、本発明は、他の部材
に熱的に悪影響を与えることなくインタコネクタの緻密
性を向上させることができる固体電解質型燃料電池のセ
ルの製造方法を提供することを目的とした。
In view of the above, the present invention provides a method for manufacturing a cell of a solid oxide fuel cell which can improve the denseness of an interconnector without thermally adversely affecting other members. Aimed at.

【0007】[0007]

【課題を解決するための手段】前述した課題を解決する
ための、本発明による固体電解質型燃料電池のセルの製
造方法は、基体上に設けられた燃料極、固体電解質およ
び空気極からなる複数の単素子間をインタコネクタで電
気的に接続したセルをスラリ一体焼結法で製造する固体
電解質型燃料電池のセルの製造方法であって、当該セル
を低酸素分圧の気流中で一体焼結することを特徴とす
る。
A method of manufacturing a cell of a solid oxide fuel cell according to the present invention, which solves the above-mentioned problems, comprises a plurality of cells comprising a fuel electrode, a solid electrolyte, and an air electrode provided on a substrate. A method for manufacturing a cell of a solid oxide fuel cell, wherein a cell in which single elements are electrically connected by an interconnector is manufactured by a slurry integrated sintering method, wherein the cell is integrally fired in a stream of low oxygen partial pressure. It is characterized by tying.

【0008】[0008]

【発明の実施の形態】本発明による固体電解質型燃料電
池のセルの製造方法の実施の形態を図1を用いて説明す
る。なお、図1は、その方法により製造されたセルの要
部の概略構成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a cell of a solid oxide fuel cell according to the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a main part of a cell manufactured by the method.

【0009】図1において、1は基体、2は燃料極、3
は固体電解質、4は空気極、5はインタコネクタであ
る。
In FIG. 1, 1 is a base, 2 is a fuel electrode, 3
Is a solid electrolyte, 4 is an air electrode, and 5 is an interconnector.

【0010】基体1は、ジルコニア酸化物などからなる
多孔質体であり、板状または管状をなしている。燃料極
2は、基体1上に所定の間隔で複数成膜されている。固
体電解質3は、YSZ(イットリアで安定化させたジル
コニア)などからなり、燃料極2上にそれぞれ成膜され
ている。空気極4は、ペロブスカイト型複合酸化物から
なる多孔質体であり、固体電解質3上にそれぞれ成膜さ
れている。インタコネクタ5は、LaCrO3 系のペロ
ブスカイト型酸化物からなり、上記燃料極2、固体電解
質3、空気極4などからなる単素子間を電気的に接続す
るように当該単素子間にそれぞれ成膜されている。
The base 1 is a porous body made of zirconia oxide or the like, and has a plate shape or a tubular shape. A plurality of fuel electrodes 2 are formed on the substrate 1 at predetermined intervals. The solid electrolyte 3 is made of YSZ (zirconia stabilized with yttria) or the like, and is formed on the fuel electrode 2 respectively. The air electrode 4 is a porous body made of a perovskite-type composite oxide, and is formed on the solid electrolyte 3. The interconnector 5 is made of a LaCrO 3 -based perovskite-type oxide, and a film is formed between the single elements such as the fuel electrode 2, the solid electrolyte 3, and the air electrode 4 so as to electrically connect the single elements. Have been.

【0011】次に、このような構造をなすセルの本発明
に基づく製造方法を説明する。従来と同様に基体1上に
燃料極2、固体電解質3、空気極4、インタコネクタ5
の各材料のスラリを塗布した後、これを低酸素分圧の気
流中で従来と同様な温度(1400℃)で一体的に焼結
することにより、緻密性(焼結密度)の高いインタコネ
クタ5を有するセルを得ることができる。
Next, a method of manufacturing a cell having such a structure according to the present invention will be described. A fuel electrode 2, a solid electrolyte 3, an air electrode 4, an interconnector 5
After the slurry of each material is applied, it is integrally sintered at a temperature (1400 ° C.) similar to the conventional one in a low oxygen partial pressure airflow, so that an interconnector having high denseness (sintering density) is obtained. 5 can be obtained.

【0012】すなわち、空気中で焼結すると、インタコ
ネクタ5は、LaCrO3 が下記の式に示すように酸素
と反応してCrO3 を生じて表面から蒸発拡散させなが
ら凝縮して焼結が進行することから、緻密化の程度が低
くなってしまうものの、低酸素分圧の気流中で焼結すれ
ば、LaCrO3 の酸素との反応が抑えられてCrO 3
の発生が低減し、緻密化が促進されるのである。
That is, when sintering in air,
Nectar 5 is made of LaCrOThreeIs oxygen as shown in the following formula
Reacts with CrOThreeAnd cause evaporation and diffusion from the surface
And the sintering proceeds, the degree of densification is low.
Sintering in a low oxygen partial pressure air stream
For example, LaCrOThreeReaction with oxygen is suppressed and CrO Three
Is reduced, and densification is promoted.

【0013】[0013]

【化1】LaCrO3 + 3/4O2(g)= 0.5La2 3
CrO3(g)
## STR1 ## LaCrO 3 + 3 / 4O 2 (g) = 0.5 La 2 O 3 +
CrO 3 (g)

【0014】したがって、このようなセルの製造方法に
よれば、他の部材に熱的に悪影響を与えることなくイン
タコネクタの緻密性を向上させることができる。
Therefore, according to such a cell manufacturing method, it is possible to improve the denseness of the interconnector without adversely affecting other members thermally.

【0015】なお、低酸素分圧気流には、5%水素−窒
素気流を適用するとよい。なぜなら、工業用の窒素ガス
中には、通常、10-4〜10-7atm程度の酸素が含有
されているため、窒素ガス中に水素ガスを添加(5%程
度)することにより、窒素ガス中の酸素分圧をさらに低
減(10-18 atm程度)することができるからであ
る。
The low oxygen partial pressure air stream is preferably a 5% hydrogen-nitrogen air stream. This is because industrial nitrogen gas usually contains about 10 -4 to 10 -7 atm of oxygen, and therefore, by adding hydrogen gas (about 5%) to nitrogen gas, nitrogen gas is added. This is because the oxygen partial pressure can be further reduced (about 10 −18 atm).

【0016】[0016]

【実施例】本発明による固体電解質型燃料電池のセルの
製造方法の効果を確認するため、次のような試験を行っ
た。
EXAMPLES In order to confirm the effect of the method for manufacturing a cell of a solid oxide fuel cell according to the present invention, the following test was conducted.

【0017】[試験体の作製]図2に示すように、円筒
型(外径:20mm,内径:15mm,長さ200m
m)をなす基体11の外周面の長手方向中央部分(中心
から両端側へ各々50mmの範囲(計100mm))に
インタコネクタ15の材料のスラリを塗布すると共に、
当該基体11の長手方向両端側(端部から中心へ50m
m強の範囲)に固体電解質13の材料のスラリを塗布し
た後、低酸素分圧(5%水素−窒素)の気流中、140
0℃で5時間一体焼結することにより、試験体S1 を作
製した。なお、基体11、インタコネクタ15の材料の
スラリ、固体電解質13の材料のスラリは、以下のよう
にして作製した。
[Preparation of Specimen] As shown in FIG. 2, cylindrical type (outer diameter: 20 mm, inner diameter: 15 mm, length: 200 m)
m), a slurry of the material of the interconnector 15 is applied to the central portion in the longitudinal direction of the outer peripheral surface of the base 11 (a range of 50 mm from the center to both ends (100 mm in total)),
Both ends in the longitudinal direction of the base 11 (50 m from the end to the center)
m), a slurry of the material of the solid electrolyte 13 is applied to the solid electrolyte 13 in a low oxygen partial pressure (5% hydrogen-nitrogen) gas stream.
By 5 hours integrally sintered at 0 ° C., to produce a test body S 1. In addition, the slurry of the material of the base 11, the interconnector 15, and the slurry of the material of the solid electrolyte 13 were produced as follows.

【0018】<基体11>ZrO2 とCaOとの粉体を
所定の割合(CaO:15〜20mol%)で混合し、
空気雰囲気中1500℃で5時間焼成した後、この粉体
(CSZ)をボールミルで粉砕(中心粒径:約10〜2
0μm)し、円筒型(外径:20mm,内径:15m
m,長さ200mm)をなすようにバインダと共に成型
して基体11を作製した。
<Substrate 11> Powder of ZrO 2 and CaO is mixed at a predetermined ratio (CaO: 15 to 20 mol%),
After firing at 1500 ° C. for 5 hours in an air atmosphere, the powder (CSZ) is pulverized by a ball mill (central particle size: about 10 to 2).
0 μm) and cylindrical (outer diameter: 20 mm, inner diameter: 15 m)
m, length 200 mm) together with the binder to form the base 11.

【0019】<インタコネクタ15の材料のスラリ>A
サイトLaへのSr置換量として10mol%となるよ
うにLa,Sr,Crの各硝酸塩を秤量して蒸留水と共
に混合し、この水溶液を空気中150〜200℃で加熱
して蒸発乾固させた後、空気中900℃で5時間焼成す
ることにより、(La0.9 Sr0.1 )CrO3 となる単
一のペロブスカイト型酸化物(平均粒径:0.5μm)
を得た。この粉体(10wt%)と水(60wt%)と分散
剤(30wt%)とを混合攪拌することによりインタコネ
クタ15の材料のスラリを作製した。
<Slurry of Material of Interconnector 15> A
Each nitrate of La, Sr, and Cr was weighed and mixed with distilled water so that the amount of Sr substituted on site La was 10 mol%, and this aqueous solution was heated in air at 150 to 200 ° C. and evaporated to dryness. Thereafter, by firing in air at 900 ° C. for 5 hours, a single perovskite oxide (average particle size: 0.5 μm) that becomes (La 0.9 Sr 0.1 ) CrO 3 is obtained.
I got This powder (10 wt%), water (60 wt%) and dispersant (30 wt%) were mixed and stirred to produce a slurry of the material of the interconnector 15.

【0020】<固体電解質13の材料のスラリ>ZrO
2 とY2 3 とを所定の割合(Y2 3 :8mol%)
で混合し、この混合酸化物と(10wt%)と水(60wt
%)と分散剤(30wt%)とを混合攪拌することにより
固体電解質13の材料のスラリを作製した。
<Slurry of Material of Solid Electrolyte 13> ZrO
2 and Y 2 O 3 at a predetermined ratio (Y 2 O 3 : 8 mol%)
And the mixed oxide, (10 wt%) and water (60 wt%)
%) And a dispersant (30 wt%) were mixed and stirred to produce a slurry of the material of the solid electrolyte 13.

【0021】[比較体の作製]試験体S1 と同様な基体
11に、試験体S1 と同様なインタコネクタ15および
固体電解質13の材料のスラリを試験体S1 の作製の場
合と同様にして塗布した後、空気中、1400℃で5時
間一体焼結することにより、比較体S2 を作製した。
[0021] Comparative of Preparation] Specimen S 1 and similar base 11, a slurry of the material of the specimen S 1 and similar interconnector 15 and the solid electrolyte 13 in the same manner as in the preparation of the test specimen S 1 after coating Te, in air, by 5 hours integrally sintered at 1400 ° C., to produce a comparison member S 2.

【0022】[試験方法]図3に示すように、試験体S
1 の両端側に金属製のスリーブ101を取り付け、これ
を金属製の容器102内にセットし、水素ガス送給装置
103で一方のスリーブ101から試験体S1 の内側に
水素ガスを200cc/minで送給すると共に、窒素
ガス送給装置104で容器102内に、すなわち、試験
体S1 の外側に窒素ガスを200cc/minで送給
し、他方のスリーブ101に流出してくるガスの流量を
ガスメータ105で計測しながら当該ガスの組成をガス
クロマトグラフ106で分析する共に、容器102内か
ら外部に流出してくるガスの流量をガスメータ107で
計測しながら当該ガスの組成をガスクロマトグラフ10
8で分析することにより、試験体S1 の内部から外部へ
漏出する水素リーク率を求めた。なお、比較体S2 にお
いても、上述と同様にして水素リーク率を求めた。
[Test Method] As shown in FIG.
A metal sleeve 101 is attached to both ends of the sample 1 , this is set in a metal container 102, and hydrogen gas is supplied at 200 cc / min from one of the sleeves 101 to the inside of the test piece S 1 by a hydrogen gas supply device 103. in conjunction with feeding Kyusuru, the container 102 in a nitrogen gas feeder 104, i.e., feeds feeding a nitrogen gas at 200 cc / min to the outside of the specimen S 1, the flow rate of gas flowing out to the other sleeve 101 Is analyzed by a gas chromatograph 106 while measuring the gas composition by a gas meter 105, and the composition of the gas is measured by a gas chromatograph 10 while measuring the flow rate of the gas flowing out of the container 102 to the outside with a gas meter 107.
By analyzing at 8, to determine the hydrogen leak rate escaping from the inside to the outside of the specimen S 1. Also in comparison body S 2, was determined hydrogen leak rate in the same manner as described above.

【0023】[試験結果]上述したようにして試験を行
ったところ、比較体S2 では、水素リーク率が約25%
となるのに対し、試験体S1 では、水素リーク率が約
1.3%となり、比較体S2 の約1/20となった。
[0023] [Test Results] was tested as described above, in the comparative member S 2, the hydrogen leak rate of about 25%
Whereas the, in specimen S 1, next to hydrogen leak rate of about 1.3%, was about 1/20 of the comparison body S 2.

【0024】以上のことから、低酸素分圧の気流中で一
体焼結することにより、焼結温度を上げることなくイン
タコネクタ(LaCrO3 系のペロブスカイト型酸化
物)の焼結密度を高めて緻密性を向上できることが確認
できた。
As described above, by sintering integrally in an air stream having a low oxygen partial pressure, the sintering density of the interconnector (LaCrO 3 -based perovskite oxide) is increased without increasing the sintering temperature, and the density is increased. It was confirmed that the performance could be improved.

【0025】[0025]

【発明の効果】本発明による固体電解質型燃料電池のセ
ルの製造方法では、基体上に設けられた燃料極、固体電
解質および空気極からなる複数の単素子間をインタコネ
クタで電気的に接続したセルをスラリ一体焼結法で製造
する固体電解質型燃料電池のセルの製造方法であって、
当該セルを低酸素分圧の気流中で一体焼結することか
ら、焼結温度を上げることなくインタコネクタの焼結密
度を高めることができるので、他の部材に熱的に悪影響
を与えることなくインタコネクタの緻密性を向上させる
ことができる。
In the method for manufacturing a cell of a solid oxide fuel cell according to the present invention, a plurality of single elements comprising a fuel electrode, a solid electrolyte and an air electrode provided on a substrate are electrically connected by an interconnector. A method for manufacturing a cell of a solid oxide fuel cell, wherein the cell is manufactured by a slurry integrated sintering method,
Since the cell is integrally sintered in a low oxygen partial pressure airflow, the sintering density of the interconnector can be increased without increasing the sintering temperature, so that other members are not adversely affected thermally. The denseness of the interconnector can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による固体電解質型燃料電池のセルの製
造方法の実施の形態により製造されたセルの要部の概略
構造図である。
FIG. 1 is a schematic structural view of a main part of a cell manufactured by an embodiment of a method for manufacturing a cell of a solid oxide fuel cell according to the present invention.

【図2】効果確認試験に用いた試験体の概略構造図であ
る。
FIG. 2 is a schematic structural view of a test body used for an effect confirmation test.

【図3】効果確認試験の説明図である。FIG. 3 is an explanatory diagram of an effect confirmation test.

【符号の説明】[Explanation of symbols]

1,11 基体 2 燃料極 3,13 固体電解質 4 空気極 5,15 インタコネクタ 101 スリーブ 102 容器 103 水素ガス送給装置 104 窒素ガス送給装置 105,107 ガスメータ 106,108 ガスクロマトグラフ S1 試験体 S2 比較体1,11 substrate 2 anode 3 and 13 solid electrolyte 4 air electrode 5,15 interconnector 101 sleeve 102 container 103 hydrogen gas delivery system 104 nitrogen gas feeder 105, 107 a gas meter 106, 108 Gas Chromatograph S 1 specimen S 2 comparator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基体上に設けられた燃料極、固体電解質
および空気極からなる複数の単素子間をインタコネクタ
で電気的に接続したセルをスラリ一体焼結法で製造する
固体電解質型燃料電池のセルの製造方法であって、当該
セルを低酸素分圧の気流中で一体焼結することを特徴と
する固体電解質型燃料電池のセルの製造方法。
1. A solid oxide fuel cell in which a plurality of single elements comprising a fuel electrode, a solid electrolyte, and an air electrode provided on a base are electrically connected by an interconnector by a slurry integrated sintering method. The method for producing a cell of a solid oxide fuel cell, characterized in that the cell is integrally sintered in a low oxygen partial pressure airflow.
JP9233441A 1997-08-29 1997-08-29 Manufacture of cell of solid electrolyte fuel cell Withdrawn JPH1173975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9233441A JPH1173975A (en) 1997-08-29 1997-08-29 Manufacture of cell of solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9233441A JPH1173975A (en) 1997-08-29 1997-08-29 Manufacture of cell of solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH1173975A true JPH1173975A (en) 1999-03-16

Family

ID=16955099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9233441A Withdrawn JPH1173975A (en) 1997-08-29 1997-08-29 Manufacture of cell of solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH1173975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243965A (en) * 2000-02-29 2001-09-07 Kyocera Corp Cell for solid electrolyte fuel cell and its manufacturing method and fuel cell having the same
WO2004088783A1 (en) * 2003-03-31 2004-10-14 Tokyo Gas Company Limited Method for fabricating solid oxide fuel cell module
WO2007083627A1 (en) 2006-01-17 2007-07-26 Osaka Gas Co., Ltd. Cell for solid oxide fuel cell and process for producing the same
JP2013501330A (en) * 2009-08-03 2013-01-10 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Metal-supported electrochemical cell and manufacturing method thereof
JP2016533016A (en) * 2013-09-04 2016-10-20 シーリーズ インテレクチュアル プロパティ カンパニー リミティド Method for forming a metal-supported solid oxide fuel cell
JP2018113148A (en) * 2017-01-11 2018-07-19 日本碍子株式会社 Electrochemical cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243965A (en) * 2000-02-29 2001-09-07 Kyocera Corp Cell for solid electrolyte fuel cell and its manufacturing method and fuel cell having the same
WO2004088783A1 (en) * 2003-03-31 2004-10-14 Tokyo Gas Company Limited Method for fabricating solid oxide fuel cell module
JPWO2004088783A1 (en) * 2003-03-31 2006-07-06 東京瓦斯株式会社 Method for producing solid oxide fuel cell module
US7838166B2 (en) 2003-03-31 2010-11-23 Tokyo Gas Co., Ltd. Method for fabricating solid oxide fuel cell module
WO2007083627A1 (en) 2006-01-17 2007-07-26 Osaka Gas Co., Ltd. Cell for solid oxide fuel cell and process for producing the same
EP1976045A1 (en) * 2006-01-17 2008-10-01 Osaka Gas Company Limited Cell for solid oxide fuel cell and process for producing the same
EP1976045A4 (en) * 2006-01-17 2009-06-17 Osaka Gas Co Ltd Cell for solid oxide fuel cell and process for producing the same
US8178254B2 (en) 2006-01-17 2012-05-15 Osaka Gas Co., Ltd. Cell for solid oxide fuel cell and method for manufacturing same
JP5160241B2 (en) * 2006-01-17 2013-03-13 大阪瓦斯株式会社 Solid oxide fuel cell and method for producing the same
JP2013501330A (en) * 2009-08-03 2013-01-10 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Metal-supported electrochemical cell and manufacturing method thereof
JP2016533016A (en) * 2013-09-04 2016-10-20 シーリーズ インテレクチュアル プロパティ カンパニー リミティド Method for forming a metal-supported solid oxide fuel cell
JP2018113148A (en) * 2017-01-11 2018-07-19 日本碍子株式会社 Electrochemical cell

Similar Documents

Publication Publication Date Title
EP0188056B1 (en) High temperature solid electrolyte electrochemical cells
US7659025B2 (en) Electrode-supported solid state electrochemical cell
US4598028A (en) High strength porous support tubes for high temperature solid electrolyte electrochemical cells
US6436565B1 (en) Fuel electrode-supported tubular solid oxide fuel cell and method of manufacturing the same
US20030148160A1 (en) Anode-supported tubular solid oxide fuel cell stack and method of fabricating the same
EP0180289A1 (en) High temperature solid electrolyte electrochemical cells
EP0552055B1 (en) A process for producing solid oxide fuel cells
Shi et al. Electrochemical performance of cobalt‐free Nd0. 5Ba0. 5Fe1–xNixO3–δ cathode materials for intermediate temperature solid oxide fuel cells
JPH07153469A (en) Solid electrolyte fuel cell
US5916700A (en) Lanthanum manganite-based air electrode for solid oxide fuel cells
JP5219370B2 (en) Ionic conductor
JP3661676B2 (en) Solid oxide fuel cell
JPH1173975A (en) Manufacture of cell of solid electrolyte fuel cell
WO2018021424A1 (en) Electrochemical cell stack
JP3377693B2 (en) Method for manufacturing solid oxide fuel cell
JP2001052725A (en) Material for peripheral member of cylindrical solid electrolyte fuel cell and cell making use of the same
CA2117507A1 (en) Stable air electrode for high temperature solid oxide electrolyte electrochemical cells
JPH09241076A (en) Electrically conductive ceramic and solid electrolyte type fuel cell
WO2018021429A1 (en) Electrochemical cell stack
JPH0778621A (en) Solid electrolyte fuel cell
JP3354793B2 (en) Cell of cylindrical solid electrolyte fuel cell
JP7202172B2 (en) Anode and Solid Oxide Electrochemical Cell
JP2000077082A (en) Solid electrolyte fuel cell
JP5248177B2 (en) Horizontally-striped solid oxide fuel cell stack and manufacturing method thereof
JP3667141B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102