JPH1167443A - Lens-shape dielectric loading applicator for focusing micro wave - Google Patents

Lens-shape dielectric loading applicator for focusing micro wave

Info

Publication number
JPH1167443A
JPH1167443A JP25404597A JP25404597A JPH1167443A JP H1167443 A JPH1167443 A JP H1167443A JP 25404597 A JP25404597 A JP 25404597A JP 25404597 A JP25404597 A JP 25404597A JP H1167443 A JPH1167443 A JP H1167443A
Authority
JP
Japan
Prior art keywords
dielectric
heated
micro wave
lens
asphalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25404597A
Other languages
Japanese (ja)
Inventor
Fumiaki Okada
文明 岡田
Yoshihisa Futagawa
佳央 二川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25404597A priority Critical patent/JPH1167443A/en
Publication of JPH1167443A publication Critical patent/JPH1167443A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a micro wave applicator which can easily focus a micro wave on a heated body to heat the body, by mounting a dielectric having the same permittivity as that of the heated body in a heated dielectric, and combining with a radiator. SOLUTION: Micro wave oscillated from a micro wave oscillating source 4 is transmitted in an electromagnetic horn 3 to be expanded, is focused by a lens formed with a dielectric 2 having the same relative permittivity as that of a heated dielectric 1, and efficiently form a focus in the heated dielectric 1 to heat. This can be applied to, for example, heating asphalt for highway maintenance. Micro wave can be focused on the deep part of asphalt to efficiently heat the asphalt by mounting a lens-shape dielectric comprising a dielectric (e.g. a composite of polyethylene and alumina powder) which has the same relative permittivity as that of the heated asphalt and has little loss in the horn 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【001】[0101]

【発明の属する技術分野】この発明はマイクロ波電力を
工業面や医療面等に応用する場合に誘電体加熱(場合に
よっては磁性体又は組み合わせ加熱)させるアプリケー
タ(放射系)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an applicator (radiation system) for heating a dielectric substance (in some cases, a magnetic substance or a combination thereof) when applying microwave power to an industrial or medical field.

【002】[0092]

【従来の技術】従来電磁ホーンの内にメタル或いは誘電
体レンズを配置し、被加熱誘電体を照射し、集中加熱す
る事が試みられていたが、一般に被加熱対の比誘電率ε
は大きく(ε>3)マイクロ波の集中が困難で、ま
た図1のようにホーン系(2)+(3)と被加熱誘電体
(1)は分離しているため各々の境界面で反射が生じ、
周波数特性も悪くさらに被加熱誘電体表面から短い距離
点の集中は困難であった。
2. Description of the Related Art Conventionally, it has been attempted to arrange a metal or dielectric lens in an electromagnetic horn, irradiate a dielectric to be heated, and perform concentrated heating.
r is large (ε r > 3), it is difficult to concentrate the microwaves, and the horn system (2) + (3) and the dielectric to be heated (1) are separated as shown in FIG. Reflection occurs at
The frequency characteristics were poor, and it was difficult to concentrate short distance points from the surface of the dielectric to be heated.

【003】[0093]

【発明から解決しようとする課題】上述のように例えば
マイクロ波を使ってアスファルト舗装道路の表層、基層
部(⊆20cm)のみを100℃程度まで加熱し、固化
或いは剥離を短時間に行う場合、従来の電磁ホーンを使
った方法では、大部分のマイクロは電力は境界面の反射
およびさらに深く透過してしまい効率が悪く、実用化は
困難であった。またハイパーサーミアのがん治療に使わ
れるメタルレンズ等をアプリケータとして使った場合も
境界面の反射が大きくまた浅い部分の集中が難しく効率
が悪かった。
As described above, for example, when only the surface layer and the base layer () 20 cm) of an asphalt pavement road are heated to about 100 ° C. using microwaves, and solidification or peeling is performed in a short time, In the conventional method using the electromagnetic horn, most of the micro-power is reflected at the boundary surface and penetrates deeper, and the efficiency is low, so that it is difficult to put the electric power to practical use. Also, when a metal lens or the like used for hyperthermia cancer treatment is used as an applicator, the reflection at the boundary surface is large and it is difficult to concentrate on a shallow portion, which is inefficient.

【004】[0093]

【課題を解決するための手段】以上のような課題を解決
するために図2のように被加熱誘電体(1)と同じ誘電
率εを持つレンズ状誘電体(2)(低損失が望ましい)
を装着し、(2)を電磁ホーン等マイクロ波照射源内に
装着し(1)と(2)が一体として動作できるようにす
ると図のような簡単にしかも境面の反射がなく希望する
点にマイクロ波 の角をθとすると で設計される。焦点Fとして(1)の境界面からの距離
が小さいものが要求されるときは、図3のように厚みd
を使用すればよく、また実用上(1)と(2)の間に空
隙tがある場合でも、空隙の寸法が波長に対し、λ/1
0程度であれば反射に対して殆ど影響なく、またマイク
ロ波の進路もスネルの法則から同一と考えて良いので問
題はない。また(2)の誘電率は(1)の誘電率と10
%程度であれば支障はない。
In order to solve the above problems, as shown in FIG. 2, a lens-like dielectric (2) having the same dielectric constant ε as the dielectric to be heated (1) (desirably low loss is desirable). )
When (2) is installed in a microwave irradiation source such as an electromagnetic horn so that (1) and (2) can operate integrally, the desired point can be easily obtained without reflection of the boundary as shown in the figure. Microwave If the angle of is θ Designed with. When the focal point F requires a small distance from the boundary surface of (1), as shown in FIG.
In practice, even if there is a gap t between (1) and (2), the dimension of the gap is λ / 1 with respect to the wavelength.
If it is about 0, there is almost no effect on the reflection, and the path of the microwave can be considered to be the same from Snell's law, so there is no problem. The dielectric constant of (2) is 10 times higher than that of (1).
There is no problem if it is about%.

【005】[0056]

【考案の実施の形態】マイクロ波発振源(4)から発振
したマイクロ波は、電磁ホーン(3)内を広がりながら
伝搬し、被加熱誘電体(1)と同じ誘電率を持つ誘電体
(2)によって作成されたレンズにより集束され、被加
熱誘電体(1)の内部に効率よく焦点を形成し、加熱す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A microwave oscillated from a microwave oscillating source (4) propagates while spreading in an electromagnetic horn (3), and has a dielectric (2) having the same dielectric constant as the dielectric to be heated (1). The focus is formed by the lens formed in step (1), and the focal point is efficiently formed inside the dielectric (1) to be heated, and the dielectric is heated.

【006】[0086]

【実施例】【Example】

【1】図4は道路補修に対するアスファルトのマイクロ
波加熱用アプリーケータに対する実施例である。周波数
2.45GHzに対し開口面16x20cm、1⊆40
cm程度の電磁ホーン内ではE面内電磁界は概ね同振
幅、同位相と考えてよい。従って、上述のように(1)
の被加熱アスファルトに対し、誘電率が概ね同じで、損
失の少ない誘電体(例えばポリエチレンとアルミナ粉末
の複合体、ε=3.9)によるレンズ状誘電体(2)
をホーン内に装着することにより(1)の境界面から約
5−10cmの深部にマイクロ波を集中し、効率良くア
スファルトを加熱できる。
[1] FIG. 4 shows an embodiment of an asphalt microwave heating applicator for road repair. Opening surface 16x20cm, 1⊆40 for frequency 2.45GHz
Within an electromagnetic horn of about cm, the E-plane electromagnetic field may be considered to have approximately the same amplitude and phase. Therefore, as described above, (1)
(2) Lens-like dielectric (2) made of a dielectric material (e.g., a composite of polyethylene and alumina powder, ε r = 3.9) having substantially the same dielectric constant as the heated asphalt
By mounting the inside of the horn, the microwave can be concentrated at a depth of about 5 to 10 cm from the boundary surface of (1), and the asphalt can be efficiently heated.

【2】図5のようにコンベアベルト等で運ばれる厚さ1
0−20mmの土壌にほぼ同じ誘電率を持つ(2)を装
着したホーンによりマイクロ波加熱すると、マイクロ波
による殺菌作用により容易に土壌の改善ができる。
[2] Thickness 1 carried by conveyor belt etc. as shown in FIG.
When microwaves are heated by a horn equipped with (2) having substantially the same dielectric constant on soil of 0 to 20 mm, the soil can be easily improved by the sterilizing action of the microwaves.

【3】図6はマイクロ波ハイパーサーミアにおける実施
例でIは被加熱体(人体)でこれに誘電率が概ね等価と
みなせる個体あるいは容器に入れられた液体誘電体をホ
ーン内に装着することにより、希望する深度の点にマイ
クロ波を集中、加熱できる。
FIG. 6 shows an embodiment of a microwave hyperthermia. I is a heated object (human body), and a solid or a liquid dielectric placed in a container whose dielectric constant can be considered to be substantially equivalent thereto is mounted in the horn. Microwaves can be concentrated and heated at a desired depth.

【007】007

【発明の効果】この発明によれば、マイクロ波の被加熱
体中への集束、加熱が容易にでき、道路補修のアスファ
ルトの補修加工や土壌の殺菌またマイクロ波ハイパーサ
ーミア等、工業面、土木面、農業面、工業面、医療面等
に広く貢献する点が大きい。
According to the present invention, it is possible to easily focus and heat the microwave into the object to be heated, repair asphalt for road repair, sterilize the soil, microwave hyperthermia, etc. for industrial and civil engineering purposes. It greatly contributes to agricultural, industrial, medical, etc.

【図面の簡単な説明】[Brief description of the drawings]

【図 1】従来のマイクロ波加熱における電波集束方法
である。
FIG. 1 shows a conventional radio wave focusing method in microwave heating.

【図 2】本発明の断面図である。FIG. 2 is a sectional view of the present invention.

【図 3】焦点距離を小さくする場合の本発明の断面図
である。
FIG. 3 is a sectional view of the present invention when the focal length is reduced.

【図 4】本発明の実施例である。FIG. 4 is an embodiment of the present invention.

【図 5】本発明の実施例である。FIG. 5 is an example of the present invention.

【図 6】本発明の実施例である。FIG. 6 is an example of the present invention.

【符号の説明】 (1)は被加熱誘電体、(2)は(1)と同じ誘電率を
持つ誘電体、(3)は電磁ホーン、(4)はマイクロ波
発振源、(t)は被加熱誘電体とレンズとの空隙、
(d)はレンズの厚みである。
[Description of Signs] (1) is a dielectric to be heated, (2) is a dielectric having the same dielectric constant as (1), (3) is an electromagnetic horn, (4) is a microwave oscillation source, and (t) is The gap between the heated dielectric and the lens,
(D) is the thickness of the lens.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被加熱誘電体と同じ誘電率を持つ誘電体を
被加熱誘電体に装着し、放射器と組み合わせることによ
り、マイクロ波を集束加熱できるようにしたマイクロ波
アプリケータ。
1. A microwave applicator in which a microwave having the same dielectric constant as a dielectric to be heated is mounted on the dielectric to be heated and combined with a radiator so that microwaves can be focused and heated.
JP25404597A 1997-08-14 1997-08-14 Lens-shape dielectric loading applicator for focusing micro wave Pending JPH1167443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25404597A JPH1167443A (en) 1997-08-14 1997-08-14 Lens-shape dielectric loading applicator for focusing micro wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25404597A JPH1167443A (en) 1997-08-14 1997-08-14 Lens-shape dielectric loading applicator for focusing micro wave

Publications (1)

Publication Number Publication Date
JPH1167443A true JPH1167443A (en) 1999-03-09

Family

ID=17259475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25404597A Pending JPH1167443A (en) 1997-08-14 1997-08-14 Lens-shape dielectric loading applicator for focusing micro wave

Country Status (1)

Country Link
JP (1) JPH1167443A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302281A (en) * 2007-06-06 2008-12-18 Shikoku Instrumentation Co Ltd Microwave chemical reactor and method
JP2009504346A (en) * 2005-08-19 2009-02-05 オールド ドミニオン リサーチ ファウンデーション Ultra-wideband antenna for operation in tissue
JP2013502560A (en) * 2009-08-18 2013-01-24 ライカ ビオズュステムス ヌスロッホ ゲーエムベーハー Apparatus and method for tissue infiltration accelerated by microwave excitation
CN114477689A (en) * 2021-12-27 2022-05-13 深圳大学 CO (carbon monoxide)2Equipment and method for producing CO-rich synthetic gas by dry reforming and strengthening microwave continuous pyrolysis of sludge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504346A (en) * 2005-08-19 2009-02-05 オールド ドミニオン リサーチ ファウンデーション Ultra-wideband antenna for operation in tissue
JP2013006109A (en) * 2005-08-19 2013-01-10 Old Dominion Research Foundation Ultrawideband antenna for operation in tissue
JP2008302281A (en) * 2007-06-06 2008-12-18 Shikoku Instrumentation Co Ltd Microwave chemical reactor and method
JP2013502560A (en) * 2009-08-18 2013-01-24 ライカ ビオズュステムス ヌスロッホ ゲーエムベーハー Apparatus and method for tissue infiltration accelerated by microwave excitation
CN114477689A (en) * 2021-12-27 2022-05-13 深圳大学 CO (carbon monoxide)2Equipment and method for producing CO-rich synthetic gas by dry reforming and strengthening microwave continuous pyrolysis of sludge

Similar Documents

Publication Publication Date Title
US4667677A (en) Corona discharge thermotherapy technique
CA2223136A1 (en) Microwave applicator and method of operation
JPH1167443A (en) Lens-shape dielectric loading applicator for focusing micro wave
DE19882153T1 (en) Device for the high-frequency treatment of living tissue
JPH0340256Y2 (en)
US4839494A (en) Electromagnetic container sealing apparatus
FR2664819B1 (en) ULTRA-FAST EXTRACORPOREAL ULTRASONIC HYPERTHERMAL APPARATUS.
Tatsukawa et al. Development of submillimeter wave catheter transmitting a gyrotron output for irradiation on living bodies
US6424090B1 (en) Modification of millimetric wavelength microwave beam power distribution
BR9916082A (en) Apparatus including a vessel to process PTFE by irradiation and grinding, apparatus to prepare PTFE scrap, and continuous process to irradiate and crush PTFE
US20100286573A1 (en) System and methods of treatment using ultra-wideband, high powered focusing emitters
JPH0137643Y2 (en)
JP6867670B2 (en) Microwave therapy device
JPH11158809A (en) Microwave heating device for asphalt
JPH10504678A (en) Method and apparatus for temperature change of discontinuous materials
JP2001143862A (en) Induction heating apparatus
RU2150182C1 (en) Device for irradiating object
JPS6179472A (en) Medical dielectric antenna
JPS62224374A (en) Dielectric antenna having medial radio wave absorber
JPH0151270B2 (en)
Fliflet et al. Gyrotron-powered millimeter-wave beam facility for microwave processing of materials
Wait et al. A viable model for power focussing in a lossy cylinder
Anyutin et al. Scattering of whispering-gallery mode from concave-convex boundary.
RU2093635C1 (en) Method and device for heating of road pavement
RU2159605C1 (en) Method for applying extremely high frequency electromagnetic radiation local treatment with two or more frequencies at the same time