JPH117034A - Liquid crystal display element and production therefor - Google Patents

Liquid crystal display element and production therefor

Info

Publication number
JPH117034A
JPH117034A JP16168697A JP16168697A JPH117034A JP H117034 A JPH117034 A JP H117034A JP 16168697 A JP16168697 A JP 16168697A JP 16168697 A JP16168697 A JP 16168697A JP H117034 A JPH117034 A JP H117034A
Authority
JP
Japan
Prior art keywords
flexible substrate
liquid crystal
transparent electrode
side direction
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16168697A
Other languages
Japanese (ja)
Inventor
Shuichi Imai
秀一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP16168697A priority Critical patent/JPH117034A/en
Publication of JPH117034A publication Critical patent/JPH117034A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent warpage due to the thermal expansion and the thermal contraction of flexible substrates by arranging transparent electrodes arranged on a flexible substrate and transparent electrodes arranged on another substrate while opposing them and making them orthogonally cross. SOLUTION: An electrode group 2 and an electrode group 5 are respectively formed on a flexible substrate 1 and a flexible substrate 4 by a photoetching method so that the stripe direction of the electrode group 2 and the stripe direction of the electrode group 5 respectively become parallel with the long side direction of the substrate 1 and the short side direction of the substrate 4. Next, after the substrates are printed with oriented films 29 and are baked, substrates are subjected to orientation processings. Next, spacers 21 are dispersed on the flexible substrate 1 by an electrostatic dispersing method and sealing material 22 are coated on the flexible substrate 4 by a dispenser coating method. Then, after the substrates 1, 4 are stuck so that the long side direction of the substrate 1 and the short side direction of the substrate 4 orthogonally cross each other and they are made to have a prescribed gap by being pressurized and the sealing material 22 are hardened by a high-pressure mercury-vapor lamp 24 with a filter 23, liquid crystal is poured into the gap.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術術分野】本発明は、液晶表示素子及
びその製造方法に関する。
The present invention relates to a liquid crystal display device and a method for manufacturing the same.

【0002】[0002]

【背景の技術】可撓性基板の液晶表示素子の製造方法
は、上下の偏光板を加熱処理してから貼り付ける方法
(特開平6−67172)や、偏光板の伸びよりプラス
チックフィルムの伸びが大きくなるようにする方法(特
開平6−208108)や、液晶パネル形成後圧力をか
けてアニール処理する方法(特開平7−5406)や、
スリットを設けて上下のフィルムの熱膨張率を同一にす
る方法(特開平7−56129)や、常温で平坦になる
曲率半径でプラスチック基板を形成しプラスチック基板
の凹面に透明導伝膜を形成して平坦にする方法(特開平
7−64067)や、透明導電膜が形成される面と他方
の面とにコーティング層を膜厚差をつけて設ける方法
(特開平7−175053)や、プラスチック基板の両
面に透明導電膜を設け片面をパターン形成後もう一方の
面を全剥離する方法(特開平7−175055)や、常
温で硬化反応が進むシール材を用いる方法(特開平7−
234411)などが提案されている。
2. Description of the Related Art A method of manufacturing a liquid crystal display element having a flexible substrate includes a method in which upper and lower polarizing plates are heat-treated and then bonded (Japanese Patent Laid-Open No. 6-67172). A method of increasing the size (JP-A-6-208108), a method of performing an annealing process by applying pressure after forming a liquid crystal panel (JP-A-7-5406),
A method in which slits are provided to make the thermal expansion coefficients of the upper and lower films the same (Japanese Patent Laid-Open No. 7-56129), or a plastic substrate is formed with a radius of curvature that becomes flat at room temperature, and a transparent conductive film is formed on the concave surface of the plastic substrate. (Japanese Patent Laid-Open No. Hei 7-64067), a method of providing a coating layer with a difference in thickness between the surface on which the transparent conductive film is formed and the other surface (Japanese Patent Laid-Open No. 7-175053), A method in which a transparent conductive film is provided on both surfaces and a pattern is formed on one surface and the other surface is completely peeled off (JP-A-7-175055), or a method using a sealing material in which a curing reaction proceeds at room temperature (JP-A-7-175).
234411) has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上下の偏光板
を加熱処理してから貼り付ける方法では、偏光板の特性
が劣化するという問題があった。
However, the method of attaching the upper and lower polarizing plates after heat treatment has a problem that the characteristics of the polarizing plates are deteriorated.

【0004】また、偏光板の伸びよりプラスチックフィ
ルムの伸びが大きくなるようにする方法では、セルギャ
ップが多少変化するのでSTN表示において表示均一性
が損なわれるという問題があった。
Further, in the method of making the plastic film stretch larger than the polarizing plate, there is a problem that the uniformity of the display is deteriorated in the STN display because the cell gap slightly changes.

【0005】また、液晶パネル形成後圧力をかけてアニ
ール処理する方法では、基板の歪みは緩和されるが液晶
表示素子の反りを解消することができないという問題が
あった。
Further, in the method of annealing by applying pressure after the liquid crystal panel is formed, there is a problem that the distortion of the substrate is reduced, but the warpage of the liquid crystal display element cannot be eliminated.

【0006】また、常温で平坦になる曲率半径でプラス
チック基板を形成しプラスチック基板の凹面に透明導伝
膜を形成して平坦にする方法や、透明導電膜が形成され
る面と他方の面とにコーティング層を膜厚差をつけて設
ける方法や、常温で硬化反応が進むシール材を用いる方
法では、生産効率が劣るという問題があった。
Further, a method of forming a plastic substrate with a radius of curvature that becomes flat at room temperature and forming a transparent conductive film on a concave surface of the plastic substrate to flatten the plastic substrate, and a method of forming a transparent conductive film on the other surface with the other surface. The method of providing a coating layer with a difference in film thickness or the method of using a sealing material in which a curing reaction proceeds at room temperature has a problem that production efficiency is poor.

【0007】また、従来の可撓性基板を用いた液晶表示
素子は、市場に提供するにあたり高価になってしまうと
いう問題があった。
Further, there has been a problem that a conventional liquid crystal display device using a flexible substrate is expensive when provided on the market.

【0008】また、可撓性基板は紫外線を吸収し、変色
・劣化する特性をもち、紫外線硬化による接着剤を使用
出来ないという問題があった。
Further, there is a problem that the flexible substrate absorbs ultraviolet rays, has a characteristic of discoloring and deteriorating, and cannot use an adhesive cured by ultraviolet rays.

【0009】そこで本発明は、このような従来技術の問
題点を克服するものであって、その目的とするところ
は、可撓性基板の熱膨張や熱収縮による液晶表示素子の
反りを防止し、また、紫外線照射による可撓性基板の変
色・劣化をなくし効率的に液晶表示素子を製造する液晶
表示素子の製造方法を提供することにあり、さらに、低
価格の液晶表示素子を提供することにある。
Therefore, the present invention is to overcome such problems of the prior art, and an object of the present invention is to prevent a liquid crystal display element from warping due to thermal expansion or thermal contraction of a flexible substrate. Another object of the present invention is to provide a method of manufacturing a liquid crystal display element for efficiently manufacturing a liquid crystal display element by eliminating discoloration and deterioration of a flexible substrate due to ultraviolet irradiation, and to provide a low-cost liquid crystal display element. It is in.

【0010】[0010]

【課題を解決するための手段】本発明の液晶表示素子
は、第1の可撓性基板に配置された第1の透明電極と、
第2の可撓性基板に配置された第2の透明電極とを対向
するように配置した液晶表示素子であって、前記第1の
透明電極と前記第2の透明電極とが実質的に直交してい
ることを特徴とする。この際、第1の透明電極を第1の
可撓性基板の短辺方向と同一方向に配置し、第2の透明
電極を前記第2の可撓性基板の短辺方向と同一方向に配
置してもよいし、第1の透明電極を第1の可撓性基板の
長辺方向と同一方向に配置し、第2の透明電極を前記第
2の可撓性基板の長辺方向と同一方向に配置してもよ
い。あるいは、第1の透明電極を第1の可撓性基板の短
辺方向と同一方向に配置し、第2の透明電極を第2の可
撓性基板の短辺方向と同一方向に配置してもよい。
According to the present invention, there is provided a liquid crystal display element comprising: a first transparent electrode disposed on a first flexible substrate;
A liquid crystal display element in which a second transparent electrode disposed on a second flexible substrate is disposed so as to face the liquid crystal display, wherein the first transparent electrode and the second transparent electrode are substantially orthogonal to each other. It is characterized by doing. At this time, the first transparent electrode is arranged in the same direction as the short side direction of the first flexible substrate, and the second transparent electrode is arranged in the same direction as the short side direction of the second flexible substrate. Alternatively, the first transparent electrode may be disposed in the same direction as the long side direction of the first flexible substrate, and the second transparent electrode may be disposed in the same direction as the long side direction of the second flexible substrate. It may be arranged in the direction. Alternatively, the first transparent electrode is arranged in the same direction as the short side direction of the first flexible substrate, and the second transparent electrode is arranged in the same direction as the short side direction of the second flexible substrate. Is also good.

【0011】一般的に可撓性基板は、ITO等の透明電
極が形成された方向では収縮が生じにくく、ITOが形
成されていない部分と交差する方向つまりはITOが形
成された方向と直交する方向では収縮が生じやすい。こ
れは、可撓性基板がITO等の透明電極に比して柔らか
いことに起因する。上記した本発明の構成を用いること
により、第1の可撓性基板の収縮が生じにくい方向と第
2の可撓性基板の収縮が生じやすい方向とが直交し、且
つ第2の可撓性基板の収縮が生じにくい方向と第1の可
撓性基板の収縮が生じやすい方向とが直交しているの
で、液晶表示素子全体としては、収縮又は変形が生じる
方向が緩和及び均一化されることとなる。その結果、特
別な工程を付与することなく品質の安定した液晶表示素
子を提供できるようなり、生産費用の削減に大いに貢献
できるようになる。
In general, a flexible substrate is unlikely to shrink in a direction in which a transparent electrode such as ITO is formed, and intersects with a portion where ITO is not formed, that is, is orthogonal to a direction in which ITO is formed. Shrinkage tends to occur in the direction. This is because the flexible substrate is softer than a transparent electrode such as ITO. By using the above-described structure of the present invention, the direction in which the first flexible substrate is unlikely to contract and the direction in which the second flexible substrate is likely to contract are orthogonal to each other, and the second flexible substrate has the second flexibility. Since the direction in which the substrate is unlikely to contract and the direction in which the first flexible substrate is likely to contract are orthogonal to each other, the direction in which the contraction or deformation occurs is relaxed and uniform for the entire liquid crystal display element. Becomes As a result, a liquid crystal display element having stable quality can be provided without providing a special process, which can greatly contribute to reduction in production cost.

【0012】また、本発明の液晶素子の製造方法は第1
の透明電極が配置された第1の可撓性基板と、第2の透
明電極が配置された第2の透明電極とを前記第1の透明
電極と前記第2の透明電極とが実質的に直交するように
貼り合わせる工程を含むことを特徴とする。この際、こ
の際、第1の透明電極を第1の可撓性基板の短辺方向と
同一方向に配置し、第2の透明電極を前記第2の可撓性
基板の長短辺方向と同一方向に配置してもよいし、第1
の透明電極を第1の可撓性基板の長辺方向と同一方向に
配置し、第2の透明電極を前記第2の可撓性基板の長短
辺方向と同一方向に配置してもよい。あるいは、第1の
透明電極を第1の可撓性基板の短辺方向と同一方向に配
置し、第2の透明電極を第2の可撓性基板の短辺方向と
同一方向に配置してもよい。また、第1の透明電極が形
成された第1の可撓性基板上及び第2の透明電極が形成
された第2の可撓性基板上に印刷法により液晶用配向膜
工程や、第1の透明電極が形成された領域にスペーサー
を散布する工程等を適宜組み合わせて用いるとよい。ま
た、圧力をかけながらセルギャップを一定にする圧着工
程を含んでもよい。
Further, the method for manufacturing a liquid crystal element of the present invention is the first method.
The first transparent substrate on which the transparent electrode is disposed and the second transparent electrode on which the second transparent electrode is disposed substantially form the first transparent electrode and the second transparent electrode. The method is characterized in that it includes a step of sticking so as to be orthogonal. At this time, the first transparent electrode is disposed in the same direction as the short side direction of the first flexible substrate, and the second transparent electrode is disposed in the same direction as the long and short side direction of the second flexible substrate. Direction, or the first
May be arranged in the same direction as the long side direction of the first flexible substrate, and the second transparent electrode may be arranged in the same direction as the long and short side directions of the second flexible substrate. Alternatively, the first transparent electrode is arranged in the same direction as the short side direction of the first flexible substrate, and the second transparent electrode is arranged in the same direction as the short side direction of the second flexible substrate. Is also good. In addition, a liquid crystal alignment film process is performed on the first flexible substrate on which the first transparent electrode is formed and the second flexible substrate on which the second transparent electrode is formed by a printing method. The step of spraying a spacer on the region where the transparent electrode is formed may be used in appropriate combination. Further, a pressure bonding step for keeping the cell gap constant while applying pressure may be included.

【0013】また、前記第1の可撓性基板と前記第2の
可撓性基板のうち少なくとも一方の可撓性基板上にシー
ル部材を塗布する工程と、前記シール部材を硬化させる
工程と、をさらに含むことを特徴とする。そして、前記
シール部材は、光硬化型接着剤であると好ましい。更に
は、前記シール部材を硬化させるために、380nm以
上450nm以下の波長の光を用いると好ましい。
A step of applying a seal member on at least one of the first flexible substrate and the second flexible substrate, and a step of curing the seal member; Is further included. And it is preferable that the said sealing member is a photocurable adhesive. Further, in order to cure the seal member, it is preferable to use light having a wavelength of 380 nm to 450 nm.

【0014】上記構成とにしたことにより、熱によるシ
ール材硬化工程を用いなくですむため、可撓性基板の熱
膨張や熱収縮による液晶素子の反りを防止でき、また、
380nm以上450nm以下の波長にてシール部材を
硬化させるので、紫外線による可撓性基板の変色・劣化
を防止できる。
By adopting the above configuration, the sealing material hardening step by heat is not required, so that the liquid crystal element can be prevented from warping due to thermal expansion or thermal contraction of the flexible substrate.
Since the sealing member is cured at a wavelength of 380 nm to 450 nm, discoloration and deterioration of the flexible substrate due to ultraviolet rays can be prevented.

【0015】[0015]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)図1及び図2及び図3及び図10は、本発
明の第1の実施例を説明するものであって、図1は電極
郡形成後の概略図であり、図2は貼り合わせ工程前後の
概略図であり、図3は液晶素子の各製造工程の概略図で
あり、図10は完成した液晶素子の概略斜視図である。
図1及び図2及び図3及び図10に基づき説明する。
(Embodiment 1) FIGS. 1, 2, 3 and 10 explain a first embodiment of the present invention. FIG. 1 is a schematic view after forming a group of electrodes. FIG. 3 is a schematic view before and after a bonding step, FIG. 3 is a schematic view of each manufacturing step of the liquid crystal element, and FIG. 10 is a schematic perspective view of a completed liquid crystal element.
This will be described with reference to FIGS. 1, 2, 3, and 10.

【0016】まず、可撓性基板1(例えば、藤森工業社
製アモレックスフィルムAM7015C)上に電極群2
のストライプ方向が可撓性基板1の長辺方向7と平行に
なるように、また、可撓性基板4上に電極群5のストラ
イプの方向が可撓性基板4の短辺方向10と平行になる
ように、フォトエッチングにより形成する(図1及び図
3(a))。次に、配向膜20(例えば、日立化成工業
社製STX−24)を約500Åの厚みで印刷法にて印
刷し、130℃にて2時間焼成し、ラビングにより配向
処理をする(図3(b))。
First, an electrode group 2 is placed on a flexible substrate 1 (for example, Amorix film AM7015C manufactured by Fujimori Kogyo KK).
And the stripe direction of the electrode group 5 on the flexible substrate 4 is parallel to the short side direction 10 of the flexible substrate 4. (FIG. 1 and FIG. 3A). Next, an alignment film 20 (for example, STX-24 manufactured by Hitachi Chemical Co., Ltd.) is printed at a thickness of about 500 ° by a printing method, baked at 130 ° C. for 2 hours, and subjected to an alignment treatment by rubbing (FIG. b)).

【0017】次に、可撓性基板1に一定の間隔を保つ
6.5μmのスペーサ21(例えば、触媒化成社製AW
−II)を静電散布法により散布し、可撓性基板4にシ
ール材22(例えば、スリーボンド社製TB−302
5)をディスペンサー塗布法により塗布する(図3
(c))。
Next, a 6.5 μm spacer 21 (for example, AW manufactured by Catalyst Kasei Co., Ltd.) which keeps a fixed interval on the flexible substrate 1 is used.
-II) by an electrostatic spraying method, and sealant 22 (for example, TB-302 manufactured by Three Bond Co., Ltd.) is applied to flexible substrate 4.
5) is applied by a dispenser application method (FIG. 3)
(C)).

【0018】次に、可撓性基板1の長辺方向7と可撓性
基板4の短辺方向10とが直行するように貼り合わせる
(図2及び図3(d))。次に、加圧して所定のセルギ
ャップにし、380nm未満の光をカットするフィルタ
ー23(例えば、オーク製作所社製バンドパスフィルタ
ー)を介して高圧水銀ランプ24(例えば、オーク製作
所社製OHD−320M照射機及びHSL−300ラン
プ)により380nm以上の波長の光を照射しシール材
の硬化を行う(図3(e))。
Next, the flexible substrate 1 is bonded so that the long side direction 7 of the flexible substrate 1 and the short side direction 10 of the flexible substrate 4 are perpendicular to each other (FIGS. 2 and 3D). Next, a high-pressure mercury lamp 24 (for example, OHD-320M manufactured by Oak Manufacturing Co., Ltd.) is irradiated through a filter 23 (for example, a band-pass filter manufactured by Oak Manufacturing Co., Ltd.) that cuts light of less than 380 nm by applying pressure to a predetermined cell gap. The sealing material is cured by irradiating light having a wavelength of 380 nm or more with a device (HSL-300 lamp) (FIG. 3 (e)).

【0019】次に、液晶を注入して液晶素子を完成させ
た(図3(f)及び図10)。
Next, liquid crystal was injected to complete a liquid crystal element (FIG. 3 (f) and FIG. 10).

【0020】完成した液晶素子は、熱による可撓性基板
の収縮の影響による反りがなく、また、紫外線による可
撓性基板の劣化による表示品質の低下がない液晶素子で
あった。
The completed liquid crystal element was a liquid crystal element having no warpage due to the shrinkage of the flexible substrate due to heat and no deterioration in display quality due to the deterioration of the flexible substrate due to ultraviolet rays.

【0021】(実施例2)図3及び図4及び図5及び図
11は、本発明の第2の実施例を説明するものであっ
て、図3は液晶素子の各製造工程の概略図であり、図4
は電極郡形成後の概略図であり、図5は貼り合わせ工程
前後の概略図であり、図11は完成した液晶素子の概略
斜視図である。図3及び図4及び図5及び図11に基づ
き説明する。
(Embodiment 2) FIGS. 3, 4, 5 and 11 illustrate a second embodiment of the present invention. FIG. 3 is a schematic view of each manufacturing process of a liquid crystal element. Yes, FIG. 4
FIG. 5 is a schematic view after forming the electrode group, FIG. 5 is a schematic view before and after a bonding step, and FIG. 11 is a schematic perspective view of a completed liquid crystal element. This will be described with reference to FIGS. 3, 4, 5, and 11.

【0022】まず、可撓性基板1(例えば、住友ベーク
ライト社製透明導伝性フィルムFST−534X)上に
電極群2のストライプ方向が可撓性基板1の長辺方向7
と平行になるように、また、可撓性基板4上に第二の電
極群5のストライプの方向が可撓性基板4の長辺方向9
と平行になるように、フォトエッチングにより形成する
(図3(a)及び図4)。
First, on the flexible substrate 1 (for example, a transparent conductive film FST-534X manufactured by Sumitomo Bakelite Co., Ltd.), the stripe direction of the electrode group 2 is set to the long side direction 7 of the flexible substrate 1.
And the direction of the stripes of the second electrode group 5 on the flexible substrate 4
Are formed by photoetching so as to be parallel to (FIG. 3A and FIG. 4).

【0023】次に、配向膜20(例えば、住友ベークラ
イト社製CRD−8451)を約500Åの厚みで印刷
法にて印刷し、150℃にて2時間焼成し、ラビングに
より配向処理をする(図3(b))。
Next, an alignment film 20 (for example, CRD-8451 manufactured by Sumitomo Bakelite Co., Ltd.) is printed at a thickness of about 500 ° by a printing method, baked at 150 ° C. for 2 hours, and subjected to an alignment treatment by rubbing (FIG. 3 (b)).

【0024】作成された液晶素子は、可撓性基板の熱収
縮の影響による反りがなく、また、紫外線による可撓性
基板の劣化による表示品質の低下もなく、表示特性も同
様であり、従来よりも安価であった。
The prepared liquid crystal element has no warpage due to the influence of heat shrinkage of the flexible substrate, has no deterioration in display quality due to deterioration of the flexible substrate due to ultraviolet rays, and has the same display characteristics. It was cheaper than.

【0025】(実施例8)実施例4の液晶素子の製造方
法を用いて液晶素子を作成した。
Example 8 A liquid crystal element was manufactured using the method for manufacturing a liquid crystal element of Example 4.

【0026】作成された液晶素子は、可撓性基板の熱収
縮の影響による反りがなく、また、紫外線による可撓性
基板の劣化による表示品質の低下もなく、表示特性も同
様であり、従来よりも安価であった。 〔図面の簡単な説明〕 次に、可撓性基板1に一定の間隔を保つ6.5μmのス
ペーサ21(例えば、触媒化成社製AW−II)を静電
散布法により散布し、可撓性基板4にシール材22(例
えば、スリーボンド社製TB−3025)をディスペン
サー塗布法により塗布する(図3(c))。次に、可撓
性基板1の長辺方向7と可撓性基板4の長辺方向9とが
直行するように貼り合わせる(図3(d)及び図5)。
次に、加圧して所定のセルギャップにし、380nm未
満の光をカットするフィルター23(例えば、オーク製
作所社製バンドパスフィルター)を介して高圧水銀ラン
プ24(例えば、オーク製作所社製OHD−320M照
射機及びHSL−300ランプ)により380nm以上
の波長の光を照射しシール材の硬化を行う(図3
(e))。次に、液晶を注入して液晶素子を完成させた
(図3(f)及び図11)。完成した液晶素子は、熱に
よる可撓性基板の収縮の影響による反りがなく、また、
紫外線による可撓性基板の劣化による表示品質の低下が
ない液晶素子であった。 (実施例3)図3及び図6及び図7及び図12は、本発
明の第1の実施例を説明するものであって、図3は液晶
素子の各製造工程の概略図であり、図6は電極郡形成後
の概略図であり、図7は貼り合わせ工程前後の概略図で
あり、図12は完成した液晶素子の概略斜視図である。
図3及び図6及び図7及び図12に基づき説明する。ま
ず、第一の可撓性基板1(例えば、藤森工業社製アモレ
ックスフィルムAM7015C)上に電極群2のストラ
イプ方向が可撓性基板1の短辺方向8と平行になるよう
に、また、可撓性基板4上に電極群5のストライプの方
向が可撓性基板4の長辺方向9と平行になるように、フ
ォトエッチングにより形成する(図3(a)及び図
6)。次に、配向膜20(例えば、日立化成工業社製S
TX−24−9)を約500Åの厚みで印刷法にて印刷
し、120℃にて2時間焼成し、ラビングにより配向処
理をする(図3(b))。次に、可撓性基板1に一定の
間隔を保つ6.5μmのスペーサ21(例えば、触媒化
成社製AW−II)を静電散布法により散布し、可撓性基
板4にシール材22(例えば、スリーボンド社製TB−
3025)をディスペンサー塗布法により塗布する(図
3(c))。次に、可撓性基板1の長辺方向7と可撓性
基板4の短辺方向10とが直行するように貼り合わせる
(図3(d)及び図7)。次に、加圧して所定のセルギ
ャップにし、380nm未満の光をカットするフィルタ
ー23(例えば、オーク製作所社製バンドパスフィルタ
ー)を介して高圧水銀ランプ24(例えば、オーク製作
所社製OHD−320M照射機及びHSL−300ラン
プ)により380nm以上の波長の光を照射しシール材
の硬化を行う(図3(e))。次に、液晶を注入して液
晶素子を完成させた。(図3(f)) 完成した液晶素子は、熱による可撓性基板の収縮の影響
による反りがなく、また、紫外線による可撓性基板の劣
化による表示品質の低下がない液晶素子であった。 (実施例4)図3及び図8及び図9及び図13は、本発
明の第4の実施例を説明するものであって、図3は液晶
素子の各製造工程の概略図であり、図8は電極郡形成後
の概略図であり、図9は貼り合わせ工程前後の概略図で
あり、図13は完成した液晶素子の概略斜視図である。
図3及び図8及び図9及び図13に基づき説明する。ま
ず、可撓性基板1(例えば、住友ベークライト社製透明
導伝性フィルムFST−534X)上に電極群2のスト
ライプ方向が可撓性基板1の短辺方向8と平行になるよ
うに、また、可撓性基板4上に電極群5のストライプの
方向が可撓性基板4の短辺方向10と平行になるよう
に、フォトエッチングにより形成する(図3(a)及び
図8)。次に、配向膜20(例えば、住友ベークライト
社製CRD−8452)を約500Åの厚みで印刷法に
て印刷し、150℃にて2時間焼成し、ラビングにより
配向処理をする(図3(b))。次に、可撓性基板1に
一定の間隔を保つ6.5μmのスペーサ21(例えば、
触媒化成社製AW−II)を静電散布法により散布し、
可撓性基板4にシール材22(例えば、スリーボンド社
製TB−3025)をディスペンサー塗布法により塗布
する(図3(c))。次に、可撓性基板1の長辺方向7
と可撓性基板4の長辺方向9とが直行するように貼り合
わせる(図3(d)及び図9)。次に、加圧して所定の
セルギャップにし、380nm未満の光をカットするフ
ィルター23(例えば、オーク製作所社製バンドパスフ
ィルター)を介して高圧水銀ランプ24(例えば、オー
ク製作所社製OHD−320M照射機及びHSL−30
0ランプ)により380nm以上の波長の光を照射しシ
ール材の硬化を行う(図3(e))。次に、液晶を注入
して液晶素子を完成させた(図3(f)及び図13)。
完成した液晶素子は、熱による可撓性基板の収縮の影響
による反りがなく、また、紫外線による可撓性基板の劣
化による表示品質の低下がない液晶素子であった。 (実施例5)実施例1の液晶素子の製造方法を用いて液
晶素子を作成した。作成された液晶素子は、可撓性基板
の熱収縮の影響による反りがなく、また、紫外線による
可撓性基板の劣化による表示品質の低下もなく、表示特
性も同様であり、従来よりも安価であった。 (実施例6)実施例2の液晶素子の製造方法を用いて液
晶素子を作成した。作成された液晶素子は、可撓性基板
の熱収縮の影響による反りがなく、また、紫外線による
可撓性基板の劣化による表示品質の低下もなく、表示特
性も同様であり、従来よりも安価であった。 (実施例7)実施例3の液晶素子の製造方法を用いて液
晶素子を作成した。作成された液晶素子は、可撓性基板
の熱収縮の影響による反りがなく、また、紫外線による
可撓性基板の劣化による表示品質の低下もなく、表示特
性も同様であり、従来よりも安価であった。 (実施例8)実施例4の液晶素子の製造方法を用いて液
晶素子を作成した。作成された液晶素子は、可撓性基板
の熱収縮の影響による反りがなく、また、紫外線による
可撓性基板の劣化による表示品質の低下もなく、表示特
性も同様であり、従来よりも安価であった。
The prepared liquid crystal element has no warpage due to the thermal shrinkage of the flexible substrate, no deterioration in display quality due to deterioration of the flexible substrate due to ultraviolet rays, and the same display characteristics. It was cheaper than. [Brief Description of the Drawings] Next, 6.5 μm spacers 21 (for example, AW-II manufactured by Catalyst Kasei Co., Ltd.) that keep a constant interval on the flexible substrate 1 are sprayed by an electrostatic spraying method, and the flexibility is increased. A sealing material 22 (for example, TB-3025 manufactured by Three Bond) is applied to the substrate 4 by a dispenser application method (FIG. 3C). Next, the flexible substrate 1 and the flexible substrate 4 are bonded so that the long side direction 7 and the long side direction 9 of the flexible substrate 4 are perpendicular to each other (FIGS. 3D and 5).
Next, a high-pressure mercury lamp 24 (for example, OHD-320M manufactured by Oak Manufacturing Co., Ltd.) is irradiated through a filter 23 (for example, a band-pass filter manufactured by Oak Manufacturing Co., Ltd.) that cuts light of less than 380 nm by applying pressure to a predetermined cell gap. The seal material is cured by irradiating light having a wavelength of 380 nm or more by a machine and an HSL-300 lamp (FIG. 3).
(E)). Next, liquid crystal was injected to complete a liquid crystal element (FIG. 3 (f) and FIG. 11). The completed liquid crystal element has no warpage due to the influence of shrinkage of the flexible substrate due to heat, and
It was a liquid crystal element in which display quality did not deteriorate due to deterioration of the flexible substrate due to ultraviolet rays. (Embodiment 3) FIGS. 3, 6, 7 and 12 illustrate a first embodiment of the present invention. FIG. 3 is a schematic view of each manufacturing process of a liquid crystal element. 6 is a schematic view after the formation of the electrode group, FIG. 7 is a schematic view before and after the bonding step, and FIG. 12 is a schematic perspective view of the completed liquid crystal element.
This will be described with reference to FIGS. 3, 6, 7 and 12. First, on the first flexible substrate 1 (for example, Amorix film AM7015C manufactured by Fujimori Kogyo Co., Ltd.), the stripe direction of the electrode group 2 is parallel to the short side direction 8 of the flexible substrate 1, and The stripes of the electrode group 5 are formed on the flexible substrate 4 by photoetching so that the direction of the stripes is parallel to the long side direction 9 of the flexible substrate 4 (FIGS. 3A and 6). Next, the alignment film 20 (for example, S
TX-24-9) is printed at a thickness of about 500 ° by a printing method, baked at 120 ° C. for 2 hours, and subjected to an alignment treatment by rubbing (FIG. 3B). Next, 6.5 μm spacers 21 (for example, AW-II manufactured by Catalyst Kasei Co., Ltd.) that keep a constant interval on the flexible substrate 1 are sprayed by an electrostatic spraying method, and the sealing material 22 ( For example, TB-
3025) is applied by a dispenser application method (FIG. 3C). Next, the flexible substrate 1 is bonded so that the long side direction 7 and the short side direction 10 of the flexible substrate 4 are perpendicular to each other (FIGS. 3D and 7). Next, a high-pressure mercury lamp 24 (for example, OHD-320M manufactured by Oak Manufacturing Co., Ltd.) is irradiated through a filter 23 (for example, a band-pass filter manufactured by Oak Manufacturing Co., Ltd.) that cuts light of less than 380 nm by applying pressure to a predetermined cell gap. The sealing material is cured by irradiating light having a wavelength of 380 nm or more with a device (HSL-300 lamp) (FIG. 3E). Next, liquid crystal was injected to complete a liquid crystal element. (FIG. 3 (f)) The completed liquid crystal element was a liquid crystal element having no warpage due to the influence of shrinkage of the flexible substrate due to heat and no deterioration in display quality due to deterioration of the flexible substrate due to ultraviolet rays. . (Embodiment 4) FIGS. 3, 8, 9 and 13 illustrate a fourth embodiment of the present invention. FIG. 3 is a schematic view of each manufacturing process of a liquid crystal element. 8 is a schematic view after the formation of the electrode group, FIG. 9 is a schematic view before and after the bonding step, and FIG. 13 is a schematic perspective view of the completed liquid crystal element.
This will be described with reference to FIGS. 3, 8, 9, and 13. First, on the flexible substrate 1 (for example, a transparent conductive film FST-534X manufactured by Sumitomo Bakelite Co., Ltd.), the stripe direction of the electrode group 2 is parallel to the short side direction 8 of the flexible substrate 1, and Then, the electrode group 5 is formed on the flexible substrate 4 by photoetching so that the direction of the stripe of the electrode group 5 is parallel to the short side direction 10 of the flexible substrate 4 (FIGS. 3A and 8). Next, an alignment film 20 (for example, CRD-8452 manufactured by Sumitomo Bakelite Co., Ltd.) is printed at a thickness of about 500 ° by a printing method, baked at 150 ° C. for 2 hours, and subjected to an alignment treatment by rubbing (FIG. 3B )). Next, a 6.5 μm spacer 21 (for example, to keep a certain distance on the flexible substrate 1 (for example,
Catalyst AW-II) was sprayed by an electrostatic spraying method,
A sealing material 22 (for example, TB-3025 manufactured by Three Bond Co.) is applied to the flexible substrate 4 by a dispenser application method (FIG. 3C). Next, the long side direction 7 of the flexible substrate 1
And the long side direction 9 of the flexible substrate 4 is bonded so as to be perpendicular (FIGS. 3D and 9). Next, a high-pressure mercury lamp 24 (for example, OHD-320M manufactured by Oak Manufacturing Co., Ltd.) is irradiated through a filter 23 (for example, a band-pass filter manufactured by Oak Manufacturing Co., Ltd.) that cuts light of less than 380 nm by applying pressure to a predetermined cell gap. Machine and HSL-30
A light having a wavelength of 380 nm or more is irradiated by a zero lamp) to cure the sealing material (FIG. 3E). Next, liquid crystal was injected to complete a liquid crystal element (FIG. 3 (f) and FIG. 13).
The completed liquid crystal element was a liquid crystal element having no warpage due to the influence of heat shrinkage of the flexible substrate and no deterioration in display quality due to deterioration of the flexible substrate due to ultraviolet rays. Example 5 A liquid crystal element was manufactured using the method for manufacturing a liquid crystal element of Example 1. The prepared liquid crystal element has no warpage due to the thermal shrinkage of the flexible substrate, has no deterioration in display quality due to deterioration of the flexible substrate due to ultraviolet rays, has the same display characteristics, and is less expensive than the conventional one. Met. (Embodiment 6) A liquid crystal element was manufactured using the method for manufacturing a liquid crystal element of Embodiment 2. The prepared liquid crystal element has no warpage due to the thermal shrinkage of the flexible substrate, has no deterioration in display quality due to deterioration of the flexible substrate due to ultraviolet rays, has the same display characteristics, and is less expensive than the conventional one. Met. (Embodiment 7) A liquid crystal element was manufactured using the method for manufacturing a liquid crystal element of Embodiment 3. The fabricated liquid crystal element has no warpage due to the thermal shrinkage of the flexible substrate, has no deterioration in display quality due to deterioration of the flexible substrate due to ultraviolet rays, has the same display characteristics, and is less expensive than the conventional one. Met. (Embodiment 8) A liquid crystal element was manufactured using the method for manufacturing a liquid crystal element of Embodiment 4. The fabricated liquid crystal element has no warpage due to the thermal shrinkage of the flexible substrate, has no deterioration in display quality due to deterioration of the flexible substrate due to ultraviolet rays, has the same display characteristics, and is less expensive than the conventional one. Met.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における可撓性基板上に電極郡形成後
の概略図。
FIG. 1 is a schematic view after forming a group of electrodes on a flexible substrate in a first embodiment.

【図2】実施例1における貼り合わせ工程前後の概略斜
視図。
FIG. 2 is a schematic perspective view before and after a bonding step in Example 1.

【図3】可撓性基板を用いた液晶素子の製造工程の概略
図。
FIG. 3 is a schematic view of a manufacturing process of a liquid crystal element using a flexible substrate.

【図4】実施例2における可撓性基板上に電極郡形成後
の概略図。
FIG. 4 is a schematic view after forming a group of electrodes on a flexible substrate in a second embodiment.

【図5】実施例2における貼り合わせ工程前後の概略斜
視図。
FIG. 5 is a schematic perspective view before and after a bonding step in a second embodiment.

【図6】実施例3における可撓性基板上に電極郡形成後
の概略図。
FIG. 6 is a schematic view after forming a group of electrodes on a flexible substrate in a third embodiment.

【図7】実施例3における貼り合わせ工程前後の概略斜
視図。
FIG. 7 is a schematic perspective view before and after a bonding step in a third embodiment.

【図8】実施例4における可撓性基板上に電極郡形成後
の概略図。
FIG. 8 is a schematic view after forming a group of electrodes on a flexible substrate in a fourth embodiment.

【図9】実施例4における貼り合わせ工程前後の概略斜
視図。
FIG. 9 is a schematic perspective view before and after a bonding step in a fourth embodiment.

【図10】実施例1における完成した液晶素子の概略斜
視図。
FIG. 10 is a schematic perspective view of a completed liquid crystal element in Example 1.

【図11】実施例2における完成した液晶素子の概略斜
視図。
FIG. 11 is a schematic perspective view of a completed liquid crystal element in Example 2.

【図12】実施例3における完成した液晶素子の概略斜
視図。
FIG. 12 is a schematic perspective view of a completed liquid crystal element in Example 3.

【図13】実施例4における完成した液晶素子の概略斜
視図。
FIG. 13 is a schematic perspective view of a completed liquid crystal element in Example 4.

【符号の説明】[Explanation of symbols]

1.可撓性基板 2.ストライプ状電極郡(透明電極) 3.基板 4.可撓性基板 5.ストライプ状電極郡(透明電極) 6.基板 7.可撓性基板の長辺方向 8.可撓性基板の短辺方向 9.可撓性基板の長辺方向 10.可撓性基板の短辺方向 20.液晶用配向膜 22.光硬化型接着剤 1. Flexible substrate 2. 2. Striped electrode group (transparent electrode) Substrate 4. Flexible substrate 5. 5. Striped electrode group (transparent electrode) Substrate 7. 7. Long side direction of flexible substrate 8. Short side direction of flexible substrate 9. Long side direction of flexible substrate 19. Short side direction of flexible substrate Liquid crystal alignment film 22. Light curable adhesive

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】第1の可撓性基板に配置された第1の透明
電極と、第2の可撓性基板に配置された第2の透明電極
とを対向するように配置した液晶表示素子であって、 前記第1の透明電極と前記第2の透明電極とが実質的に
直交していることを特徴とする液晶表示素子。
1. A liquid crystal display device in which a first transparent electrode disposed on a first flexible substrate and a second transparent electrode disposed on a second flexible substrate are disposed so as to face each other. Wherein the first transparent electrode and the second transparent electrode are substantially orthogonal to each other.
【請求項2】請求項1に記載の液晶表示素子であって、 前記第1の透明電極は前記第1の可撓性基板の短辺方向
と同一方向に配置されており、前記第2の透明電極は前
記第2の可撓性基板の短辺方向と同一方向に配置されて
いることを特徴とする液晶表示素子。
2. The liquid crystal display device according to claim 1, wherein the first transparent electrode is arranged in the same direction as a short side direction of the first flexible substrate, and The liquid crystal display element, wherein the transparent electrode is arranged in the same direction as the short side direction of the second flexible substrate.
【請求項3】請求項1に記載の液晶表示素子であって、 前記第1の透明電極は前記第1の可撓性基板の長辺方向
と同一方向に配置されており、前記第2の透明電極は前
記第2の可撓性基板の長辺方向と同一方向に配置されて
いることを特徴とする液晶表示素子。
3. The liquid crystal display device according to claim 1, wherein said first transparent electrode is disposed in the same direction as a long side direction of said first flexible substrate, and The liquid crystal display element, wherein the transparent electrode is arranged in the same direction as the long side direction of the second flexible substrate.
【請求項4】請求項1に記載の液晶表示素子であって、 前記第1の透明電極は前記第1の可撓性基板の短辺方向
と同一方向に配置されており、前記第2の透明電極は前
記第2の可撓性基板の短辺方向と同一方向に配置されて
いることを特徴とする液晶表示素子。
4. The liquid crystal display device according to claim 1, wherein the first transparent electrode is arranged in the same direction as a short side direction of the first flexible substrate, and The liquid crystal display element, wherein the transparent electrode is arranged in the same direction as the short side direction of the second flexible substrate.
【請求項5】第1の透明電極が配置された第1の可撓性
基板と、第2の透明電極が配置された第2の透明電極と
を前記第1の透明電極と前記第2の透明電極とが実質的
に直交するように貼り合わせる工程を含む液晶表示素子
の製造方法。
5. A first flexible substrate on which a first transparent electrode is disposed, and a second transparent electrode on which a second transparent electrode is disposed, wherein said first transparent electrode and said second transparent electrode are disposed. A method for manufacturing a liquid crystal display device, comprising a step of bonding the transparent electrodes so as to be substantially orthogonal to each other.
【請求項6】請求項5記載の液晶素子の製造方法におい
て、 前記第1の可撓性基板と前記第2の可撓性基板のうち少
なくとも一方の可撓性基板上にシール部材を塗布する工
程と、 前記シール部材を硬化させる工程と、をさらに含む液晶
素子の製造方法。
6. The method for manufacturing a liquid crystal element according to claim 5, wherein a sealing member is applied on at least one of the first flexible substrate and the second flexible substrate. A method for manufacturing a liquid crystal element, further comprising: a step of curing the seal member.
【請求項7】請求項6記載の液晶素子の製造方法におい
て、 前記シール部材は、光硬化型接着剤であることを特徴と
する液晶表示素子の製造方法。
7. The method for manufacturing a liquid crystal display device according to claim 6, wherein said seal member is a photo-curable adhesive.
【請求項8】請求項7記載の液晶素子の製造方法におい
て、 前記シール部材を硬化させるために、380nm以上4
50nm以下の波長の光を用いることを特徴とする液晶
表示素子の製造方法。
8. The method for manufacturing a liquid crystal element according to claim 7, wherein the sealing member is hardened to 380 nm or more.
A method for manufacturing a liquid crystal display element, wherein light having a wavelength of 50 nm or less is used.
JP16168697A 1997-06-18 1997-06-18 Liquid crystal display element and production therefor Withdrawn JPH117034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16168697A JPH117034A (en) 1997-06-18 1997-06-18 Liquid crystal display element and production therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16168697A JPH117034A (en) 1997-06-18 1997-06-18 Liquid crystal display element and production therefor

Publications (1)

Publication Number Publication Date
JPH117034A true JPH117034A (en) 1999-01-12

Family

ID=15739932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16168697A Withdrawn JPH117034A (en) 1997-06-18 1997-06-18 Liquid crystal display element and production therefor

Country Status (1)

Country Link
JP (1) JPH117034A (en)

Similar Documents

Publication Publication Date Title
JP3930284B2 (en) Method for manufacturing flat display element
JPH10115833A (en) Production of liquid crystal display element
JPH075479A (en) Production of ferromagnetic liquid crystal element
JPH11264991A (en) Manufacture of liquid crystal display element
JPH06230398A (en) Liquid crystal display device and preparation thereof
JPS61173221A (en) Formation of liquid crystal display device
JPH117034A (en) Liquid crystal display element and production therefor
JPH10301121A (en) Production of liquid crystal display element
JPH1115007A (en) Liquid crystal display element and manufacture thereof
JPH03182718A (en) Manufacture of liquid crystal cell
JPH10142595A (en) Liquid crystal display element and its production
JPH01195421A (en) Manufacture of liquid crystal display device
JP2000002862A (en) Manufacture of liquid crystal display element
JPH03163418A (en) Liquid crystal element
JP2000019540A (en) Liquid crystal display device
JPS6132035A (en) Production of liquid crystal display element
JP3470871B2 (en) Liquid crystal display panel manufacturing method
JP2002350871A (en) Manufacturing method and manufacturing device for liquid crystal display element
JPH09160016A (en) Liquid crystal cell, liquid crystal display device and production of liquid crystal cell
JP2002098975A (en) Liquid crystal device and method of manufacture
JPH08114789A (en) Liquid crystal display device and its production
JP3383556B2 (en) Manufacturing method of liquid crystal display device
JPS60172027A (en) Production of liquid crystal display element
JPS61173222A (en) Liquid crystal display device
JP2002090729A (en) Reflective liquid crystal display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907