JPH06188832A - Remote optical terminal control method - Google Patents

Remote optical terminal control method

Info

Publication number
JPH06188832A
JPH06188832A JP4353835A JP35383592A JPH06188832A JP H06188832 A JPH06188832 A JP H06188832A JP 4353835 A JP4353835 A JP 4353835A JP 35383592 A JP35383592 A JP 35383592A JP H06188832 A JPH06188832 A JP H06188832A
Authority
JP
Japan
Prior art keywords
wavelength
terminal
transmission
control signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4353835A
Other languages
Japanese (ja)
Other versions
JP2711787B2 (en
Inventor
Katsuyuki Uko
勝之 宇高
Shiro Ryu
史郎 笠
Takaya Yamamoto
杲也 山本
Hidenori Mimura
榮紀 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP4353835A priority Critical patent/JP2711787B2/en
Publication of JPH06188832A publication Critical patent/JPH06188832A/en
Application granted granted Critical
Publication of JP2711787B2 publication Critical patent/JP2711787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a terminal cost, and to improve reliability by monitoring the oscillation wavelength of the semiconductor laser of a subscriber's terminal at a station side, and correcting the oscillation wavelength by a control signal in which a difference between the wavelength and a set value is expressed by the combination of frequency. CONSTITUTION:One part of the transmission signal of a transmitter 2 including the semiconductor laser of a terminal #1 is branched to a wavelength monitor part 7 at a station side, and the residual part is branched by a wavelength selective multiplexer/demultiplexer 9, and received by a receiver 6. The transmission wavelength is monitored by the wavelength monitor part 7, a deviation between the transmission wavelength and the set wavelength is compared and detected, and the control signal for correcting it is outputted to a transmitter 5 to the terminal #1. When the transmission wavelength is shifted to the long wave side of the set wavelength, the control signal expressed by the frequency and an amplitude is superimposed on an information signal to the terminal #1, and transmitted. The signal is photoelectrically converted by the receiver 3, and demodulated. On the other hand, the amplitude of the wavelength control signal is detected by a wavelength control part 8, and the oscillation wavelength is controlled so that the transmission wavelength can be matched with the set wavelength according to it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光加入者系などの光通
信システムにおいて、一方の端末の光送信器の動作状態
を他方の端末でモニタすることにより、前者の端末での
モニタ装置の規模を軽減し、従って、低コスト,高信頼
なシステムを提供する遠隔光端末制御方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication system such as an optical subscriber system, in which the operating state of an optical transmitter of one terminal is monitored by the other terminal, and a monitor device for the former terminal is provided. The present invention relates to a remote optical terminal control method that reduces the scale and therefore provides a low cost and highly reliable system.

【0002】[0002]

【従来の技術】光ファイバ通信は、その超高速、超広帯
域、低損失性を活かして、大洋横断海底ケーブルや局間
幹線系において盛んに導入されている。一方、高精細動
画像通信や映像分配といった広帯域な新サービスをエン
ドツーエンドで広範に提供するためには、加入者系まで
光ケーブル化することが不可欠であり、FTTC(Fiber to
Curb )、FTTO(Fiber to the Office)さらに究極のF
TTH(Fiber tp the Home )を目指し、ネットワークの
効率化、システムの低コスト化の研究が鋭意進められて
いる。ネットワークについてはダブルスター方式に波長
多重方式を併用したシステム構成が有望視されている。
この方式では、局と各加入者の間にノードとして波長選
択光合分波器が設置され、局とノード間は各加入者に個
別に割り当てられた複数の波長が多重化されて1本のフ
ァイバで伝送され、ノードと各加入者間は、各々の加入
者に割り当てられた波長が分岐されて伝送される。この
波長選択合分波器を用いたダブルスター方式では、決め
られた波長を決められた加入者へ分岐する必要性から、
光合分波器の分岐波長の安定性や、局及び各加入者端末
に設置された送信器内の半導体レーザの発振波長の安定
性が重要となる。これらの設定波長を変化させる主な要
因は環境温度であり、温度変化が素子を構成する媒体の
屈折率や大きさを変化させることにより媒体内波長や光
学長が変化し、設定波長が変化する。通常、光合分波器
は石英ガラスなどの誘電体が用いられ、その屈折率の温
度依存性は約10-5と比較的小さい。他方、半導体の屈
折率の温度依存性は約10-4であって誘電体に比べて約
1桁大きく、単一波長化機構を導入した分布帰還型(D
FB)もしくは分布反射型(DBR)レーザでも約0.
1nm/度の発振波長の温度変化があり、50℃の温度変
化があれば5nmも動作波長が変化してしまう。このこと
から、半導体レーザの発振波長の安定化は、光合分波器
の分岐波長間隔の狭小化による波長多重数の増大、すな
わち加入者数の増大や、半導体レーザに求められる波長
可変幅の減少によるレーザコストの低減といった、シス
テム特性や信頼性の向上やシステムコストの低減に極め
て有効である。
2. Description of the Related Art Optical fiber communication has been actively introduced in transoceanic submarine cables and inter-station trunk lines by taking advantage of its ultra-high speed, ultra-wide band and low loss. On the other hand, in order to provide a wide range of new broadband services such as high-definition video communication and video distribution end-to-end, it is indispensable to convert optical fiber to the subscriber system.
Curb), FTTO (Fiber to the Office) and the ultimate F
Aiming for TTH (Fiber tp the Home), research on network efficiency and system cost reduction is being earnestly pursued. For networks, a system configuration that uses the WDM method in combination with the Double Star method is considered promising.
In this system, a wavelength-selective optical multiplexer / demultiplexer is installed as a node between a station and each subscriber, and between the station and the node, a plurality of wavelengths individually assigned to each subscriber are multiplexed to form a single fiber. The wavelength assigned to each subscriber is branched and transmitted between the node and each subscriber. In the double star system using this wavelength selective multiplexer / demultiplexer, it is necessary to branch the fixed wavelength to the fixed subscriber,
The stability of the branch wavelength of the optical multiplexer / demultiplexer and the stability of the oscillation wavelength of the semiconductor laser in the transmitter installed in the station and each subscriber terminal are important. The main factor that changes these set wavelengths is the ambient temperature, and by changing the temperature the refractive index and size of the medium that constitutes the element, the wavelength inside the medium and the optical length change, and the set wavelength changes. . Usually, a dielectric such as quartz glass is used for the optical multiplexer / demultiplexer, and the temperature dependence of its refractive index is about 10 −5, which is relatively small. On the other hand, the temperature dependence of the refractive index of the semiconductor is about 10 -4 , which is about an order of magnitude larger than that of the dielectric, and the distributed feedback type (D
For FB) or distributed reflection (DBR) lasers, about 0.
There is a temperature change of the oscillation wavelength of 1 nm / degree, and if there is a temperature change of 50 ° C., the operating wavelength changes by 5 nm. From this, the stabilization of the oscillation wavelength of the semiconductor laser is achieved by increasing the number of wavelength multiplexes by narrowing the branch wavelength interval of the optical multiplexer / demultiplexer, that is, increasing the number of subscribers and decreasing the wavelength variable width required for the semiconductor laser. It is extremely effective for improving system characteristics and reliability such as reduction of laser cost by means of, and reducing system cost.

【0003】半導体レーザの発振波長の安定化のための
従来技術として、図8に示すように、発振波長を検出
し、その変化を波長可変半導体レーザに帰還する方法が
ある。すなわち、波長可変半導体レーザ101の出力光
を薄膜型光導波路102に入射させ、コリメータレンズ
103で平行光線にした後回折格子104を通過させ、
その+1次の回折光を2分割受光素子105で受光する
ものである。波長可変半導体レーザ101の発振波長が
予め定められた基準波長の場合には、2分割受光素子1
05の中央の分割境界線上にスポットが結ばれ、受光量
が2分割された各領域で相等しくなるようにしておく。
レーザ光の波長が基準波長から変化した場合、回折格子
104によって回折される+1次の回折角が変化する。こ
のため、2分割受光素子105の左右の領域における受
光量のずれが生じる。2分割受光素子105の両領域間
の電圧の差を用いてこの受光量のずれを検出して、これ
によってレーザ光の波長を一定に制御しようとしたもの
である。
As a conventional technique for stabilizing the oscillation wavelength of a semiconductor laser, there is a method of detecting the oscillation wavelength and feeding back the change to the wavelength tunable semiconductor laser as shown in FIG. That is, the output light of the wavelength tunable semiconductor laser 101 is made incident on the thin film type optical waveguide 102, made into parallel rays by the collimator lens 103, and then passed through the diffraction grating 104,
The + 1st order diffracted light is received by the two-divided light receiving element 105. When the oscillation wavelength of the wavelength tunable semiconductor laser 101 is a predetermined reference wavelength, the two-divided light receiving element 1
A spot is formed on the division boundary line in the center of 05, and the amount of received light is equal in each of the two divided regions.
When the wavelength of the laser light changes from the reference wavelength, the + 1st order diffraction angle diffracted by the diffraction grating 104 changes. Therefore, the amount of received light in the left and right regions of the two-divided light receiving element 105 is shifted. This is intended to detect the shift in the amount of received light by using the voltage difference between the two regions of the two-divided light receiving element 105, and thereby control the wavelength of the laser light to be constant.

【0004】[0004]

【発明が解決しようとする課題】従来技術例のように、
発振波長を安定化させるために送信端末側に回折格子や
光検出器などの種々の素子を半導体レーザとほぼ一体化
させる方式では、少なくとも回折格子などの光素子や装
置構成に温度特性が無視できる程度の優れた特性が要求
され、このような高性能光素子を送信端末に搭載するこ
とにより個々の端末装置のコストが高くなるという欠点
があった。
As in the prior art example,
In a system in which various elements such as a diffraction grating and a photodetector are almost integrated with a semiconductor laser on the transmission terminal side in order to stabilize the oscillation wavelength, at least temperature characteristics can be ignored in the optical elements such as the diffraction grating and the device configuration. However, there is a drawback in that the cost of each terminal device is increased by mounting such a high-performance optical element on the transmission terminal.

【0005】本発明は、上記従来技術の欠点を解決する
ためになされたもので、半導体レーザの発振波長を安定
化するための装置規模について、送信端末、特に加入者
端末への負担を最小限にし、したがって端末のコストを
小さくするとともに、高信頼なシステムを実現する遠隔
光端末制御方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned drawbacks of the prior art. With regard to the scale of the device for stabilizing the oscillation wavelength of the semiconductor laser, the load on the transmission terminal, particularly the subscriber terminal, is minimized. Therefore, it is an object of the present invention to provide a remote optical terminal control method which realizes a highly reliable system while reducing the cost of the terminal.

【0006】[0006]

【課題を解決するための手段】本発明の特徴は、加入者
端末に搭載された半導体レーザの発振波長を伝送された
局側でモニターし、その波長と設定値との差を周波数、
振幅および位相のうち少なくとも2つの組み合わせで表
現し制御信号を光情報信号に重畳して送信し、この制御
信号により上記発振波長を補正することにより、加入者
端末に波長安定化用の装置規模を低減化し、端末コスト
の低減化およびシステムの高信頼化を可能としている。
A feature of the present invention is that the oscillation wavelength of a semiconductor laser mounted on a subscriber terminal is monitored on the transmitted station side, and the difference between the wavelength and the set value is measured by frequency.
A control signal is expressed by a combination of at least two of amplitude and phase, superposed on an optical information signal and transmitted, and the oscillation wavelength is corrected by this control signal, thereby providing a subscriber terminal with a device size for wavelength stabilization. This makes it possible to reduce terminal costs and system reliability.

【0007】[0007]

【実施例】以下、図面を用いて詳細に説明する。図1に
本発明による遠隔光端末制御方法の実施例を示す。ちな
みに、太線は光信号、細線は電気信号を表している。局
は、波長分割多重方式により複数の端末#1,#2,…
…と接続されており、各端末に割り当てられた波長λi
(i=1,2,……)は、伝送路上のノードに設けられ
た波長選択受動合分波器1により光電変換されることな
く合分波される。まず構成について説明する。
Embodiments will be described in detail below with reference to the drawings. FIG. 1 shows an embodiment of a remote optical terminal control method according to the present invention. By the way, thick lines represent optical signals and thin lines represent electrical signals. The station uses a wavelength division multiplexing method to connect a plurality of terminals # 1, # 2, ...
... and the wavelength λ i assigned to each terminal
(I = 1, 2, ...) Is multiplexed / demultiplexed without being photoelectrically converted by the wavelength selective passive multiplexer / demultiplexer 1 provided in the node on the transmission path. First, the configuration will be described.

【0008】端末#1において、2は半導体レーザを含
む送信器(Ts1)で、上り用情報信号fsuで変調された
波長λ1uの光を送信する。3は受信器(Rs1)で、局か
ら送られてきた波長λ1dの光を光電変換し、下り用情報
信号fsdを復調する。4は伝送用光ファイバである。局
では、例えば端末#1に対しては送信器(Tc1)5及び
受信器(Rc1)6の一組の送受信器が複数の端末に対し
て各々設けられている。ここまでは従来の合分波器を用
いた波長分割多重方式の受動スター構成である。これに
加えて本発明では、局側に、各端末から伝送されてきた
送信波長λiu(i =1, 2, ……)をモニターし、各送
信波長の設定波長からのずれを検出して、そのずれを補
正する制御信号を各端末に向けて発する制御装置などか
らなる波長モニター部7を、また、各端末に該波長制御
信号を検出して、送信器2の送信波長を設定波長に補正
する波長制御部8が設けられている。
In the terminal # 1, 2 is a transmitter (T s1 ) including a semiconductor laser, which transmits light of wavelength λ 1u modulated by the upstream information signal f su . A receiver (R s1 ) 3 photoelectrically converts the light of wavelength λ 1d sent from the station to demodulate the downlink information signal f sd . Reference numeral 4 is an optical fiber for transmission. In the station, for example, for the terminal # 1, a set of transmitters / receivers (T c1 ) 5 and receivers (R c1 ) 6 is provided for a plurality of terminals, respectively. Up to this point, the passive star configuration of the wavelength division multiplexing system using the conventional multiplexer / demultiplexer is used. In addition to this, in the present invention, the transmission wavelength λ iu (i = 1, 2, ...) Transmitted from each terminal is monitored on the station side to detect the deviation of each transmission wavelength from the set wavelength. , A wavelength monitor unit 7 including a control device or the like that outputs a control signal for correcting the deviation to each terminal, and detects the wavelength control signal at each terminal to set the transmission wavelength of the transmitter 2 to the set wavelength. A wavelength controller 8 for correction is provided.

【0009】次に、本発明の動作について、一例として
端末#1の送信波長の制御について説明する。 端末#1の
送信信号は、ノードにあたる合分波器で合波され局に伝
送されるが、その一部が波長モニター部7 に分岐され、
残りは波長選択合分波器9で分波された後受信器
(Rc1)6で受信される。波長モニター部7では、図2
に示すように、送信波長λ1uが波長計10でモニターさ
れる。λ1uが設定波長λ10からわずかにずれたとする。
このずれは制御装置11で比較検出され、それを補正す
るための制御信号が端末#1への送信器(Tc1)5へ出
力される。この際の制御信号と波長のずれの関係を図3
に示す。すなわち、送信波長が設定波長の長波長側にず
れた場合はf1 、短波長側にずれた場合はf2 なる低周
波数信号を用い、そのずれの絶対値を各々の低周波数信
号の振幅に対応させる。f1 及びf2 としては、送信情
報信号の伝送に影響を与えない程度に小さく、かつ後述
する端末に設置された波長制御部内のフィルタで各々分
離可能な周波数、例えば数kHzが選ばれる。仮に、λ1u
がλ10の長波側にずれたとすると、周波数f1 、振幅A
1cの制御信号が、端末#1への情報信号fsdに重畳され
て送信器Tc1を変調し、送信波長λ1dにより端末#1に
伝送される。この端末#1への送信信号を図4に示す。
端末に伝送された信号は、図1の受信器(Rs1)3で光
電変換され、情報信号fsdは復調される。他方、波長制
御信号は、図5にその構成が示された波長制御部8にお
いて、中心周波数がf1 及びf2 のフィルタを通すこと
により、波長制御装置12においてどちらの周波数かが
判別されるとともに、その振幅が検出され、これに応じ
て送信器Ts1の送信波長λ1dが設定波長λ10に一致する
ように半導体レーザの発振波長が制御され、目的が達成
される。
Next, with respect to the operation of the present invention, control of the transmission wavelength of the terminal # 1 will be described as an example. The transmission signal of the terminal # 1 is multiplexed by the multiplexer / demultiplexer corresponding to the node and transmitted to the station, a part of which is branched to the wavelength monitor unit 7,
The rest is demultiplexed by the wavelength selective multiplexer / demultiplexer 9 and then received by the receiver (R c1 ) 6. In the wavelength monitor unit 7, as shown in FIG.
The transmission wavelength λ 1u is monitored by the wavelength meter 10, as shown in FIG. It is assumed that λ 1u is slightly deviated from the set wavelength λ 10 .
This deviation is compared and detected by the control device 11, and a control signal for correcting the deviation is output to the transmitter (T c1 ) 5 to the terminal # 1. The relationship between the control signal and the wavelength shift at this time is shown in FIG.
Shown in. That is, when the transmission wavelength is shifted to the long wavelength side of the set wavelength, f 1 is used, and when it is shifted to the short wavelength side, f 2 is used, and the absolute value of the shift is used as the amplitude of each low frequency signal. Correspond. As f 1 and f 2 , a frequency is selected that is small enough not to affect the transmission of the transmission information signal and is separable by a filter in the wavelength control unit installed in the terminal described later, for example, several kHz. If λ 1u
Is shifted to the long wave side of λ 10 , the frequency f 1 and the amplitude A
The control signal of 1c is superimposed on the information signal f sd to the terminal # 1 to modulate the transmitter T c1 and is transmitted to the terminal # 1 by the transmission wavelength λ 1d . The transmission signal to this terminal # 1 is shown in FIG.
The signal transmitted to the terminal is photoelectrically converted by the receiver (R s1 ) 3 in FIG. 1, and the information signal f sd is demodulated. On the other hand, the wavelength control signal is passed through filters having center frequencies f 1 and f 2 in the wavelength control unit 8 whose configuration is shown in FIG. At the same time, its amplitude is detected, and the oscillation wavelength of the semiconductor laser is controlled so that the transmission wavelength λ 1d of the transmitter T s1 coincides with the set wavelength λ 10 in accordance therewith, thereby achieving the object.

【0010】このような端末の送信波長制御が、局に接
続されているすべての端末に対して行うことができる。
局での波長モニター部7が、各端末に対して個別に設置
されてあれば常時各端末の送信波長を制御することがで
きるが、通常、端末の送信波長の変化は緩やかであるこ
とを考慮すると、波長モニター部7を共用し、図6に示
すように各端末に対して時分割的に波長モニター及び制
御を行うことにより波長モニター部7の設備を最小限に
省くことができる。
The transmission wavelength control of such a terminal can be performed for all terminals connected to the station.
If the wavelength monitor unit 7 at the station is individually installed for each terminal, the transmission wavelength of each terminal can be controlled at all times, but it is usually taken into consideration that the transmission wavelength of the terminal changes slowly. Then, the wavelength monitor unit 7 is shared, and the wavelength monitor unit 7 can be time-divisionally controlled and controlled as shown in FIG.

【0011】以上の実施例では、送信波長の制御につい
て示したが、図2に示す波長モニター部7内の波長計1
0を光強度計に置き換えて、送信光強度の設定値からの
ずれをモニターすることにより、同一の制御原理で送信
光強度を遠隔制御することができる。そのときの、送信
光強度の設定値からのずれと制御信号との関係を図7に
示す。ここに、P10は端末#1の送信器の送信光強度の
設定値で、実際の送信光強度がP1uと設定値より大きく
なった場合はf3 、小さくなった場合はf4 とし、その
ずれ量の絶対値を各周波数の振幅で表現すれば良い。さ
らに、f1 ,f2 ,f3 及びf4 の4種の周波数を用い
ることにより送信波長および光強度を同時に制御するこ
とができ、また、周波数の数をさらに増やすことによ
り、より多くの送信信号のパラメータを同時に遠隔制御
することも可能である。
In the above embodiments, the control of the transmission wavelength is shown, but the wavelength meter 1 in the wavelength monitor unit 7 shown in FIG.
By replacing 0 with a light intensity meter and monitoring the deviation of the transmitted light intensity from the set value, the transmitted light intensity can be remotely controlled by the same control principle. FIG. 7 shows the relationship between the deviation from the set value of the transmitted light intensity and the control signal at that time. Here, P 10 is the set value of the transmission light intensity of the transmitter of the terminal # 1, and when the actual transmission light intensity is larger than P 1u and the set value, it is f 3 , and when it is smaller, it is f 4 . The absolute value of the shift amount may be expressed by the amplitude of each frequency. Furthermore, the transmission wavelength and the light intensity can be controlled simultaneously by using four kinds of frequencies f 1 , f 2 , f 3 and f 4 , and more transmission can be achieved by further increasing the number of frequencies. It is also possible to remotely control the parameters of the signal at the same time.

【0012】また、実施例では送信波長の設定値からの
ずれの大小関係を2種類の周波数で、また、ずれの絶対
値を該周波数の振幅で示したが、一般に、交流信号にお
いて、振幅、周波数及び位相の各々に情報を持たせられ
ることを鑑みて、これらの種々の組み合わせで制御信号
を表現することができる。
In the embodiment, the magnitude relationship of the deviation from the set value of the transmission wavelength is shown by two kinds of frequencies, and the absolute value of the deviation is shown by the amplitude of the frequency. In view of the fact that information can be given to each of the frequency and the phase, the control signal can be expressed by various combinations thereof.

【0013】[0013]

【発明の効果】以上詳細に説明したように、本発明によ
り、端末の送信器の送信パラメータを他方の端末でモニ
ターし制御することができるため、前者の端末がモニタ
ー装置に必要となっていた高性能光素子を用いることな
しに構成することができるため、装置の規模が軽減さ
れ、従って、低コスト、高信頼なシステムが実現され、
光加入者系など広範な導入流布に与える効果は極めて大
きい。
As described above in detail, according to the present invention, the transmission parameter of the transmitter of the terminal can be monitored and controlled by the other terminal, so that the former terminal is required for the monitor device. Since it can be configured without using a high-performance optical element, the scale of the device is reduced, and thus a low cost and highly reliable system is realized.
The effect on the widespread introduction of optical subscriber systems is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による遠隔光端末制御方式の構成図であ
る。
FIG. 1 is a block diagram of a remote optical terminal control system according to the present invention.

【図2】本発明の波長モニター部の構成図である。FIG. 2 is a configuration diagram of a wavelength monitor unit of the present invention.

【図3】送信波長と設定波長のずれと制御信号との関係
を示す図である。
FIG. 3 is a diagram showing a relationship between a shift of a transmission wavelength and a set wavelength and a control signal.

【図4】制御信号を示す図である。FIG. 4 is a diagram showing a control signal.

【図5】波長制御部の構成を示す図である。FIG. 5 is a diagram showing a configuration of a wavelength control unit.

【図6】複数の端末を制御する場合の各制御信号のタイ
ムチャートである。
FIG. 6 is a time chart of each control signal when controlling a plurality of terminals.

【図7】送信光強度と設定光強度のずれと制御信号との
関係を示す図である。
FIG. 7 is a diagram showing a relationship between a shift between transmitted light intensity and set light intensity, and a control signal.

【図8】半導体レーザの発振波長安定化のための従来技
術を説明するための斜視図である。
FIG. 8 is a perspective view for explaining a conventional technique for stabilizing the oscillation wavelength of a semiconductor laser.

【符号の説明】 1 波長選択合分波器 2 端末側の送信器 3 端末側の受信器 4 伝送用光ファイバ 5 局側の送信器 6 局側の受信器 7 波長モニター部 8 波長制御部 9 波長選択合分波器 10 波長計 11 制御装置 12 波長制御装置 101 波長可変レーザ 102 薄膜型光導波路 103 コリメートレンズ 104 回折格子 105 受光素子[Description of Codes] 1 wavelength selection multiplexer / demultiplexer 2 transmitter on terminal side 3 receiver on terminal side 4 optical fiber for transmission 5 transmitter on station side 6 receiver on station side 7 wavelength monitor section 8 wavelength control section 9 Wavelength selection multiplexer / demultiplexer 10 Wavelength meter 11 Control device 12 Wavelength control device 101 Wavelength variable laser 102 Thin film type optical waveguide 103 Collimating lens 104 Diffraction grating 105 Light receiving element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三村 榮紀 東京都新宿区西新宿二丁目3番2号 国際 電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiki Mimura 2-3-2 Nishishinjuku, Shinjuku-ku, Tokyo International Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の地点の第1の光送信器より送信さ
れた第1の光信号のパラメータが第2の地点でモニタさ
れる第1の行程と、 該モニタされたパラメータ値と予め定められた設定値の
差を周波数,振幅および位相のうち少なくとも2つの組
み合わせで表現した制御信号を該第2の地点の第2の光
送信器より発せられる第2の光信号に重畳して該第1の
地点に送信される第2の行程と、 該第1の地点で該制御信号を検出して該第1の光信号の
パラメータを前記設定値に補正する第3の行程とを含む
遠隔光端末制御方法。
1. A first step in which a parameter of a first optical signal transmitted from a first optical transmitter at a first point is monitored at a second point, and the monitored parameter value and the parameter value are monitored in advance. A control signal that expresses the difference between the predetermined set values in at least two combinations of frequency, amplitude, and phase is superimposed on the second optical signal emitted from the second optical transmitter at the second point, and A remote step including a second step transmitted to a first point and a third step of detecting the control signal at the first point and correcting a parameter of the first optical signal to the set value. Optical terminal control method.
【請求項2】 前記第1の光信号のパラメータが波長も
しくは強度であることを特徴とする請求項1に記載の遠
隔光端末制御方法。
2. The remote optical terminal control method according to claim 1, wherein the parameter of the first optical signal is wavelength or intensity.
【請求項3】 前記制御信号は、モニタされたパラメー
タ値と設定値の大小関係が各々2種類の周波数で、ま
た、その差の絶対値が各周波数成分の振幅で表現されて
いることを特徴とする請求項1又は2に記載の遠隔光端
末制御方法。
3. The control signal is characterized in that the magnitude relationship between the monitored parameter value and the set value is represented by two types of frequencies, and the absolute value of the difference is represented by the amplitude of each frequency component. The remote optical terminal control method according to claim 1 or 2.
JP4353835A 1992-12-16 1992-12-16 Remote optical terminal control method Expired - Fee Related JP2711787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4353835A JP2711787B2 (en) 1992-12-16 1992-12-16 Remote optical terminal control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4353835A JP2711787B2 (en) 1992-12-16 1992-12-16 Remote optical terminal control method

Publications (2)

Publication Number Publication Date
JPH06188832A true JPH06188832A (en) 1994-07-08
JP2711787B2 JP2711787B2 (en) 1998-02-10

Family

ID=18433541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4353835A Expired - Fee Related JP2711787B2 (en) 1992-12-16 1992-12-16 Remote optical terminal control method

Country Status (1)

Country Link
JP (1) JP2711787B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983493A (en) * 1995-09-19 1997-03-28 Canon Inc Wavelength multiplex communication system
JPH10224324A (en) * 1997-01-24 1998-08-21 Gpt Ltd Burst mode wavelength measurement system
GB2466212A (en) * 2008-12-12 2010-06-16 Bookham Technology Plc A wavelength tuneable laser at a local device is tuned using an optical feedback signal provided from a remote device.
JP2011029792A (en) * 2009-07-22 2011-02-10 Synclayer Inc Optical terminal, and ftth-adopted catv system
JP2012507242A (en) * 2008-10-28 2012-03-22 シンチューン エービー Communication system with tunable laser
JP2012124969A (en) * 2012-03-27 2012-06-28 Nippon Telegr & Teleph Corp <Ntt> Wavelength error detector and wavelength error detection method
WO2014038036A1 (en) * 2012-09-06 2014-03-13 ソフトバンクテレコム株式会社 Wavelength monitoring system and wavelength monitoring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492518A (en) * 1990-08-07 1992-03-25 Sharp Corp Transmitter/receiver

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492518A (en) * 1990-08-07 1992-03-25 Sharp Corp Transmitter/receiver

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983493A (en) * 1995-09-19 1997-03-28 Canon Inc Wavelength multiplex communication system
JPH10224324A (en) * 1997-01-24 1998-08-21 Gpt Ltd Burst mode wavelength measurement system
JP2012507242A (en) * 2008-10-28 2012-03-22 シンチューン エービー Communication system with tunable laser
GB2466212A (en) * 2008-12-12 2010-06-16 Bookham Technology Plc A wavelength tuneable laser at a local device is tuned using an optical feedback signal provided from a remote device.
JP2011029792A (en) * 2009-07-22 2011-02-10 Synclayer Inc Optical terminal, and ftth-adopted catv system
JP2012124969A (en) * 2012-03-27 2012-06-28 Nippon Telegr & Teleph Corp <Ntt> Wavelength error detector and wavelength error detection method
WO2014038036A1 (en) * 2012-09-06 2014-03-13 ソフトバンクテレコム株式会社 Wavelength monitoring system and wavelength monitoring method

Also Published As

Publication number Publication date
JP2711787B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
US6111681A (en) WDM optical communication systems with wavelength-stabilized optical selectors
EP0240512B1 (en) Frequency referencing system and method
US5673129A (en) WDM optical communication systems with wavelength stabilized optical selectors
JP3459157B2 (en) Chirped pulse multi-wavelength communication system
EP2642676B1 (en) A method and system for operating an optical transmission system
US7209664B1 (en) Frequency agile transmitter and receiver architecture for DWDM systems
US7542679B2 (en) Optical transmission systems, devices, and method
US6233261B1 (en) Optical communications system
US20020063935A1 (en) Optical transmission systems including upconverter apparatuses and methods
US20060177225A1 (en) Sideband filtering of directly modulated lasers with feedback loops in optical networks
US5930015A (en) Optical access system
JP3258596B2 (en) Tracking method
US6714739B1 (en) Optical transmission systems and optical receivers and receiving methods for use therein
CA2176682C (en) Optical communication method for performing communication using a plurality of wavelengths, and optical communication system for performing communication using a plurality of wavelengths
JP2011035550A (en) Catv system of ftth system
JP2711787B2 (en) Remote optical terminal control method
US5774243A (en) Control method of selecting wavelength of optical filter, wavelength control method of output light from light outputting apparatus, wavelength division multiplexing method in optical communication system and method for correcting relation between control
US6751375B1 (en) Self-referencing tunable add-drop filters
KR100901508B1 (en) Light source distributor for use in wavelength division multiplexed-passive optical network
US6795610B1 (en) Tunable add-drop filters using two independent optical paths
US8139955B2 (en) Method and system for controlling driving current of WDM-PON optical transmitter
JP2927879B2 (en) WDM optical communication network and communication method used therein
JP3110769B2 (en) Optical frequency multiplex communication system
JP3246930B2 (en) Optical frequency stabilization method
JPH0468930A (en) Wavelength multiplex optical communication network system and optical transmitter-receiver used for the system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees