JPH1168702A - Optical signal transmission method and its system - Google Patents

Optical signal transmission method and its system

Info

Publication number
JPH1168702A
JPH1168702A JP9216825A JP21682597A JPH1168702A JP H1168702 A JPH1168702 A JP H1168702A JP 9216825 A JP9216825 A JP 9216825A JP 21682597 A JP21682597 A JP 21682597A JP H1168702 A JPH1168702 A JP H1168702A
Authority
JP
Japan
Prior art keywords
optical signal
polarization
optical
signal transmission
optical signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9216825A
Other languages
Japanese (ja)
Inventor
Yusuke Kuze
祐輔 久世
Hideyuki Omura
英之 大村
Hideyuki Nasu
秀行 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP9216825A priority Critical patent/JPH1168702A/en
Publication of JPH1168702A publication Critical patent/JPH1168702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the number of optical signals sent simultaneously by transmitting the optical signals while adjusting polarized wave planes in orthogonal directions to each other. SOLUTION: Optical signals outputted from plural light sources 11, 21 are coupled by a photocoupler 6, the coupled signal is sent through an optical fiber 5 and received by a center station 1, where the signal is demodulated in the optical signal transmission method. In terminal stations 10, 20, polarized wave adjustment devices 13, 23 adjust the optical signal from each light source so as to be linearly polarized and the polarized planes are orthogonal to each other and the center station side uses a polarized wave adjustment device 2 to adjust the polarized plane of the optical signal from the optical fiber to be a state equivalent to the polarized plane adjusted at the terminal station side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光CATVや光I
TV等に用いられる光信号伝送に関し、特に光信号の偏
波面を直線偏光して伝送する光信号伝送方法及びその装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical CATV and optical I
The present invention relates to an optical signal transmission used for a TV or the like, and more particularly, to an optical signal transmission method and apparatus for linearly polarizing a polarization plane of an optical signal for transmission.

【0002】[0002]

【関連する背景技術】従来、この種の光信号伝送では、
複数の光源から出力される光信号を光カプラによって結
合して、一心の光ファイバに伝送し、上記光信号を1つ
のホトダイオード(PD)からなる受光器で受光させ、
さらに復調器で復調するものがあった。この方法では、
複数の光信号を1つのPDで受信することによって、光
信号の波長差に応じた周波数に光ビート雑音が発生して
いた。このため、光源の発光波長(以下、単に「波長」
という)を選別せずにシステムに組み込んだ場合には、
隣接する光源の波長における上記波長差が狭く、光ビー
ト雑音が比較的低周波の帯域、例えば伝送帯域に発生す
る可能性があり、その影響により伝送品質が劣化するこ
とがあった。
[Related Background Art] Conventionally, in this type of optical signal transmission,
Optical signals output from a plurality of light sources are combined by an optical coupler and transmitted to a single optical fiber, and the optical signal is received by a photodetector including one photodiode (PD).
In addition, there is one that demodulates with a demodulator. in this way,
When a plurality of optical signals are received by one PD, optical beat noise has been generated at a frequency corresponding to the wavelength difference between the optical signals. For this reason, the emission wavelength of the light source (hereinafter simply referred to as “wavelength”)
) Was incorporated into the system without selection,
The wavelength difference between the wavelengths of adjacent light sources is narrow, and optical beat noise may be generated in a relatively low frequency band, for example, a transmission band, and the transmission quality may be degraded due to the influence.

【0003】そこで、従来のシステムでは、ビート雑音
の周波数が所望の周波数以上になり、上記光源の波長を
選別して伝送品質の劣化が最小になるように光源間の波
長を配列していた。
Therefore, in the conventional system, the wavelength of the beat noise becomes higher than a desired frequency, and the wavelengths of the light sources are selected so that the wavelengths between the light sources are arranged so that the deterioration of the transmission quality is minimized.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記システ
ムでは、一定の伝送帯域において、同時に伝送できる光
信号の数は、上記光信号の波長差を考慮して決定される
こととなっていた。従って、光信号の数を最大に増やす
ためには、各光信号間の波長を上記波長差に基づく最短
波長間隔に配列する必要があった。
However, in the above system, the number of optical signals that can be transmitted simultaneously in a fixed transmission band is determined in consideration of the wavelength difference between the optical signals. Therefore, in order to maximize the number of optical signals, it is necessary to arrange the wavelengths between the optical signals at the shortest wavelength interval based on the wavelength difference.

【0005】また、上記光ビート雑音のレベルは、ビー
ト発生に関与する2波の光信号の偏波面の結合角度に依
存するが、従来の上記システムでは、この結合角度を調
整することなく各光信号を結合して送信していた。本発
明は、上記実情に鑑みなされたもので、光信号の偏波面
を直交させる方向に調整して送信し、同時に伝送できる
光信号数を増加できる光信号伝送方法及びその装置を提
供することを目的とする。
The level of the optical beat noise depends on the coupling angle between the polarization planes of the two optical signals involved in the beat generation. In the conventional system, each optical signal is adjusted without adjusting the coupling angle. The signals were combined and transmitted. The present invention has been made in view of the above circumstances, and provides an optical signal transmission method and apparatus capable of adjusting the polarization plane of an optical signal in a direction orthogonal to the optical signal, transmitting the signal, and increasing the number of optical signals that can be transmitted simultaneously. Aim.

【0006】また、本発明の他の目的は、光ビート雑音
を発生せずに光信号を受光できる光信号伝送方法及びそ
の装置を提供することにある。また、本発明の他の目的
は、変化する光信号の偏波面の状態に応じて光信号の偏
波面を調整できる光信号伝送方法及びその装置を提供す
ることにある。さらに、本発明の他の目的は、光ビート
雑音のレベルに応じて光信号の偏波面を調整できる光信
号伝送方法及びその装置を提供することにある。
It is another object of the present invention to provide an optical signal transmission method and apparatus capable of receiving an optical signal without generating optical beat noise. It is another object of the present invention to provide an optical signal transmission method and apparatus capable of adjusting the plane of polarization of an optical signal according to the state of the plane of polarization of the optical signal that changes. It is a further object of the present invention to provide an optical signal transmission method and apparatus capable of adjusting the polarization plane of an optical signal according to the level of optical beat noise.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、複数の送信部の光源から出力される光
信号を、例えば光カプラで結合して光ファイバからなる
光伝送路に伝送し、該光信号を受光部のPDで受光して
復調する光信号伝送装置において、前記光源からの光信
号の偏波面を直線偏光にし、かつ互いに直交させるよう
に調整する偏波調整器からなる第1の偏波調整手段を備
えた光信号伝送装置が提供される。
In order to achieve the above object, according to the present invention, optical signals output from the light sources of a plurality of transmitters are coupled to, for example, optical couplers and transmitted to an optical transmission line composed of optical fibers. An optical signal transmission device for receiving the optical signal with a PD of a light receiving unit and demodulating the optical signal includes a polarization adjuster for adjusting the plane of polarization of the optical signal from the light source to linearly polarized light and adjusting the polarization plane to be orthogonal to each other. An optical signal transmission device including a first polarization adjusting unit is provided.

【0008】すなわち、同一又は隣接する発光波長の光
信号は、第1の偏波調整器でその偏波面を直線偏光に
し、かつ互いに直交されるように調整された後に光カプ
ラで結合されており、上記結合された光信号を光ファイ
バを介してPDで受光することにより、光信号相互の影
響により発生する光ビート雑音のレベルを「0」にす
る。
That is, optical signals of the same or adjacent emission wavelengths are linearly polarized by a first polarization adjuster, adjusted so as to be orthogonal to each other, and then coupled by an optical coupler. By receiving the combined optical signal by the PD via the optical fiber, the level of the optical beat noise generated by the influence of the optical signal is set to “0”.

【0009】また、本発明では、第1の偏波調整器は、
前記光信号が少なくとも3つ存在する場合には、発光波
長が同一又は隣接する2つの前記光信号を組として、当
該各組の光信号の偏波面を前記直線偏光にし、かつ互い
に直交させるとともに、光源は、当該組の光信号と、当
該組の光信号と波長が隣接する他の組又は1つの前記光
信号との波長間隔を所定間隔に設定して出力することが
好ましい。
Further, according to the present invention, the first polarization adjuster comprises:
When there are at least three optical signals, the emission wavelengths are the same or adjacent two optical signals as a set, and the polarization planes of the optical signals in each set are linearly polarized, and orthogonal to each other, It is preferable that the light source sets a wavelength interval between the set of optical signals and another set or one of the optical signals whose wavelengths are adjacent to the set of optical signals at a predetermined interval and outputs the set.

【0010】また、本発明では、入力する光信号の偏波
面を直線偏光にし、かつ互いに直交させるように調整す
る偏波調整器からなる第2の偏波調整手段を受光部に備
え、受光部で光信号の偏波面を調整してから受光するの
が好ましい。また、本発明では、光ファイバへ出力され
る光信号の偏波面の状態を測定する偏波アナライザから
なる第1の測定手段と、該測定結果に応じて第1の偏波
アナライザによる前記偏波面の調整を制御する第1の制
御手段とを送信部側に備え、光ファイバから入力する前
記光信号の偏波面の状態を測定する偏波アナライザから
なる第2の測定手段と、該測定結果に応じて前記第2の
偏波アナライザによる前記偏波面の調整を制御する第4
の制御手段とを受光部側に備え、送信部及び受光部で光
信号の偏波面を自動調整するのが好ましい。
Further, according to the present invention, the light receiving section is provided with a second polarization adjusting means comprising a polarization adjuster for adjusting the polarization plane of the input optical signal to linearly polarized light and adjusting the polarization plane to be orthogonal to each other. It is preferable to adjust the polarization plane of the optical signal before receiving the light. Further, according to the present invention, a first measuring means comprising a polarization analyzer for measuring a state of a polarization plane of an optical signal output to an optical fiber, and the polarization plane by a first polarization analyzer according to the measurement result. A first control means for controlling the adjustment of the optical signal, a second measuring means comprising a polarization analyzer for measuring the state of the plane of polarization of the optical signal input from the optical fiber, and Controlling the adjustment of the polarization plane by the second polarization analyzer in accordance with the fourth
It is preferable that the control unit is provided on the light receiving unit side and the transmitting unit and the light receiving unit automatically adjust the polarization plane of the optical signal.

【0011】また、本発明では、光信号の受光の際に発
生する光ビート雑音を検出する雑音検出装置からなる検
出手段と、該検出した雑音レベルに応じて偏波アナライ
ザによる前記偏波面の調整を制御する第5の制御手段と
を受光部側に備え、受光部で光ビート雑音のレベルに応
じて光信号の偏波面を自動調整するのが好ましい。ま
た、本発明では、前記光信号の発光波長を設定する波長
設定手段と、前記各光信号の偏波面の結合角度とビート
雑音の雑音レベルの関係に基づいて、前記第1の偏波調
整器による偏波面の調整を制御し、当該偏波面を任意の
状態にする第2の制御手段と、前記ビート雑音の雑音レ
ベルと波長間隔の関係に基づいて、前記波長設定手段に
よる発光波長の設定を制御し、当該発光波長を任意の間
隔にする第3の制御手段とを備え、光信号の偏波面の調
整及び発光波長の設定を任意に制御して、光ビート雑音
のレベルを「0」にするのも好ましい。
Further, according to the present invention, there is provided a detecting means comprising a noise detecting device for detecting optical beat noise generated at the time of receiving an optical signal, and adjusting the polarization plane by a polarization analyzer according to the detected noise level. It is preferable that a fifth control means for controlling the optical signal is provided on the light receiving unit side, and the light receiving unit automatically adjusts the polarization plane of the optical signal according to the level of the optical beat noise. Further, in the present invention, a wavelength setting means for setting an emission wavelength of the optical signal, and the first polarization adjuster based on a relationship between a coupling angle of a polarization plane of each optical signal and a noise level of beat noise. A second control means for controlling the adjustment of the polarization plane by the above, and setting the polarization plane to an arbitrary state; and setting the emission wavelength by the wavelength setting means based on the relationship between the noise level of the beat noise and the wavelength interval. And a third control means for controlling the emission wavelength to an arbitrary interval, arbitrarily controlling the adjustment of the polarization plane of the optical signal and the setting of the emission wavelength to set the level of the optical beat noise to “0”. It is also preferable to do so.

【0012】[0012]

【発明の実施の形態】本発明に係る光信号伝送方法及び
その装置を図1乃至図8の図面に基づいて説明する。図
1は、本発明に係る光信号伝送方法を用いたシステム構
成の第1実施例を示すブロック図である。図において、
上記システムでは、複数例えば2つの端末局10,20
と、センタ局1とは、光ファイバ5を介して接続されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical signal transmission method and apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing a first embodiment of a system configuration using the optical signal transmission method according to the present invention. In the figure,
In the above system, a plurality of, for example, two terminal stations 10, 20
And the center station 1 are connected via an optical fiber 5.

【0013】また、端末局10,20は、偏波調整器1
3,23にそれぞれ接続され、かつ偏波調整器13,2
3から出力される各端末局10,20の光信号が、結合
されて光ファイバ5に出力されるように、光カプラ6を
介して光ファイバ5に接続されている。各端末局10,
20は、偏波調整器13,23に接続される例えばレー
ザダイオード(LD)からなる光源11,21と、LD
11,21から出力される光信号に変調をかける変調器
12,22とから構成されている。
The terminal stations 10 and 20 include a polarization adjuster 1.
3 and 23, respectively, and the polarization adjusters 13 and 2
3 are connected to the optical fiber 5 via the optical coupler 6 such that the optical signals of the terminal stations 10 and 20 output from the optical fiber 3 are combined and output to the optical fiber 5. Each terminal station 10,
Reference numeral 20 denotes light sources 11 and 21 which are connected to the polarization adjusters 13 and 23 and are composed of, for example, laser diodes (LD), and LDs.
Modulators 12 and 22 for modulating optical signals output from the optical modulators 11 and 21 are provided.

【0014】センタ局1は、光ファイバ5と接続された
偏波調整器2と、偏波調整器2で偏波調整された光信号
を受光する例えばPDからなる受光器3と、上記受光し
た光信号を復調する復調器4とから構成されている。と
ころで、光ビート雑音のレベルは、ビート発生に関与す
る2波の光信号の偏波面の結合角度に依存することが知
られている。図2は、その2波の光信号の偏波面の結合
角度(以下、「偏波角」という)とビートレベル(正規
化ビート電圧)の関係を示した関係図である。なお、図
2では、実線は、実測値であり、点線は、理論値を示
し、またビート雑音の正規化ビート電圧は、上記偏波角
が0度の場合のピーク値を「1」に設定した時の各偏波
角に対応した値である。
The center station 1 has a polarization adjuster 2 connected to an optical fiber 5, a light receiver 3 composed of, for example, a PD for receiving the optical signal whose polarization has been adjusted by the polarization adjuster 2, and And a demodulator 4 for demodulating an optical signal. By the way, it is known that the level of the optical beat noise depends on the coupling angle of the polarization plane of the two optical signals involved in the beat generation. FIG. 2 is a relationship diagram showing the relationship between the coupling angle (hereinafter, referred to as “polarization angle”) of the polarization planes of the two optical signals and the beat level (normalized beat voltage). In FIG. 2, the solid line is an actual measurement value, the dotted line indicates a theoretical value, and the normalized beat voltage of the beat noise sets the peak value when the polarization angle is 0 degree to “1”. It is a value corresponding to each polarization angle at the time.

【0015】図2において、両光信号の偏波角の差が0
度の場合には、ビート雑音の正規化ビート電圧が「1」
と最も高くなり、±90度の場合には、上記正規化ビー
ト電圧が「0」と低くなる。これを以下に式で表す。例
えばE0・sin(ω0・t)とE1・sin(ω1・t)
という2つの光がPDによって受光される場合を考える
と、PDの電気成分は、 E02/2+E12/2+E0E1・cosθcos(ω0−
ω1)t ただし、θ:両光信号の偏波面の相互に交わる角度 という成分で出力される。このときの第3項が光ビート
に相当する。
In FIG. 2, the difference between the polarization angles of the two optical signals is zero.
In the case of degree, the normalized beat voltage of beat noise is “1”
In the case of ± 90 degrees, the normalized beat voltage is as low as “0”. This is represented by the following equation. For example, E0 · sin (ω0 · t) and E1 · sin (ω1 · t)
Two light considering the case to be received by the PD of the electrical components of the PD, E0 2/2 + E1 2 /2 + E0E1 · cosθcos (ω0-
.omega.1) t where .theta .: an angle at which the polarization planes of both optical signals cross each other. The third term at this time corresponds to an optical beat.

【0016】この式から分かるように光ビートのレベル
は、θに比例して変化することとなり、θが0度に近づ
くと高くなり、θが±90度に近づくと低くなる。そこ
で、本実施例の偏波調整器13,23では、LD11,
21から出力される両光信号の偏波面が、光カプラ6の
出口付近で直線偏光になり、かつ互いに直交(90度)
するように調整する。また、偏波調整器2では、光ファ
イバ5から入力する光信号の偏波面を、偏波調整器1
3,23が調整した時の状態、つまり直線偏光で、かつ
互いに直交する状態に調整する。
As can be seen from this equation, the level of the optical beat changes in proportion to θ, and increases as θ approaches 0 degrees, and decreases as θ approaches ± 90 degrees. Therefore, in the polarization adjusters 13 and 23 of this embodiment, the LDs 11 and
The polarization planes of both optical signals output from 21 become linearly polarized near the exit of the optical coupler 6 and are orthogonal to each other (90 degrees).
Adjust to In the polarization adjuster 2, the polarization plane of the optical signal input from the optical fiber 5 is changed by the polarization adjuster 1.
The state is adjusted to the state at the time of adjustment by 3, 3, that is, a state of linearly polarized light and orthogonal to each other.

【0017】すなわち、端末局10,20において、変
調器12,22で変調がかけられたLD11,21から
出力される2つの光信号は、偏波調整器13,23によ
って直線偏光で、かつ互いに直交されて出力される。そ
して、各光信号は、光カプラ6によって結合されて一心
の光ファイバに入射され、センタ局1に出力される。な
お、光ファイバ5に出力された光信号は、気象条件や環
境条件(例えば光ファイバの振動や温度変化)等によっ
て偏波面の状態が、端末局側で調整した状態から変動し
てしまう場合がある。ただし、同時に伝送された光信号
相互の偏波面の関係は、同一の伝搬過程では保たれてい
るため、その偏波変動分をセンタ局側で元に戻すことが
可能となる。
That is, in the terminal stations 10 and 20, the two optical signals output from the LDs 11 and 21 modulated by the modulators 12 and 22 are linearly polarized by the polarization adjusters 13 and 23, and mutually polarized. It is output orthogonally. Each optical signal is coupled by the optical coupler 6, input to one optical fiber, and output to the center station 1. In the optical signal output to the optical fiber 5, the state of the polarization plane may fluctuate from the state adjusted on the terminal station side due to weather conditions, environmental conditions (for example, vibration or temperature change of the optical fiber) or the like. is there. However, since the relationship between the polarization planes of the simultaneously transmitted optical signals is maintained during the same propagation process, the polarization fluctuation can be returned to the original state at the center station.

【0018】そこで、センタ局1では、偏波調整器2に
よって光ファイバ5から入力する光信号の偏波面を、直
線偏光で、かつ互いに直交する状態に再び調整して出力
する。この調整がなされた光信号は、1つのPD3によ
って受光され、復調器4によって復調されることとな
る。これにより、本実施例では、各端末局側及びセンタ
局に偏波調整器を設け、光信号の偏波面を、直線偏光
で、かつ互いに直交させた状態で結合して伝送し、その
相互の関係を元の状態(直線偏光で、かつ互いに直交さ
せた状態)に戻してから1つの受光器で受光するので、
各光信号の波長λ1とλ2の間隔を考慮する必要がなく、
上記波長λ1,λ2が同一の波長でも、光信号相互の影響
により発生する光ビート雑音のレベルは「0」になり、
伝送できる光信号数を増加できる。
Therefore, in the center station 1, the polarization adjuster 2 again adjusts the plane of polarization of the optical signal input from the optical fiber 5 so that the plane of polarization is linearly polarized and orthogonal to each other. The optical signal thus adjusted is received by one PD 3 and demodulated by the demodulator 4. Thus, in this embodiment, a polarization adjuster is provided on each terminal station side and the center station, and the polarization planes of the optical signals are linearly polarized and combined with each other in a state of being orthogonal to each other and transmitted. Since the relationship is returned to the original state (in the state of linearly polarized light and orthogonal to each other), light is received by one light receiver.
There is no need to consider the interval between the wavelengths λ1 and λ2 of each optical signal,
Even if the wavelengths λ1 and λ2 are the same, the level of the optical beat noise generated by the influence of the optical signal becomes “0”,
The number of optical signals that can be transmitted can be increased.

【0019】次に、光信号が3つ以上存在する場合のシ
ステム構成の第2実施例を図3のブロック図を用いて説
明する。なお、図3の第2実施例及びそれ以降の実施例
において、図1と同様の構成部分については、説明の都
合上、同一符号とする。図3のシステムでは、図1の構
成の他に、3つ以上の端末局N0が偏波調整器N3を介
して光カプラ6に接続されている。ただし、Nは、任意
の正数である。
Next, a second embodiment of the system configuration when three or more optical signals exist will be described with reference to the block diagram of FIG. In the second embodiment of FIG. 3 and the subsequent embodiments, the same components as those in FIG. 1 are denoted by the same reference numerals for convenience of explanation. In the system of FIG. 3, in addition to the configuration of FIG. 1, three or more terminal stations N0 are connected to the optical coupler 6 via the polarization adjuster N3. Here, N is any positive number.

【0020】このシステムでは、例えば端末局10,2
0や図示しない他の端末局や端末局N0が2つずつでそ
れぞれ組を構成しており、偏波調整器は、各組毎に光信
号の偏波面が、光カプラ6の出口付近で直線偏光で、か
つ互いに直交するように調整している。このため各組の
LDからの光信号は、波長が同一でも隣接していても構
わないが、当該組と波長が隣接する他の組又は1つ(シ
ステム内の端末局が奇数の場合)の光信号との波長間隔
は、光ビートが伝送帯域に発生することによる伝送品質
の劣化を防げる所定の間隔(最短波長間隔)に設定する
必要がある。この最短波長間隔は、本出願人が以前に出
願した特開平7−231300号公報に示したごとく、
RIN(Relative Intensity Noise)値に対して−13
0dB/Hz程度の雑音値が発生するように、上記隣接
する両組の端末局の発光波長が0.2nmの間隔である
ことが望ましい。
In this system, for example, the terminal stations 10, 2
0 and other terminal stations and terminal stations N0 (not shown), each of which constitutes a pair. The polarization adjuster is arranged such that the polarization plane of the optical signal for each pair is linear near the exit of the optical coupler 6. The polarization is adjusted so as to be orthogonal to each other. For this reason, the optical signals from each set of LDs may have the same wavelength or be adjacent to each other, but the other set or one set of adjacent sets of wavelengths (when the number of terminal stations in the system is an odd number) is adjacent to the set. It is necessary to set the wavelength interval between the optical signal and the optical signal to a predetermined interval (shortest wavelength interval) that can prevent deterioration of transmission quality due to occurrence of an optical beat in a transmission band. The shortest wavelength interval is, as shown in Japanese Patent Application Laid-Open No. Hei 7-231300 previously filed by the present applicant,
-13 to RIN (Relative Intensity Noise) value
It is desirable that the light emission wavelengths of the two adjacent sets of terminal stations have an interval of 0.2 nm so that a noise value of about 0 dB / Hz is generated.

【0021】すなわち、本実施例の光信号の上り系伝送
を例えば1.55μm帯の波長で行う場合には、端末局
10,20の波長λ1,λ2を1550.0nmに、例え
ば波長λ1,λ2と隣接する図示しない端末局の波長λ
3,λ4を1550.2nmに、端末局N0の波長λNを
1550.Nnmに設定する。これにより、本実施例に
おいては、同じ組の端末局では、光信号の偏波面を、直
線偏光で、かつ互いに直交させた状態で結合して、かつ
異なる組の端末局では、光信号の波長を所定間隔に設定
して伝送し、その相互の関係を、第1実施例と同様に、
センタ局で元の状態に戻してから1つの受光器で受光す
るので、波長が隣接する組の光信号の波長間隔を考慮す
るだけで、異なる組の光信号相互により発生する光ビー
ト雑音のレベルは光信号伝送に影響を与えないレベルに
低減或いは「0」にでき、かつ伝送できる光信号数を最
大で2倍に増加できる。
That is, when the upstream transmission of the optical signal of this embodiment is performed at a wavelength of, for example, 1.55 μm, the wavelengths λ1, λ2 of the terminal stations 10, 20 are set to 1550.0 nm, for example, the wavelengths λ1, λ2. And the wavelength λ of an adjacent terminal station (not shown)
3, λ4 is set to 1550.2 nm, and the wavelength λN of the terminal station N0 is set to 1550. Set to Nnm. Thus, in the present embodiment, in the same set of terminal stations, the polarization planes of the optical signals are combined in a state of being linearly polarized and orthogonal to each other, and in different sets of terminal stations, the wavelengths of the optical signals are different. Are transmitted at predetermined intervals, and their mutual relationship is determined in the same manner as in the first embodiment.
Since the light is received by one optical receiver after returning to the original state at the center station, the level of the optical beat noise generated by the different sets of optical signals is determined only by considering the wavelength interval of the optical signals of the adjacent sets. Can be reduced to a level that does not affect optical signal transmission or can be set to "0", and the number of optical signals that can be transmitted can be increased at most twice.

【0022】なお、これら実施例では、専有帯域幅の広
い映像情報の光信号を伝送する場合を想定し、その信号
伝送帯域に影響を与える光ビート雑音のレベルを「0」
にするために、光信号を互いに直交させたが、例えば専
有帯域幅が狭い静止画、音声又は文字等の情報の場合に
は、信号伝送帯域内に飛び込む雑音のレベルは小さくな
る。従って、この場合には、図2に示した正規化ビート
電圧が「0.1」程度でも十分に光信号伝送に耐えうる
ものとなるので、上記偏波角を直交させる方向に近づけ
るだけで、光信号の伝送品質を向上させることができ
る。
In these embodiments, it is assumed that an optical signal of video information having a wide exclusive bandwidth is transmitted, and the level of optical beat noise affecting the signal transmission band is set to "0".
However, in the case of information such as a still image, a voice, a character, or the like, which has a narrow exclusive bandwidth, the level of noise jumping into the signal transmission band is small. Therefore, in this case, even if the normalized beat voltage shown in FIG. 2 is about “0.1”, it can sufficiently withstand optical signal transmission. The transmission quality of an optical signal can be improved.

【0023】そこで、本発明に係る偏波調整器では、実
施例のものに限らず、光信号の偏波面を−85度〜−9
0度、又は85度〜90度の範囲に調整するものを用い
ることが可能である。この場合には、調整精度の高い高
価な偏波調整器の代わりに、安価な偏波調整器を用いる
ことができ、製作コストの削減を図ることができる。ま
た、本発明に係るシステムの構成要素の一つである光フ
ァイバに、偏波面保持ファイバを用いることが可能であ
り、このシステムの場合には、ファイバ中で光信号の偏
波面が所定の状態、すなわち端末局側の偏波面調整器で
設定された直線偏光で、かつ互いに直交した状態を保持
したままセンタ局のPDで受光されることとなり、図2
に示したごとくビートが発生しないので、センタ局で
は、上記光ファイバからPDが直接光信号を受光するこ
とが可能となり、偏波調整器が不要となる。
Therefore, in the polarization adjuster according to the present invention, the polarization plane of the optical signal is not limited to that of the embodiment, but may be -85 degrees to -9 degrees.
It is possible to use one that adjusts to 0 degrees or a range of 85 degrees to 90 degrees. In this case, an inexpensive polarization adjuster can be used instead of an expensive polarization adjuster with high adjustment accuracy, and the manufacturing cost can be reduced. In addition, a polarization maintaining fiber can be used for the optical fiber which is one of the components of the system according to the present invention. In this system, the polarization plane of the optical signal is in a predetermined state in the fiber. That is, the linearly polarized light set by the polarization plane adjuster on the terminal station side is received by the PD of the center station while maintaining a state orthogonal to each other.
Since no beat is generated as shown in (1), in the center station, the PD can directly receive the optical signal from the optical fiber, and the polarization adjuster becomes unnecessary.

【0024】また、これら実施例の各偏波調整器2,1
3,23〜N3の上記調整は、例えばシステム設置時に
作業者が人為的に行っても又は後述する実施例のように
システム設置時又は使用時に自動的に調整制御できるよ
うにしても良い。また、各偏波調整器2,13,23〜
N3は、各局内に組み込むことも可能であるし、また既
に設置されているシステムの場合等には、局外に設けて
各局と接続させることも可能である。
Further, each of the polarization adjusters 2 and 1 of these embodiments
The adjustment of 3, 23 to N3 may be performed, for example, manually by an operator at the time of installing the system, or automatically adjusted and controlled at the time of installing or using the system as in an embodiment described later. In addition, each of the polarization adjusters 2, 13, 23 to
N3 can be incorporated in each station, or in the case of a system already installed, it can be provided outside the station and connected to each station.

【0025】図4は、偏波アナライザを用いて偏波面を
自動調整するシステム構成の第3実施例を示すブロック
図である。このシステムでは、端末局側に、光カプラ6
の出口付近で光信号を分岐する分岐器30と、上記分岐
された光信号を取り込んで偏波状態を測定する偏波アナ
ライザ31と、上記測定された偏波状態に応じて偏波調
整器13,23を制御して偏波面の調整を行わせる制御
装置32とを端末局側に配置し、また偏波調整器2から
出力された光信号を分岐する分岐器40と、上記分岐さ
れた光信号を取り込んで偏波状態を測定する偏波アナラ
イザ41と、上記測定された偏波状態に応じて偏波調整
器2を制御して偏波面の調整を行わせる制御装置42と
をセンタ局側に配置している。
FIG. 4 is a block diagram showing a third embodiment of a system configuration for automatically adjusting the plane of polarization using a polarization analyzer. In this system, an optical coupler 6 is provided on the terminal station side.
A splitter 30 for splitting an optical signal near the exit of the optical amplifier, a polarization analyzer 31 for taking in the split optical signal and measuring the polarization state, and a polarization adjuster 13 according to the measured polarization state. , 23 for controlling the polarization plane by disposing the control device 32 on the terminal station side, and a splitter 40 for splitting the optical signal output from the polarization adjuster 2; The center station side includes a polarization analyzer 41 that takes in a signal and measures a polarization state, and a control device 42 that controls the polarization adjuster 2 to adjust the polarization plane according to the measured polarization state. Has been placed.

【0026】本実施例では、例えばシステム設置の初期
設定時に、端末局側の偏波アナライザ31は、各端末局
10,20からの各光信号の偏波面の状態をそれぞれ測
定して制御装置32に出力しており、制御装置32は、
これら測定値に応じて各偏波調整器13,23を動作制
御して、上記各光信号の偏波面が直線偏光で、かつ互い
に直交させた状態になるように調整させている。
In the present embodiment, for example, at the time of initial setting of system installation, the polarization analyzer 31 on the terminal station side measures the state of the polarization plane of each optical signal from each of the terminal stations 10 and 20 and controls the controller 32 And the control device 32 outputs
The operation of each of the polarization adjusters 13 and 23 is controlled in accordance with these measured values so that the polarization planes of the optical signals are linearly polarized and orthogonal to each other.

【0027】センタ局側の偏波アナライザ41は、偏波
調整器2を介して分岐された一方の光信号を取り込ん
で、その偏波面の状態を測定して制御装置42に出力し
ており、制御装置42は、この測定値に応じて偏波調整
器2を動作制御して、伝送中に生じた偏波変動分を元に
戻すように上記光信号の偏波面を調整させる。なお、同
時に伝送された光信号相互の偏波面の関係は、上述した
ように同一の伝搬過程では保たれているため、ここでは
一つの光信号の偏波面を調整することによって偏波変動
分を元に戻すことができる。
The polarization analyzer 41 on the center station side takes in one of the optical signals branched via the polarization adjuster 2, measures the state of its polarization plane, and outputs it to the control device 42. The control device 42 controls the operation of the polarization adjuster 2 according to the measured value, and adjusts the polarization plane of the optical signal so as to restore the polarization fluctuation generated during transmission. Since the relationship between the polarization planes of the optical signals transmitted at the same time is maintained in the same propagation process as described above, the polarization fluctuation is adjusted here by adjusting the polarization plane of one optical signal. Can be undone.

【0028】従って、本実施例では、偏波面が直線偏光
で、かつ互いに直交する状態になるように自動調整され
た光信号を、センタ局側で再び上記状態に自動的に戻し
て受光するので、光ファイバを介した光信号の伝送中に
上記偏波面が変動しても光ビートを発生させずに、結合
された光信号を受光できる。また、本実施例では、例え
ばシステムの使用中に新たに端末局が追加された場合に
も、上記新規端末局からの光信号を、端末局側で他の端
末局からの光信号と直交するように自動的に調整すれ
ば、既存のシステムにも使用することが可能となる。
Accordingly, in the present embodiment, the optical signal automatically adjusted so that the plane of polarization is linearly polarized light and orthogonal to each other is automatically returned to the above state at the center station side and received. Even if the polarization plane fluctuates during transmission of an optical signal through an optical fiber, the combined optical signal can be received without generating an optical beat. In the present embodiment, for example, even when a new terminal station is added during use of the system, the optical signal from the new terminal station is orthogonal to the optical signal from another terminal station on the terminal station side. Such automatic adjustment makes it possible to use the existing system.

【0029】また図5は、雑音検出装置を用いて偏波面
を自動調整するシステム構成の第4実施例を示すブロッ
ク図である。このシステムでは、端末局側の構成は第3
実施例と同様であるが、センタ局側に受光器3から発生
する光ビートの雑音レベルを検出する雑音検出装置43
と、上記検出された雑音レベルに応じて偏波調整器2を
制御して偏波面の調整を行わせる制御装置44とを配置
している。
FIG. 5 is a block diagram showing a fourth embodiment of a system configuration for automatically adjusting the plane of polarization using a noise detection device. In this system, the configuration on the terminal station side is the third
This is the same as the embodiment, except that the noise detecting device 43 detects the noise level of the optical beat generated from the optical receiver 3 at the center station side.
And a control device 44 for controlling the polarization adjuster 2 in accordance with the detected noise level to adjust the polarization plane.

【0030】本実施例では、第3実施例と同様、端末局
からの光信号は、偏波面が直線偏光で、かつ互いに直交
された状態になるように調整されて出力されている。セ
ンタ局側の受光器3では、光ファイバ5を介した光信号
の伝送中に上記偏波面の変動によって、受光した信号成
分に光ビートが発生する場合がある。雑音検出装置43
は、この光ビートの雑音レベルを検出して制御装置44
に出力しており、制御装置44は、この雑音レベルが
「0」になるように偏波調整器2を動作制御して、伝送
中に生じた偏波変動分を元に戻すように上記光信号の偏
波面を調整させる。
In the present embodiment, similarly to the third embodiment, the optical signal from the terminal station is adjusted and output so that the plane of polarization is linearly polarized and orthogonal to each other. In the optical receiver 3 on the center station side, an optical beat may occur in the received signal component due to the fluctuation of the polarization plane during the transmission of the optical signal via the optical fiber 5. Noise detection device 43
Detects the noise level of this optical beat and
The control device 44 controls the operation of the polarization adjuster 2 so that the noise level becomes “0”, and restores the polarization fluctuation generated during the transmission to the original. Adjust the polarization plane of the signal.

【0031】従って、本実施例では、直交する状態にな
るように自動調整された光信号を、センタ局側で検出さ
れた光ビートの雑音レベルが「0」になるように、再び
上記状態を自動調整するので、上記偏波面の変動に伴っ
て発生した光ビートを消滅させて、結合された光信号を
受光できる。なお、第3及び第4実施例では、光信号が
2つの場合について説明したが、本発明はこれに限ら
ず、光信号が3つ以上存在する場合も同様に用いること
が可能である。この場合には、第2実施例と同様に、当
該組と波長が隣接する他の組又は1つの光信号との波長
間隔を最短波長間隔に設定する必要がある。
Therefore, in the present embodiment, the optical signal automatically adjusted so as to be in the orthogonal state is changed to the above state again so that the noise level of the optical beat detected by the center station becomes "0". Since the automatic adjustment is performed, the optical beat generated due to the change in the polarization plane is eliminated, and the combined optical signal can be received. In the third and fourth embodiments, the case where there are two optical signals has been described. However, the present invention is not limited to this, and the present invention can be similarly used when there are three or more optical signals. In this case, similarly to the second embodiment, it is necessary to set the wavelength interval between the set and another set or an optical signal whose wavelength is adjacent to the shortest wavelength interval.

【0032】また、上記実施例では、光信号の偏波角を
互いに直交する状態に調整する場合を説明したが、例え
ば上記偏波角及び波長間隔の関係から光ビートの発生を
防止することも可能である。例えば、各ビートレベル
(正規化ビート電圧)における上記RIN値と波長間隔
との関係は、図6に示すような関係にある。図6におい
て、正規化ビート電圧は、そのピーク値が「1」の時
に、波長間隔に対するRIN値が最も悪い状態にあり、
そのピーク値が「0」に近づくに従って、波長間隔に対
するRIN値が改善される。なお、ここでは、光信号の
変調度が90%の場合を示している。
In the above embodiment, the case where the polarization angles of the optical signals are adjusted to be orthogonal to each other has been described. However, for example, the occurrence of an optical beat can be prevented from the relationship between the polarization angle and the wavelength interval. It is possible. For example, the relationship between the RIN value and the wavelength interval at each beat level (normalized beat voltage) is as shown in FIG. In FIG. 6, when the peak value of the normalized beat voltage is “1”, the RIN value for the wavelength interval is in the worst state,
As the peak value approaches “0”, the RIN value for the wavelength interval is improved. Here, the case where the modulation degree of the optical signal is 90% is shown.

【0033】この関係の場合において、ビート雑音は、
−130dB/Hzの上記RIN値を得ることが好まし
い。そこで、図6の関係から、上記RIN値が−130
dB/Hzの雑音値を得るための正規化ビート電圧と波
長間隔との関係を、図7のように示すことができる。す
なわち、図7において、例えば正規化ビート電圧が
「1」の時に、波長間隔は0.2nm程度であり、正規
化ビート電圧が「0.5」の時に、波長間隔は0.18
nm程度であり、正規化ビート電圧が「0.1」の時
に、波長間隔は0.13nm程度である。
In the case of this relationship, the beat noise is
It is preferred to obtain the above RIN value of -130 dB / Hz. Therefore, from the relationship shown in FIG.
FIG. 7 shows the relationship between the normalized beat voltage and the wavelength interval for obtaining a noise value of dB / Hz. That is, in FIG. 7, for example, when the normalized beat voltage is “1”, the wavelength interval is about 0.2 nm, and when the normalized beat voltage is “0.5”, the wavelength interval is 0.18.
When the normalized beat voltage is “0.1”, the wavelength interval is about 0.13 nm.

【0034】従って、図2と図7の関係図に基づいて、
正規化ビート電圧に対する偏波角及び波長間隔の関係を
求めることが可能となり、上記関係から光ビートの発生
を防止することができる。図8は、図2と図7の関係図
に基づいて、偏波角及び波長間隔を自動調整するシステ
ム構成の第5実施例を示すブロック図である。なお、図
8において、図3の第2実施例と同様の構成部分につい
ては、説明の都合上、同一符号とする。
Therefore, based on the relationship between FIG. 2 and FIG.
The relationship between the polarization angle and the wavelength interval with respect to the normalized beat voltage can be obtained, and the occurrence of an optical beat can be prevented from the above relationship. FIG. 8 is a block diagram showing a fifth embodiment of the system configuration for automatically adjusting the polarization angle and the wavelength interval based on the relationship between FIG. 2 and FIG. In FIG. 8, the same components as those in the second embodiment of FIG. 3 are denoted by the same reference numerals for convenience of explanation.

【0035】図8において、制御装置33は、上記図2
と図7に示した偏波角と正規化ビート電圧及び正規化ビ
ート電圧と波長間隔の関係を、例えばテーブル形式で記
憶している。そして、制御装置33は、偏波調整器1
3,23〜N3の動作を制御し、各光信号の偏波面が所
定状態になるように調整させるとともに、LD11,2
1〜N1の発光波長を制御し、各光信号の波長が所定波
長になるように設定する。
Referring to FIG. 8, the control device 33
And the relationship between the polarization angle, the normalized beat voltage, and the normalized beat voltage and the wavelength interval shown in FIG. 7 are stored in a table format, for example. Then, the control device 33 controls the polarization adjuster 1
3, 23 to N3 are controlled to adjust the polarization plane of each optical signal to a predetermined state.
The emission wavelengths of 1 to N1 are controlled so that the wavelength of each optical signal is set to a predetermined wavelength.

【0036】例えば、光信号の偏波角を60度に設定す
る場合には、制御装置33は、自装置内の上記テーブル
に基づき、各偏波調整器を制御して偏波角の調整を行わ
せるとともに、各端末局のLDを制御して、波長が隣接
する端末局の発光波長間隔が0.18nmになるように
設定する。また、逆に波長間隔を例えば0.13nmに
設定する場合には、制御装置33は、自装置内の上記テ
ーブルに基づき、各LDを制御して波長間隔の設定を行
うとともに、各偏波調整器を制御して同じ組の端末局か
らの光信号の偏波角が85度になるように調整させる。
For example, when setting the polarization angle of the optical signal to 60 degrees, the control device 33 controls each polarization adjuster based on the table in its own device to adjust the polarization angle. At the same time, the LD of each terminal station is controlled so that the emission wavelength interval between adjacent terminal stations is set to 0.18 nm. On the other hand, when setting the wavelength interval to, for example, 0.13 nm, the control device 33 controls each LD to set the wavelength interval based on the table in the own device, and sets each polarization adjustment. And the optical signal from the same set of terminal stations is adjusted so that the polarization angle becomes 85 degrees.

【0037】従って、本実施例では、偏波角及び波長間
隔の関係から、上記偏波角及び波長間隔を任意に調整す
ることができ、例えばシステム中の端末局の数に応じ
て、偏波角及び波長間隔を設定することが可能となり、
この関係から光ビートの発生を防止することができる。
なお、本実施例では、図4、図5の第3及び第4実施例
のように、端末局側に、偏波アナライザを設けて光信号
の偏波面の状態を測定し、その測定値に基づいて偏波面
を自動調整することも可能であるし、またセンタ局側
に、偏波アナライザを設けて光信号の偏波面の状態を測
定し、その測定値に基づいて偏波面を自動調整すること
も可能である。
Therefore, in the present embodiment, the polarization angle and the wavelength interval can be arbitrarily adjusted from the relationship between the polarization angle and the wavelength interval. For example, the polarization angle and the wavelength interval can be adjusted according to the number of terminal stations in the system. Angle and wavelength spacing can be set,
From this relationship, the occurrence of an optical beat can be prevented.
In this embodiment, as in the third and fourth embodiments of FIGS. 4 and 5, a polarization analyzer is provided on the terminal station side to measure the state of the polarization plane of the optical signal, and the measured value is used as the measured value. It is also possible to automatically adjust the polarization plane based on this, or to install a polarization analyzer on the center station side to measure the state of the polarization plane of the optical signal and automatically adjust the polarization plane based on the measured value It is also possible.

【0038】また、本実施例では、制御装置を用いず
に、偏波角と正規化ビート電圧及び正規化ビート電圧と
波長間隔の関係に基づいて、作業者が人為的に各光信号
の偏波角と波長の設定を行っても良い。さらに、本実施
例では、直線偏光の場合について説明したが、本発明は
これに限らず、例えば楕円偏光との組み合わせの場合で
も応用が可能である。また、この場合には、光信号の波
長間隔の設定と併せて用いることも可能となる。
Further, in this embodiment, without using a control device, an operator artificially adjusts the polarization of each optical signal based on the relationship between the polarization angle and the normalized beat voltage and between the normalized beat voltage and the wavelength interval. The wave angle and the wavelength may be set. Furthermore, in this embodiment, the case of linearly polarized light has been described. However, the present invention is not limited to this, and can be applied to, for example, a combination with elliptically polarized light. Also, in this case, it is possible to use it together with the setting of the wavelength interval of the optical signal.

【0039】[0039]

【発明の効果】以上説明したように、本発明では、複数
の光源から出力される光信号を結合して光伝送路に伝送
し、該光信号を受光部で受光して復調する光信号伝送装
置において、前記光源からの光信号の偏波面を直線偏光
にし、かつ互いに直交させる方向に調整する第1の偏波
制御手段を備えたので、各光信号の波長間隔を考慮する
必要がなく、同時に伝送できる光信号数を増加できる。
As described above, according to the present invention, optical signals transmitted from a plurality of light sources are combined and transmitted to an optical transmission line, and the optical signals are received by a light receiving section and demodulated. In the apparatus, the polarization plane of the optical signal from the light source is linearly polarized, and the first polarization control means for adjusting in the direction orthogonal to each other, it is not necessary to consider the wavelength interval of each optical signal, The number of optical signals that can be transmitted simultaneously can be increased.

【0040】また、本発明では、第1の偏波調整手段
は、前記光信号が少なくとも3つ存在する場合には、波
長が同一又は隣接する2つの前記光信号を組として、当
該各組の光信号の偏波面を前記直線偏光にし、かつ互い
に直交させるとともに、光源は、当該組の光信号と、当
該組の光信号と波長が隣接する他の組又は1つの前記光
信号との波長間隔を所定間隔に設定して出力するので、
同じ組での光信号の波長間隔は考慮せずに、異なる組で
の光信号の波長間隔のみを考慮すればよく、同時に伝送
できる光信号数を増加できる。
Further, in the present invention, when at least three optical signals are present, the first polarization adjusting means sets two optical signals having the same wavelength or adjacent wavelengths as a set, and The polarization plane of the optical signal is linearly polarized and orthogonal to each other, and the light source is a wavelength interval between the set of optical signals and another set or one of the optical signals whose wavelengths are adjacent to the set of optical signals. Is output at a predetermined interval.
It is only necessary to consider the wavelength intervals of optical signals in different sets without considering the wavelength intervals of optical signals in the same set, and the number of optical signals that can be transmitted simultaneously can be increased.

【0041】また、本発明では、入力する光信号の偏波
面を直線偏光にし、かつ互いに直交させるように調整す
る第2の偏波調整手段を備えたので、光伝送路内で光信
号の偏波面が変動した場合でも、光ビートが発生せずに
光信号を受光できる。また、本発明では、光伝送路へ出
力される光信号の偏波面の状態を測定する第1の測定手
段と、該測定結果に応じて第1の測定手段による前記偏
波面の調整を制御する第1の制御手段とを備え、光伝送
路から入力する前記光信号の偏波面の状態を測定する第
2の測定手段と、該測定結果に応じて前記第2の測定手
段による前記偏波面の調整を制御する第4の制御手段と
を備えたので、変化する光信号の偏波面の状態に応じて
光信号の偏波面を自動調整できる。
Further, according to the present invention, since the second polarization adjusting means for adjusting the polarization plane of the input optical signal so as to be linearly polarized and orthogonal to each other is provided, the polarization of the optical signal in the optical transmission line is provided. Even if the wavefront fluctuates, an optical signal can be received without generating an optical beat. Further, in the present invention, the first measuring means for measuring the state of the polarization plane of the optical signal output to the optical transmission line, and the adjustment of the polarization plane by the first measuring means is controlled in accordance with the measurement result. A first control unit, a second measurement unit for measuring a state of a polarization plane of the optical signal input from the optical transmission line, and a polarization state of the polarization plane by the second measurement unit according to the measurement result. Since the fourth control means for controlling the adjustment is provided, the polarization plane of the optical signal can be automatically adjusted according to the changing state of the polarization plane of the optical signal.

【0042】さらに、本発明では、光信号の受光の際に
発生する光ビート雑音を検出する検出手段と、該検出し
た雑音レベルに応じて第2の偏波調整手段による前記偏
波面の調整を制御する第5の制御手段とを備えたので、
光ビート雑音のレベルに応じて光信号の偏波面を自動調
整できる。さらにまた、本発明では、前記光信号の発光
波長を設定する波長設定手段と、前記各光信号の偏波面
の結合角度とビート雑音の雑音レベルの関係に基づい
て、前記第1の偏波調整器による偏波面の調整を制御
し、当該偏波面を任意の状態にする第2の制御手段と、
前記ビート雑音の雑音レベルと波長間隔の関係に基づい
て、前記波長設定手段による発光波長の設定を制御し、
当該発光波長を任意の間隔にする第3の制御手段とを備
えるので、光信号の偏波面の調整及び発光波長の設定を
任意に制御して、光ビート雑音のレベルを「0」にする
ことができる。
Further, according to the present invention, a detecting means for detecting optical beat noise generated at the time of receiving an optical signal, and an adjustment of the polarization plane by the second polarization adjusting means according to the detected noise level. And a fifth control means for controlling.
The polarization plane of the optical signal can be automatically adjusted according to the level of the optical beat noise. Still further, in the present invention, a wavelength setting means for setting an emission wavelength of the optical signal, and the first polarization adjustment based on a relationship between a coupling angle of a polarization plane of each optical signal and a noise level of beat noise. Second control means for controlling the adjustment of the polarization plane by the device and for setting the polarization plane to an arbitrary state;
Based on the relationship between the noise level of the beat noise and the wavelength interval, controls the setting of the emission wavelength by the wavelength setting means,
The third control means for setting the emission wavelength to an arbitrary interval is provided, so that the adjustment of the polarization plane of the optical signal and the setting of the emission wavelength are arbitrarily controlled to set the level of the optical beat noise to “0”. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光信号伝送方法を用いたシステム
構成の第1実施例を示すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of a system configuration using an optical signal transmission method according to the present invention.

【図2】光信号の偏波面の結合角度とビートレベルの関
係を示す関係図である。
FIG. 2 is a relationship diagram showing a relationship between a coupling angle of a polarization plane of an optical signal and a beat level.

【図3】光信号が3つ以上存在する場合の本発明に係る
光信号伝送方法を用いたシステム構成の第2実施例を示
すブロック図である。
FIG. 3 is a block diagram showing a second embodiment of a system configuration using an optical signal transmission method according to the present invention when three or more optical signals exist.

【図4】同じく本発明に係るシステム構成の第3実施例
を示すブロック図である。
FIG. 4 is a block diagram showing a third embodiment of the system configuration according to the present invention.

【図5】同じく本発明に係るシステム構成の第4実施例
を示すブロック図である。
FIG. 5 is a block diagram showing a fourth embodiment of the system configuration according to the present invention.

【図6】各ビートレベルにおけるRIN値と波長間隔と
の関係を示す関係図である。
FIG. 6 is a relationship diagram showing a relationship between a RIN value and a wavelength interval at each beat level.

【図7】RIN値が−130dB/Hzの雑音値が発生
する場合のビートレベルと波長間隔の関係を示す関係図
である。
FIG. 7 is a relationship diagram illustrating a relationship between a beat level and a wavelength interval when a noise value having a RIN value of −130 dB / Hz occurs.

【図8】同じく本発明に係るシステム構成の第5実施例
を示すブロック図である。
FIG. 8 is a block diagram showing a fifth embodiment of the system configuration according to the present invention.

【符号の説明】[Explanation of symbols]

1 センタ局 2,13,23,N3 偏波調整器 3 受光器 4 復調器 5 光ファイバ 6 光カプラ 10,20,N0 端末局 11,21,N1 光源 12,22,N2 変調器 31,41 偏波アナライザ 32,33,42,44 制御装置 43 雑音検出装置 Reference Signs List 1 center station 2, 13, 23, N3 polarization adjuster 3 light receiver 4 demodulator 5 optical fiber 6 optical coupler 10, 20, N0 terminal station 11, 21, N1 light source 12, 22, N2 modulator 31, 41 polarization Wave analyzer 32, 33, 42, 44 Controller 43 Noise detector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H04B 10/04 10/06 (72)発明者 那須 秀行 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI H04B 10/04 10/06 (72) Inventor Hideyuki Nasu 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd.

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 複数の送信部から出力される光信号を結
合して光伝送路に伝送し、該光信号を受光部で受光して
復調する光信号伝送方法において、 前記送信部は、前記光信号の偏波面を互いに直交させる
方向に調整して出力することを特徴とする光信号伝送方
法。
1. An optical signal transmission method in which optical signals output from a plurality of transmitting units are combined and transmitted to an optical transmission line, and the optical signals are received by a light receiving unit and demodulated. An optical signal transmission method comprising: adjusting polarization planes of an optical signal in directions orthogonal to each other;
【請求項2】 前記送信部は、前記光信号の偏波面を直
線偏光にし、かつ互いに直交させて出力することを特徴
とする請求項1に記載の光信号伝送方法。
2. The optical signal transmission method according to claim 1, wherein the transmission unit converts the polarization plane of the optical signal into linearly polarized light and outputs the optical signal orthogonal to each other.
【請求項3】 前記送信部は、前記光信号が少なくとも
3つ存在する場合には、発光波長が同一又は隣接する2
つの前記光信号を組として、当該各組の光信号の偏波面
を互いに直交させる方向に調整するとともに、該組の光
信号と、当該組の光信号と発光波長が隣接する他の組又
は1つの前記光信号との波長間隔を所定間隔に設定して
出力することを特徴とする請求項1に記載の光信号伝送
方法。
3. The transmitting unit, when there are at least three optical signals, two light emitting wavelengths that are the same or adjacent to each other.
As a set of the two optical signals, the polarization planes of the optical signals of each set are adjusted in directions orthogonal to each other, and the optical signal of the set and another set or 1 in which the optical signal and the emission wavelength of the set are adjacent to each other. 2. The optical signal transmission method according to claim 1, wherein a wavelength interval between the two optical signals is set to a predetermined interval and output.
【請求項4】 前記送信部は、前記各組の光信号の偏波
面を直線偏光にし、かつ互いに直交させて出力すること
を特徴とする請求項3に記載の光信号伝送方法。
4. The optical signal transmission method according to claim 3, wherein the transmitting unit converts the polarization plane of each set of optical signals into linearly polarized light and outputs the optical signals orthogonal to each other.
【請求項5】 前記送信部は、前記結合された光信号が
前記互いに直交されるように調整することを特徴とする
請求項1乃至4のいずれかに記載の光信号伝送方法。
5. The optical signal transmission method according to claim 1, wherein the transmitter adjusts the combined optical signals so that the combined optical signals are orthogonal to each other.
【請求項6】 複数の送信部から出力される光信号を結
合して光伝送路に伝送し、該光信号を受光部で受光して
復調する光信号伝送方法において、前記送信部は、前記
各光信号の偏波面の結合角度とビート雑音の雑音レベル
の関係に基づいて、該各光信号の偏波面を任意の状態に
調整するとともに、該ビート雑音の雑音レベルと波長間
隔の関係に基づいて、該各光信号の発光波長を任意の間
隔に設定して出力することを特徴とする光信号伝送方
法。
6. An optical signal transmission method in which optical signals output from a plurality of transmitting units are combined and transmitted to an optical transmission line, and the optical signals are received by a light receiving unit and demodulated. Based on the relationship between the coupling angle of the polarization plane of each optical signal and the noise level of the beat noise, the polarization plane of each optical signal is adjusted to an arbitrary state, and based on the relationship between the noise level of the beat noise and the wavelength interval. An optical signal transmission method, wherein the light emission wavelength of each optical signal is set at an arbitrary interval and output.
【請求項7】 前記送信部は、前記結合された光信号の
偏波面の状態を測定し、該測定結果に応じて前記光信号
の偏波面を調整することを特徴とする請求項1乃至6の
いずれかに記載の光信号伝送方法。
7. The transmission unit according to claim 1, wherein the transmission unit measures a state of a polarization plane of the combined optical signal, and adjusts a polarization plane of the optical signal according to the measurement result. The optical signal transmission method according to any one of the above.
【請求項8】 前記受光部は、入力する前記光信号の偏
波面の状態を測定し、該測定結果に応じて前記入力する
光信号の偏波面を調整する請求項1又は6に記載の光信
号伝送方法。
8. The light according to claim 1, wherein the light receiving unit measures a state of a polarization plane of the input optical signal, and adjusts a polarization plane of the input optical signal according to the measurement result. Signal transmission method.
【請求項9】 前記受光部は、前記光信号の受光の際に
発生する雑音を検出し、該検出した雑音レベルに応じて
前記入力する光信号の偏波面を調整することを特徴とす
る請求項1又は6に記載の光信号伝送方法。
9. The apparatus according to claim 1, wherein the light receiving unit detects noise generated when the optical signal is received, and adjusts a polarization plane of the input optical signal in accordance with the detected noise level. Item 7. The optical signal transmission method according to item 1 or 6.
【請求項10】 前記受光部は、入力する前記光信号の
偏波面の状態を、前記送信部が出力した時の前記光信号
の偏波面の状態に調整して受光することを特徴とする請
求項1,6〜9のいずれかに記載の光信号伝送方法。
10. The light receiving unit according to claim 1, wherein the state of the plane of polarization of the input optical signal is adjusted to the state of the plane of polarization of the optical signal when the transmitting unit outputs, and the light is received. Item 10. The optical signal transmission method according to any one of Items 1, 6 to 9.
【請求項11】 前記受光部は、前記入力する光信号の
偏波面を直線偏光にし、かつ互いに直交させるように調
整して受光することを特徴とする請求項1又は10に記
載の光信号伝送方法。
11. The optical signal transmission according to claim 1, wherein the light receiving unit receives the input optical signal by adjusting the plane of polarization of the input optical signal to linearly polarized light and adjusting the polarization plane to be orthogonal to each other. Method.
【請求項12】 複数の光源から出力される光信号を結
合して光伝送路に伝送し、該光信号を受光部で受光して
復調する光信号伝送装置において、 前記光源からの光信号の偏波面を互いに直交させる方向
に調整する第1の偏波調整手段を備えたことを特徴とす
る光信号伝送装置。
12. An optical signal transmission device that combines optical signals output from a plurality of light sources, transmits the combined optical signals to an optical transmission line, and receives and demodulates the optical signals by a light receiving unit. An optical signal transmission device comprising: first polarization adjusting means for adjusting polarization planes in directions orthogonal to each other.
【請求項13】 複数の光源から出力される光信号を結
合して光伝送路に伝送し、該光信号を受光部で受光して
復調する光信号伝送装置において、 前記光源からの光信号の偏波面を互いに直交させる方向
に調整する第1の偏波調整手段と、 前記光伝送路からの光信号の偏波面の状態を、前記第1
の偏波調整手段が調整した時の当該偏波面の状態に調整
する第2の偏波調整手段とを備えたことを特徴とする光
信号伝送装置。
13. An optical signal transmission device for combining optical signals output from a plurality of light sources and transmitting the combined optical signals to an optical transmission line, receiving the optical signals by a light receiving unit, and demodulating the optical signals. First polarization adjusting means for adjusting polarization planes in directions orthogonal to each other, and changing the state of the polarization plane of the optical signal from the optical transmission line to the first polarization adjustment state.
An optical signal transmission device comprising: a second polarization adjusting unit that adjusts the state of the polarization plane when the polarization adjusting unit adjusts.
【請求項14】 前記第1の偏波調整手段は、前記光源
からの光信号の偏波面を直線偏光にし、かつ互いに直交
させるように調整することを特徴とする請求項12又は
13に記載の光信号伝送装置。
14. The apparatus according to claim 12, wherein the first polarization adjusting unit adjusts the plane of polarization of the optical signal from the light source so as to be linearly polarized and orthogonal to each other. Optical signal transmission device.
【請求項15】 前記第1の偏波調整手段は、前記光信
号が少なくとも3つ存在する場合には、発光波長が同一
又は隣接する2つの前記光信号を組として、当該各組の
光信号の偏波面を互いに直交させるとともに、 前記光源は、該組の光信号と、当該組の光信号と発光波
長が隣接する他の組又は1つの前記光信号との波長間隔
を所定間隔に設定して出力することを特徴とする請求項
12又は13に記載の光信号伝送装置。
15. The first polarization adjusting unit, when at least three optical signals are present, sets two optical signals having the same or adjacent light emission wavelengths as a set, and sets each of the optical signals in each set. While the polarization planes are orthogonal to each other, the light source sets the wavelength interval between the set of optical signals and another set or one of the optical signals adjacent to the set of optical signals and the emission wavelength at a predetermined interval. 14. The optical signal transmission device according to claim 12, wherein the optical signal is transmitted.
【請求項16】 前記第1の偏波調整手段は、前記各組
の光信号の偏波面を直線偏光にし、かつ互いに直交させ
て出力することを特徴とする請求項15に記載の光信号
伝送装置。
16. The optical signal transmission according to claim 15, wherein the first polarization adjusting unit converts the polarization plane of each set of optical signals into linearly polarized light and outputs the polarization planes orthogonal to each other. apparatus.
【請求項17】 前記第1の偏波調整手段は、前記結合
された光信号が前記互いに直交されるように調整するこ
とを特徴とする請求項12乃至16のいずれかに記載の
光信号伝送装置。
17. The optical signal transmission according to claim 12, wherein the first polarization adjusting unit adjusts the combined optical signals so as to be orthogonal to each other. apparatus.
【請求項18】 前記第2の偏波調整手段は、前記入力
する光信号の偏波面を直線偏光にし、かつ互いに直交さ
せるように調整して受光することを特徴とする請求項1
3に記載の光信号伝送装置。
18. The apparatus according to claim 1, wherein the second polarization adjusting unit converts the polarization plane of the input optical signal into linearly polarized light, and adjusts the polarization plane so as to be orthogonal to each other and receives light.
4. The optical signal transmission device according to 3.
【請求項19】 前記光信号伝送装置は、前記光伝送路
へ出力される光信号の偏波面の状態を測定する第1の測
定手段と、 該測定結果に応じて前記第1の偏波調整手段による前記
偏波面の調整を制御する第1の制御手段とを備えたこと
を特徴とする請求項12又は13に記載の光信号伝送装
置。
19. The optical signal transmission device, comprising: first measurement means for measuring a state of a polarization plane of an optical signal output to the optical transmission line; and the first polarization adjustment according to the measurement result. 14. The optical signal transmission device according to claim 12, further comprising: first control means for controlling adjustment of the polarization plane by means.
【請求項20】 複数の光源から出力される光信号を結
合して光伝送路に伝送し、該光信号を受光部で受光して
復調する光信号伝送装置において、 前記光信号の偏波面の状態を調整する第1の偏波調整手
段と、 前記光信号の発光波長を設定する波長設定手段と、 前記各光信号の偏波面の結合角度とビート雑音の雑音レ
ベルの関係に基づいて、前記第1の偏波調整手段による
偏波面の調整を制御し、当該偏波面を任意の状態にする
第2の制御手段と、 前記ビート雑音の雑音レベルと波長間隔の関係に基づい
て、前記波長設定手段による発光波長の設定を制御し、
当該発光波長を任意の間隔にする第3の制御手段とを備
えたことを特徴とする光信号伝送装置。
20. An optical signal transmission device that combines optical signals output from a plurality of light sources, transmits the optical signals to an optical transmission line, and receives and demodulates the optical signals by a light receiving unit. First polarization adjusting means for adjusting a state, wavelength setting means for setting an emission wavelength of the optical signal, and a relationship between a coupling angle of a polarization plane of each optical signal and a noise level of beat noise, Second control means for controlling the adjustment of the polarization plane by the first polarization adjustment means to set the polarization plane to an arbitrary state; and setting the wavelength based on the relationship between the noise level of the beat noise and the wavelength interval. Controlling the setting of the emission wavelength by the means,
An optical signal transmission device, comprising: third control means for setting the emission wavelength to an arbitrary interval.
【請求項21】 複数の光源から出力される光信号を結
合して光伝送路に伝送し、該光信号を受光部で受光して
復調する光信号伝送装置において、 前記光信号の偏波面の状態を調整する第1の偏波調整手
段と、 前記光信号の発光波長を設定する波長設定手段と、 前記各光信号の偏波面の結合角度とビート雑音の雑音レ
ベルの関係に基づいて、前記第1の偏波調整手段による
偏波面の調整を制御し、当該偏波面を任意の状態にする
第2の制御手段と、 前記ビート雑音の雑音レベルと波長間隔の関係に基づい
て、前記波長設定手段による発光波長の設定を制御し、
当該発光波長を任意の間隔にする第3の制御手段と、 前記光伝送路からの光信号の偏波面の状態を、前記第1
の偏波調整手段が調整した時の前記光信号の偏波面の状
態に調整する第2の偏波調整手段とを備えたことを特徴
とする光信号伝送装置。
21. An optical signal transmission device that combines optical signals output from a plurality of light sources, transmits the optical signals to an optical transmission line, receives the optical signals at a light receiving unit, and demodulates the optical signals. First polarization adjusting means for adjusting a state, wavelength setting means for setting an emission wavelength of the optical signal, and a relationship between a coupling angle of a polarization plane of each optical signal and a noise level of beat noise, Second control means for controlling the adjustment of the polarization plane by the first polarization adjustment means to set the polarization plane to an arbitrary state; and setting the wavelength based on the relationship between the noise level of the beat noise and the wavelength interval. Controlling the setting of the emission wavelength by the means,
Third control means for setting the emission wavelength to an arbitrary interval, and changing the state of the polarization plane of the optical signal from the optical transmission line to the first
An optical signal transmission device comprising: a second polarization adjusting unit that adjusts the state of the polarization plane of the optical signal when the polarization adjusting unit adjusts.
【請求項22】 前記光信号伝送装置は、前記光伝送路
へ出力される光信号の偏波面の状態を測定する第1の測
定手段を備え、 前記第2の制御手段は、該測定結果及び前記各光信号の
偏波面の結合角度とビート雑音の雑音レベルの関係に基
づいて、前記第1の偏波調整手段による偏波面の調整を
制御することを特徴とする請求項20又は21に記載の
光信号伝送装置。
22. The optical signal transmission device includes first measurement means for measuring a state of a polarization plane of an optical signal output to the optical transmission line, and the second control means includes a measurement result and a measurement result. 22. The polarization plane adjustment by the first polarization adjustment unit is controlled based on the relationship between the coupling angle of the polarization plane of each optical signal and the noise level of beat noise. Optical signal transmission equipment.
【請求項23】 前記光信号伝送装置は、前記光伝送路
から入力する前記光信号の偏波面の状態を測定する第2
の測定手段と、該測定結果に応じて前記第2の偏波調整
手段による前記偏波面の調整を制御する第4の制御手段
とを備えたことを特徴とする請求項13,20乃至22
のいずれかに記載の光信号伝送装置。
23. The optical signal transmission device according to claim 2, wherein said optical signal transmission device measures a state of a polarization plane of said optical signal input from said optical transmission line.
23. A measurement device according to claim 13, further comprising: a fourth control device configured to control adjustment of the polarization plane by the second polarization adjustment device according to the measurement result.
The optical signal transmission device according to any one of the above.
【請求項24】 前記光信号伝送装置は、前記光信号の
受光の際に発生する雑音を検出する検出手段と、該検出
した雑音レベルに応じて前記第2の偏波調整手段による
前記偏波面の調整を制御する第5の制御手段とを備えた
ことを特徴とする請求項13,20乃至23のいずれか
に記載の光信号伝送装置。
24. The optical signal transmission device, comprising: detecting means for detecting noise generated when the optical signal is received, and the polarization plane by the second polarization adjusting means according to the detected noise level. 24. The optical signal transmission device according to claim 13, further comprising: fifth control means for controlling the adjustment of the optical signal.
【請求項25】 前記光伝送路は、偏波面保持ファイバ
からなることを特徴とする請求項12,13,20又は
21に記載の光信号伝送装置。
25. The optical signal transmission device according to claim 12, wherein the optical transmission line is made of a polarization maintaining fiber.
JP9216825A 1997-08-11 1997-08-11 Optical signal transmission method and its system Pending JPH1168702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9216825A JPH1168702A (en) 1997-08-11 1997-08-11 Optical signal transmission method and its system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9216825A JPH1168702A (en) 1997-08-11 1997-08-11 Optical signal transmission method and its system

Publications (1)

Publication Number Publication Date
JPH1168702A true JPH1168702A (en) 1999-03-09

Family

ID=16694492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9216825A Pending JPH1168702A (en) 1997-08-11 1997-08-11 Optical signal transmission method and its system

Country Status (1)

Country Link
JP (1) JPH1168702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7539415B2 (en) 2004-11-02 2009-05-26 Samsung Electronics Co., Ltd. Optical packet communication system using labeling of wavelength-offset polarization-division multiplexing
US20150288451A1 (en) * 2014-04-03 2015-10-08 Commscope, Inc. Of North Carolina Methods and systems for reducing optical beat interference via polarization diversity in fttx networks

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7539415B2 (en) 2004-11-02 2009-05-26 Samsung Electronics Co., Ltd. Optical packet communication system using labeling of wavelength-offset polarization-division multiplexing
US20150288451A1 (en) * 2014-04-03 2015-10-08 Commscope, Inc. Of North Carolina Methods and systems for reducing optical beat interference via polarization diversity in fttx networks
US9705598B2 (en) * 2014-04-03 2017-07-11 Commscope, Inc. Of North Carolina Methods and systems for reducing optical beat interference via polarization diversity in FTTx networks
US20180131439A1 (en) * 2014-04-03 2018-05-10 Commscope, Inc. Of North Carolina Methods and systems for reducing optical beat interference via polarization diversity in fttx networks

Similar Documents

Publication Publication Date Title
US6271945B1 (en) Apparatus and method for controlling power levels of individual signal lights of a wavelength division multiplexed signal light
US5923453A (en) Apparatus for measuring optical transmission line property and optical wavelength multiplexing transmission apparatus
US6671464B1 (en) Polarization mode dispersion compensator and compensation method
US7873283B2 (en) Method of monitoring optical signal to noise ratio and optical transmission system using the same
US20030175033A1 (en) Optical transmission system, optical transmitter and methods thereof
EP1628150B1 (en) Wavelength-tracking dispersion compensator
JP2002033701A (en) Polarized wave mode dispersion compensating method and polarized wave mode dispersion compensating device
US20030030876A1 (en) Optical transmitter, optical receiver and light wavelength multiplexing system
US10530472B2 (en) In-service testing of optical signal-to-noise ratio
JPH11510974A (en) Dispersion compensation
CN101449493A (en) A depolarised WDM source
US6862377B2 (en) System and method for PMD measurement from coherent spectral analysis
US7068944B2 (en) Multi-function optical performance monitor
JP2005502221A (en) Method and apparatus for detecting and compensating PMD parameters in signals transmitted over optical fiber links, and communication system using them
JPH1168702A (en) Optical signal transmission method and its system
JP3295854B2 (en) Light source frequency stabilization method
JPH06188832A (en) Remote optical terminal control method
JP2002217487A (en) Light wavelength stabilizing device and light wavelength monitor device
JP2851247B2 (en) Optical transmission system
JP3844427B2 (en) High frequency signal modulator
CN115733558A (en) Laser communication method, laser communication receiving end, transmitting end and laser communication system
JPH04115732A (en) Optical transmitter
JPH06132599A (en) Optical communication device and optical relay
JPH04306025A (en) Optical transmitter
JP2003032185A (en) Waveform shaping circuit with conversion wavelength control mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060301