JPH0151270B2 - - Google Patents

Info

Publication number
JPH0151270B2
JPH0151270B2 JP57216308A JP21630882A JPH0151270B2 JP H0151270 B2 JPH0151270 B2 JP H0151270B2 JP 57216308 A JP57216308 A JP 57216308A JP 21630882 A JP21630882 A JP 21630882A JP H0151270 B2 JPH0151270 B2 JP H0151270B2
Authority
JP
Japan
Prior art keywords
antenna
electromagnetic wave
dielectric
wave generator
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57216308A
Other languages
Japanese (ja)
Other versions
JPS59105464A (en
Inventor
Takanari Terakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP21630882A priority Critical patent/JPS59105464A/en
Publication of JPS59105464A publication Critical patent/JPS59105464A/en
Publication of JPH0151270B2 publication Critical patent/JPH0151270B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Description

【発明の詳細な説明】 本発明は、人体の癌組織に電磁波を照射して所
定温度に加熱することで癌細胞の再生機能を停止
させて致死に至らせる温熱療法に用いられる電磁
波発生器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic wave generator used in thermotherapy, which irradiates cancerous tissue in the human body with electromagnetic waves and heats it to a predetermined temperature, thereby stopping the regenerative function of cancer cells and causing death. .

近年、癌の治療について温熱処理が極めて有効
的であることが注目され、悪性腫瘍を約43℃付近
の温度に必要な時間だけ加熱する温熱療法の開発
が進められている。
In recent years, attention has been paid to the extremely effective thermal treatment for cancer treatment, and progress is being made in the development of hyperthermia therapy that heats malignant tumors to a temperature of around 43°C for the required time.

このような温熱処理については、一般に一対の
電極板で人体を挟んで加温する電界加熱方式、電
磁コイル内に人体を入れて加温する誘導加熱方
式、更に電磁波を人体に放射して加温する電磁波
加熱方式があり、電界及び誘導加熱方式にあつて
は、体内の癌組織のみを集中的に加熱するスポツ
ト的加熱が困難であることから人体のかなりの広
範囲を加温するのに用いられ、一方、電磁波方式
にあつては、電磁波をビーム集束させることが可
能であることから癌組織の極く近傍のみを加温す
る局所加温への利用が考えられている。
For this kind of thermal treatment, there are generally electric field heating methods in which the human body is heated by sandwiching the human body between a pair of electrode plates, induction heating methods in which the human body is placed inside an electromagnetic coil and heated, and further heating by radiating electromagnetic waves to the human body. There is an electromagnetic wave heating method that heats a large area of the human body, and electric field and induction heating methods are used to heat a fairly wide area of the human body because it is difficult to perform spot heating that intensively heats only the cancerous tissue within the body. On the other hand, in the case of the electromagnetic wave method, since it is possible to focus the electromagnetic waves into a beam, it is considered to be used for local heating in which only the very vicinity of cancer tissue is heated.

ところで、電磁波方式により温熱療法を行なう
場合、一番重要な構成機器はマイクロ波のエネル
ギを生体に加えるための素子としての電磁波発生
器であり、これも一般にアプリケータと呼ばれて
いる。
By the way, when performing thermotherapy using electromagnetic waves, the most important component is an electromagnetic wave generator, which is an element for applying microwave energy to the living body, and this is also generally called an applicator.

この電磁波発生器としては従来第1図に示す電
磁ホーンが使用されている。第1図において、電
磁ホーン1は導波管コネクタ4を設けた給電部3
とマイクロ波エネルギを放射するホーン2とで構
成され、ホーン2の内部には第2図に示すように
人体との整合をとるために高誘電体5を装荷して
いる。
As this electromagnetic wave generator, an electromagnetic horn shown in FIG. 1 has conventionally been used. In FIG. 1, an electromagnetic horn 1 is connected to a power feeding section 3 provided with a waveguide connector
and a horn 2 that emits microwave energy, and a high dielectric material 5 is loaded inside the horn 2 to ensure alignment with the human body, as shown in FIG.

この高誘電体5は人体の比誘電率とほぼ同程度
の比誘電率をもつた高誘電物質で作られており、
給電部3に設けた導波管との整合は高誘電体5を
図示のテーパ形状とすることで実現している。
This high dielectric material 5 is made of a high dielectric material having a dielectric constant approximately equal to that of the human body.
Matching with the waveguide provided in the power feeding section 3 is achieved by forming the high dielectric material 5 into a tapered shape as shown.

第3図は従来の電磁ホーン1を用いた温熱療法
の説明図であり、電磁ホーン1と人体6との間に
冷却用の水膜7を介在して癌組織8に向けてマイ
クロ波を照射し、癌組織8を必要な時間だけ43℃
付近に加温すると、癌細胞の再生機能が失われ、
細胞致死効果が得られる。
FIG. 3 is an explanatory diagram of thermotherapy using a conventional electromagnetic horn 1, in which microwaves are irradiated toward cancer tissue 8 with a cooling water film 7 interposed between the electromagnetic horn 1 and the human body 6. Then, the cancer tissue 8 was incubated at 43°C for the required time.
When heated in the vicinity, cancer cells lose their regenerative function,
A cell-killing effect can be obtained.

ところが、従来の電磁ホーンを用いた電磁波発
生器にあつては、使用周波数を2GHz以上にしな
いと電磁ホーンが人体に電磁波を入射させるには
不都合な程大型化する欠点があるため、従来は医
療用として使用が許されている2.45GHzの周波数
を使用することで小型化を実現している。しか
し、人体に対する電磁波の浸透度は周波数が高い
程浅くなり、2.45GHzでは人体表面層での減衰が
大きく約2cmの深さまでしか加温できないという
状況にある。
However, conventional electromagnetic wave generators using electromagnetic horns have the drawback that unless the operating frequency is 2 GHz or higher, the electromagnetic horn becomes too large to inject electromagnetic waves into the human body. Miniaturization is achieved by using the 2.45GHz frequency, which is permitted for commercial use. However, the higher the frequency, the shallower the penetration of electromagnetic waves into the human body, and at 2.45 GHz, the attenuation at the surface layer of the human body is large and it is only possible to heat the human body to a depth of about 2 cm.

勿論、使用周波数を低くすれば、例えば434M
Hzで約5cmというように加温できる深さを高める
ことができるが、前述したようにメガヘルツオー
ダでは電磁ホーンが極めて大型化し、到底人体に
電磁波を入射させる医療装置としての実用化は困
難であつた。
Of course, if you lower the frequency used, for example 434M
It is possible to increase the heating depth to about 5 cm in Hz, but as mentioned above, in the megahertz order, the electromagnetic horn becomes extremely large, making it difficult to put it to practical use as a medical device that injects electromagnetic waves into the human body. Ta.

本発明は、このような従来の問題点に鑑みてな
されたもので、人体に電磁波が充分に浸透できる
メガヘルツオーダの周波数で使用でき且つ医療用
として充分に小型化された温熱療法用電磁波発生
器を提供することを目的とする。
The present invention was made in view of these conventional problems, and provides an electromagnetic wave generator for thermotherapy that can be used at a frequency on the megahertz order that allows electromagnetic waves to sufficiently penetrate the human body, and that is sufficiently miniaturized for medical use. The purpose is to provide

この目的を達成するため本発明は、通信用に用
いられている誘電体アンテナの逆の使用法、すな
わち、電磁波の外部に対する放射効率を通信用と
は逆に極力下げて放射エネルギを誘電体の内部に
封じ込める手法を基本とし、一端に放射面を形成
した人体の比誘電率に略等しい比誘電率をもつた
柱状誘電体の内部に励振アンテナを封じ込め、柱
状誘電体の外部に引出された給電線により500M
Hz以下の周波数で励振して人体に電磁エネルギを
集中して放射するようにしたものである。以下、
本発明の実施例を図面に基づいて説明する。
In order to achieve this objective, the present invention utilizes the dielectric antenna used in communication in the opposite way, that is, the radiation efficiency of electromagnetic waves to the outside is reduced as much as possible, contrary to that for communication, and the radiated energy is transferred to the dielectric antenna. Based on the internal containment method, the excitation antenna is enclosed inside a columnar dielectric material with a dielectric constant approximately equal to that of the human body, with a radiation surface formed at one end, and a feeder antenna is drawn out to the outside of the columnar dielectric material. 500M by electric wire
It is designed to concentrate and radiate electromagnetic energy to the human body by exciting it at frequencies below Hz. below,
Embodiments of the present invention will be described based on the drawings.

第4図は本発明の一実施例を示した斜視図であ
る。
FIG. 4 is a perspective view showing an embodiment of the present invention.

まず、構成を説明すると、10は円形断面を有
する柱状誘電体であり、一端に人体に電磁波エネ
ルギを放射するための放射面12を形成してお
り、放射面12に相対した反対側にはループアン
テナ14が励振アンテナとして柱状誘電体10内
に封じ込められており、ループアンテナ14より
は一対の給電線16が外部に引き出されている。
ここで柱状誘電体10は人体組織とほぼ同程度の
比誘電率εrをもつた誘電物質で作られており、人
体組織の実効的な比誘電率は非常に高く、ε=80
〜100程度であることから、この人体組織の比誘
電率にほぼ等しい例えばεr=80となる誘電物質を
もつて柱状誘電体10は作られている。
First, to explain the configuration, reference numeral 10 is a columnar dielectric body with a circular cross section, and one end forms a radiation surface 12 for radiating electromagnetic wave energy to the human body, and the opposite side to the radiation surface 12 has a loop. An antenna 14 is enclosed within the columnar dielectric 10 as an excitation antenna, and a pair of feed lines 16 are drawn out from the loop antenna 14.
Here, the columnar dielectric body 10 is made of a dielectric material having a relative permittivity εr that is approximately the same as that of human tissue, and the effective relative permittivity of human tissue is extremely high, ε=80.
Since the dielectric constant is approximately 100, the columnar dielectric body 10 is made of a dielectric material having a dielectric constant of approximately equal to the relative permittivity of human tissue, for example, εr=80.

勿論、柱状誘電体10は人体組織とほぼ等しい
程度の比誘電率を有すると共に誘電損失の少ない
誘電体材料を用いているものである。
Of course, the columnar dielectric 10 is made of a dielectric material that has a dielectric constant approximately equal to that of human tissue and has low dielectric loss.

一方、柱状誘電体10に封じ込められたループ
アンテナ14は500MHz以下の電磁波を効率よく
柱状誘電体10を誘電体導波器として人体に電磁
波を伝搬させる励振特性を有し、ループアンテナ
14の大きさは500MHz以下の周波数帯で使用さ
れている大気中に設置されている通信用のループ
アンテナの大きさに対し、柱状誘電体10の比誘
電率εrで定まる1/√、即ちεr=80とする約1/
9の大きさで実現できる。又ループアンテナ14
に対する給電線16による励振信号の供給は使用
周波数が500MHz以下であることから、同軸ケー
ブルを整合回路を介して給電線16に接続するこ
とで行なう。
On the other hand, the loop antenna 14 enclosed in the columnar dielectric 10 has an excitation characteristic that efficiently propagates electromagnetic waves of 500 MHz or less to the human body by using the columnar dielectric 10 as a dielectric waveguide. is determined by the dielectric constant εr of the columnar dielectric 10, which is 1/√, that is, εr=80, for the size of a communication loop antenna installed in the atmosphere that is used in a frequency band of 500 MHz or less. Approximately 1/
This can be achieved with a size of 9. Also loop antenna 14
Since the frequency used is 500 MHz or less, the excitation signal is supplied by the feed line 16 to the feed line 16 by connecting a coaxial cable to the feed line 16 via a matching circuit.

次に本発明の作用を説明する。 Next, the operation of the present invention will be explained.

柱状誘電体10に封じ込められたループアンテ
ナ14の励振で放射された電磁波は、柱状誘電体
10内を伝搬して人体に入射する電磁波エネルギ
と、誘電体10より外部に放射される電磁波エネ
ルギなとり、両者の関係を説明すると、第5図の
特性グラフに示す関係になる。
The electromagnetic waves radiated by the excitation of the loop antenna 14 enclosed in the columnar dielectric 10 are composed of electromagnetic energy that propagates within the columnar dielectric 10 and enters the human body, and electromagnetic energy that is radiated to the outside from the dielectric 10. The relationship between the two is shown in the characteristic graph of FIG. 5.

即ち、第5図は誘電体の比誘電率εrに対する誘
電体内部の放射電力Wiと、誘電体外部に放射さ
れる放射電力Woとの比を柱状誘電体直径を横軸
にとつて示したもので、通信用の誘電体アンテナ
にあつては使用する誘電体の比誘電率εrを小さく
することにより放射電力比Wi/Woを1以下とし
ているが、本発明においては柱状誘電体10の比
誘電率εrはεr=80と極めて高いため、柱状誘電体
の直径が同じでも放射電力比Wi/Wo≒10〜20程
度が得られ、柱状誘電体10内を伝搬する放射電
力Wiに対し柱状誘電体10より大気中に放射さ
れる放射電力Woは1/10〜1/20程度の極く僅
かな放射電力に抑えられ、ループアンテナ14よ
りの放射エネルギの大部分が柱状誘電体10内を
伝搬して放射面12より人体に入射される。
That is, Figure 5 shows the ratio of the radiated power Wi inside the dielectric and the radiated power Wo radiated to the outside of the dielectric with respect to the dielectric constant εr, with the diameter of the columnar dielectric as the horizontal axis. In the case of a dielectric antenna for communication, the radiation power ratio Wi/Wo is made less than 1 by reducing the relative permittivity εr of the dielectric used, but in the present invention, the relative permittivity of the columnar dielectric 10 is Since the ratio εr is extremely high as εr=80, even if the diameter of the columnar dielectric body is the same, a radiated power ratio Wi/Wo of approximately 10 to 20 can be obtained. The radiated power Wo radiated into the atmosphere from 10 is suppressed to a very small radiated power of about 1/10 to 1/20, and most of the radiated energy from the loop antenna 14 propagates within the columnar dielectric 10. and enters the human body from the radiation surface 12.

更に詳細に説明するならば、柱状誘電体10に
封じ込められたループアンテナ14より柱状誘電
体10と空気との境界面に垂直に入射する電磁波
の入射電力をPi、柱状誘電体10より大気中に放
射される透過電力をPt、界面で反射されて柱状
誘電体10内に戻つてくる反射電力をPrとした
場合、次の関係式が成り立つ。
To explain in more detail, the incident power of the electromagnetic wave that is incident perpendicularly to the interface between the columnar dielectric 10 and the air from the loop antenna 14 enclosed in the columnar dielectric 10 is Pi, and the incident power of the electromagnetic wave that enters the atmosphere from the columnar dielectric 10 is Pi. When the radiated transmitted power is Pt and the reflected power reflected at the interface and returned into the columnar dielectric 10 is Pr, the following relational expression holds true.

Pi/Pt={(√−√)/ (√+√)}2 (但し、εaは空気の比誘電率でε=1) 即ち、柱状誘電体10の比誘電率εr=80とする
と、 Pi/Pt=0.7988 となり、ループアンテナ14より柱状誘電体10
と空気との界面に垂直に電磁波が入射しても約2
割しか外部に放射されず、残りの8割は柱状誘電
体10の内部に反射され、しかもループアンテナ
14よりの電磁波が柱状誘電体10と空気との界
面に垂直に入射する部分は極く僅かであり、他の
部分は90度以下となる入射角をもつて入射してい
ることから、柱状誘電体10の外部に対する放射
電力は更に小さなものとなり、ループアンテナ1
4から放射された電磁波エネルギの約9割以上を
柱状誘電体10内に封じ込めることが出来る。
Pi/Pt={(√−√)/(√+√)} 2 (However, εa is the relative permittivity of air and ε=1) In other words, assuming the relative permittivity of the columnar dielectric 10 is εr=80, Pi /Pt=0.7988, and the columnar dielectric 10 is smaller than the loop antenna 14.
Even if an electromagnetic wave is incident perpendicularly to the interface between
Only a fraction is radiated to the outside, and the remaining 80% is reflected inside the columnar dielectric 10, and moreover, only a small portion of the electromagnetic waves from the loop antenna 14 is incident perpendicularly to the interface between the columnar dielectric 10 and the air. Since the other parts are incident at an angle of incidence of 90 degrees or less, the radiation power to the outside of the columnar dielectric 10 is even smaller, and the loop antenna 1
Approximately 90% or more of the electromagnetic wave energy radiated from the columnar dielectric body 10 can be contained within the columnar dielectric body 10.

一方、第4図に示した本発明の電磁波発生器に
よる人体の温熱治療に際しては第3図に示したと
同様に柱状誘電体10の放射面12と人体との間
に冷却用の水膜を介在させて電磁波を人体に入射
させるようになるが、水の誘電率εwはεw=80.7
とほぼ柱状誘電体10の比誘電率εrに等しいこと
から、水膜を介在させたことによる反射損失はほ
とんど無く、人体の内部にループアンテナ14よ
り放射した電磁波エネルギを集中して入射させる
ことが出来、且つ励振周波数を500MHz以下の周
波数にしていることから人体内部の充分な深さに
電磁波エネルギが浸透して癌組織を加温すること
が出来、加えて人体に入射する電磁波エネルギは
柱状誘電体10の放射面12の形状で定まるビー
ム特性をもつことから加温を必要とする癌組織を
スポツト的に加温することが出来る。
On the other hand, when performing thermal treatment on a human body using the electromagnetic wave generator of the present invention shown in FIG. 4, a cooling water film is interposed between the radiation surface 12 of the columnar dielectric 10 and the human body, as shown in FIG. This causes electromagnetic waves to enter the human body, but the dielectric constant of water, εw, is εw=80.7.
Since this is approximately equal to the dielectric constant εr of the columnar dielectric 10, there is almost no reflection loss due to the interposition of the water film, and it is possible to concentrate the electromagnetic wave energy radiated from the loop antenna 14 into the human body. Moreover, since the excitation frequency is set to 500 MHz or less, electromagnetic wave energy can penetrate deep enough into the human body to heat cancer tissue. In addition, the electromagnetic wave energy that enters the human body Since the beam has characteristics determined by the shape of the radiation surface 12 of the body 10, it is possible to spot-heat cancer tissue that requires heating.

第6,7及び8図のそれぞれは本発明の電磁波
発生器に用いる柱状誘電体10の他の実施例を示
した断面図であり、第4図の円形断面をもつた柱
状誘電体10にあつてはループアンテナ14より
放射された電磁波が多重モードで伝搬されてモー
ド損失を生じやすいことから、柱状誘電体10を
伝搬する電磁波の伝搬モードを少なくするため、
第6図に示す長円形の断面形状をもつた柱状誘電
体10、又第7図に示す楕円形の断面形状をもつ
た柱状誘電体10、若しくは第8図に示す正八角
形のような多角形断面をもつた柱状誘電体10と
することが望ましい。
6, 7, and 8 are cross-sectional views showing other embodiments of the columnar dielectric 10 used in the electromagnetic wave generator of the present invention, and correspond to the columnar dielectric 10 having a circular cross section shown in FIG. Since the electromagnetic waves radiated from the loop antenna 14 are likely to propagate in multiple modes and cause mode loss, in order to reduce the propagation mode of the electromagnetic waves propagating through the columnar dielectric 10,
A columnar dielectric body 10 having an oval cross-sectional shape as shown in FIG. 6, a columnar dielectric body 10 having an elliptical cross-sectional shape as shown in FIG. 7, or a polygon such as a regular octagon as shown in FIG. It is desirable that the columnar dielectric body 10 has a cross section.

又、柱状誘電体10に封じ込める励振アンテナ
としては、第4図に示したループアンテナ14の
他に第9図に示すダイポールアンテナ18、第1
0図に示す一対の電極板20を封じ込めた板状ア
ンテナ、第11図に示す平面反射板を二つに折り
曲げた形のコーナリフレクタ22とダイポールア
ンテナ18を組合せたコーナリフレクタアンテ
ナ、第12図に示す折返しアンテナ24、更に第
13図に示すヘリカルアンテナ26のいずれかを
使用するようにしても良く、これらの各アンテナ
は第4図のループアンテナ14と同様に空気中に
おける大きさの1/√の大きさをもつて柱状誘
電体10の内部に封じ込められる。
In addition to the loop antenna 14 shown in FIG. 4, the dipole antenna 18 shown in FIG.
A plate-shaped antenna in which a pair of electrode plates 20 are enclosed as shown in Fig. 0, a corner reflector antenna in which a dipole antenna 18 is combined with a corner reflector 22 in the form of a flat reflector bent in two as shown in Fig. 11, and a corner reflector antenna shown in Fig. 12. Either the folded antenna 24 shown in FIG. 13 or the helical antenna 26 shown in FIG. It is confined inside the columnar dielectric 10 with a size of .

又、励振アンテナとしては第9〜13図に示し
たアンテナに限定されず、100〜1000MHzとなる
VHF及びUHF帯で使用することの出来る適宜の
アンテナを使用することが出来る。又、柱状誘電
体10に封じ込めら励振アンテナとしては柱状誘
電体10が高誘電物質でなることから全方向性の
アンテナであつても放射電磁波を充分に柱状誘電
体10内に封じ込めることが可能であるが、望ま
しくは所定の方向に電磁波を集中的に放射する指
向性をもつた励振アンテナを用いる。
In addition, the excitation antenna is not limited to the antennas shown in Figures 9 to 13, and can range from 100 to 1000MHz.
Any suitable antenna that can be used in the VHF and UHF bands can be used. Furthermore, since the columnar dielectric 10 is made of a high dielectric material, the radiated electromagnetic waves can be sufficiently confined within the columnar dielectric 10 even if the antenna is omnidirectional. However, it is preferable to use a directional excitation antenna that radiates electromagnetic waves in a predetermined direction in a concentrated manner.

次に本発明の効果を説明すると、500MHz以下
の周波数をもつ電磁波を放射するため、人体内に
存在する深部の癌組織に対しても電磁波を浸透さ
せて加温することが出来る。
Next, the effect of the present invention will be explained. Since electromagnetic waves having a frequency of 500 MHz or less are emitted, the electromagnetic waves can penetrate deep cancerous tissues in the human body and heat them.

又、電磁波導波管としての人体の比誘電率にほ
ぼ等しい比誘電率をもつ柱状誘電体の内部に励振
アンテナを封じ込めていることから、励振アンテ
ナのサイズは大気中におけるサイズの1/√の
大きさとすることが出来、使用周波数を500MHz
以下に下げても励振アンテナを充分に小型化出来
るため、励振アンテナの大きさで決まる柱状誘電
体のサイズも充分に小さく出来、医療用の電磁波
発生器として取り扱いが極めて容易な小型の電磁
波発生器を実現している。
In addition, since the excitation antenna is sealed inside a columnar dielectric material that has a dielectric constant almost equal to that of the human body as an electromagnetic waveguide, the size of the excitation antenna is 1/√ of the size in the atmosphere. The size can be changed to 500MHz.
Since the excitation antenna can be made sufficiently small even if it is lowered to below, the size of the columnar dielectric body, which is determined by the size of the excitation antenna, can also be made sufficiently small, making it a compact electromagnetic wave generator that is extremely easy to handle as a medical electromagnetic wave generator. has been realized.

更に励振アンテナよりの電磁波が伝搬する柱状
誘電体は人体組織の比誘電率のほぼ等しい誘電率
をもつた誘電物質で作られているため、人体との
接触面における反射損は極く僅かであり、励振ア
ンテナよりの放射エネルギの大部分を人体の内部
に向けてビーム状に入射させることが出来、極め
て高い放射効率を実現している。
Furthermore, the columnar dielectric material through which the electromagnetic waves from the excitation antenna propagate is made of a dielectric material with a dielectric constant that is almost the same as that of human tissue, so the reflection loss at the surface in contact with the human body is extremely small. , most of the radiation energy from the excitation antenna can be directed into the human body in the form of a beam, achieving extremely high radiation efficiency.

更に又、柱状誘電体と空気との境界面に入射し
た電磁波は空気の比誘電率に対し柱状誘電体の比
誘電率が極めて高いため、空気中に放射されずに
柱状誘電体の内部に電磁波が封じ込められた状態
となり、500MHz以下の周波数帯については医療
用としての許可が成されていないが、本発明の電
磁波発生器より外部に漏洩する電磁波エネルギは
極く僅かであることから電磁波の漏れ出しによる
通信妨害を防ぐためのシールド設備も軽微で済
み、医療施設への設備について電波障害の発生を
充分に抑えることが出来る。
Furthermore, since the dielectric constant of the columnar dielectric is extremely high compared to that of air, the electromagnetic waves incident on the interface between the columnar dielectric and air are not radiated into the air but are transmitted inside the columnar dielectric. Although the frequency band below 500 MHz has not been approved for medical use, the electromagnetic wave energy leaked to the outside from the electromagnetic wave generator of the present invention is extremely small, so electromagnetic wave leakage is prevented. The shielding equipment required to prevent communication interference due to radio transmission is also minimal, and it is possible to sufficiently suppress the occurrence of radio wave interference in equipment for medical facilities.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は従来の電磁波発生器を示した説明
図、第3図は従来の電磁波発生器による温熱治療
の説明図、第4図は本発明の一実施例を示した斜
視図、第5図は誘電体アンテナの放射電力比
Wi/Woを示したグラフ図、第6,7及び8図は
本発明における柱状誘電体の他の実施例を示した
断面図、第9,10,11,12及び13図は本
発明で用いる励振アンテナの他の実施例を示した
説明図である。 10……柱状誘電体、12……放射面、14…
…ループアンテナ、16……給電線、18……ダ
イポールアンテナ、20……電極板、22……コ
ーナリフレクタ、24……折返しアンテナ、26
……ヘリカルアンテナ。
1 and 2 are explanatory diagrams showing a conventional electromagnetic wave generator, FIG. 3 is an explanatory diagram of thermotherapy using a conventional electromagnetic wave generator, and FIG. 4 is a perspective view showing an embodiment of the present invention. Figure 5 shows the radiation power ratio of a dielectric antenna.
Graphs showing Wi/Wo, Figures 6, 7 and 8 are cross-sectional views showing other embodiments of the columnar dielectric in the present invention, and Figures 9, 10, 11, 12 and 13 are used in the present invention. It is an explanatory view showing other examples of an excitation antenna. 10... Column dielectric, 12... Radiation surface, 14...
... Loop antenna, 16 ... Feed line, 18 ... Dipole antenna, 20 ... Electrode plate, 22 ... Corner reflector, 24 ... Folded antenna, 26
...Helical antenna.

Claims (1)

【特許請求の範囲】 1 人体組織の比誘電率に略等しい比誘電率を有
すると共に一端に電磁波放射面を形成した柱状誘
電体と、該柱状誘電体の内部に封入された励振ア
ンテナと、前記柱状誘電体の外部に引き出された
前記励振アンテナの給電線とで成ることを特徴と
する温熱療法用電磁波発生器。 2 前記柱状誘電体は、円形、長円形、楕円形、
又は多角形の断面形状を有する特許請求の範囲第
1項記載の温熱療法用電磁波発生器。 3 前記励振アンテナは、超短波及び又は極超短
波で励振されるアンテナで成る特許請求の範囲第
1項記載の温熱療法用電磁波発生器。 4 前記励振アンテナは500MHz以下の周波数で
励振されるアンテナで成る特許請求の範囲第1項
記載の温熱療法用電磁波発生器。 5 前記励振アンテナは、ダイポール、ループ又
はヘリカル等の線状アンテナもしくは一対の電極
を用いた板状アンテナで成る特許請求の範囲第1
項記載の温度熱療法用電磁波発生器。
[Scope of Claims] 1. A columnar dielectric having a dielectric constant substantially equal to that of human tissue and having an electromagnetic wave radiation surface formed at one end; an excitation antenna sealed inside the columnar dielectric; 1. An electromagnetic wave generator for thermotherapy, characterized in that the electromagnetic wave generator comprises a feed line for the excitation antenna that is drawn out of a columnar dielectric body. 2 The columnar dielectric has a circular shape, an oval shape, an elliptical shape,
The electromagnetic wave generator for thermotherapy according to claim 1, which has a polygonal cross-sectional shape. 3. The electromagnetic wave generator for hyperthermia therapy according to claim 1, wherein the excitation antenna is an antenna excited by ultra-high frequency waves and/or ultra-high frequency waves. 4. The electromagnetic wave generator for thermotherapy according to claim 1, wherein the excitation antenna is an antenna excited at a frequency of 500 MHz or less. 5. The excitation antenna is a linear antenna such as a dipole, loop, or helical antenna, or a plate antenna using a pair of electrodes.
Electromagnetic wave generator for thermotherapy as described in .
JP21630882A 1982-12-10 1982-12-10 Electromagnetic wave generator for heat treatment Granted JPS59105464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21630882A JPS59105464A (en) 1982-12-10 1982-12-10 Electromagnetic wave generator for heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21630882A JPS59105464A (en) 1982-12-10 1982-12-10 Electromagnetic wave generator for heat treatment

Publications (2)

Publication Number Publication Date
JPS59105464A JPS59105464A (en) 1984-06-18
JPH0151270B2 true JPH0151270B2 (en) 1989-11-02

Family

ID=16686484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21630882A Granted JPS59105464A (en) 1982-12-10 1982-12-10 Electromagnetic wave generator for heat treatment

Country Status (1)

Country Link
JP (1) JPS59105464A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222069A (en) * 1984-02-24 1985-11-06 菊地 眞 Applicator for heating treatment method
JPS60198162A (en) * 1984-02-24 1985-10-07 菊地 真 Applicator for heat treatment
JPS60198163A (en) * 1984-02-24 1985-10-07 菊地 真 Applicator for heat treatment
EP1371389B1 (en) 2001-03-12 2011-12-21 ICHIKAWA, Masahide Method of controlling microelectromagnetic radiator for breaking cancer cell tissue

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864351U (en) * 1981-10-23 1983-04-30 ミナト医科学株式会社 therapeutic antenna device

Also Published As

Publication number Publication date
JPS59105464A (en) 1984-06-18

Similar Documents

Publication Publication Date Title
US4702262A (en) Electromagnetic applicator for localizing hyperthermia heating in a system
US5549639A (en) Non-invasive hyperthermia apparatus including coaxial applicator having a non-invasive radiometric receiving antenna incorporated therein and method of use thereof
US5944749A (en) X-ray needle providing heating with microwave energy
Magin et al. Invited review: Noninvasive microwave phased arrays for local hyperthermia: A review
US3095880A (en) Diathermy applicators
Tayel et al. Dielectric loaded Yagi fed dual band pyramidal horn antenna for breast hyperthermia treatment
JPH0151270B2 (en)
CN111012483B (en) Microwave ablation antenna based on spiral gap structure
US10186780B2 (en) Microwave antenna applicator
Schwan Electromagnetic and ultrasonic induction of hyperthermia in tissue-like substances
Pchelnikov et al. Medical application of surface electromagnetic waves
JPS6138709B2 (en)
Nikawa et al. Dielectric-loaded lens applicator for microwave hyperthermia
JPH0317885Y2 (en)
JPH0330782A (en) Antenna for microwave medical treatment device
JPS6138708B2 (en)
Hand Physical techniques for delivering microwave energy to tissues.
JPH0311012Y2 (en)
Hassan et al. Hyperthermia Brain Cancer Treatment Using a Wideband Antenna with an Elliptic Reflector
Naimullah et al. SAR Evaluation Towards Breast Cancer in Hyperthermia Treatment
Elshafiey et al. Ultra-wideband applicator for brain-tumor ablation and imaging system
Stuchly et al. Multimode square waveguide applicators for medical applications of microwave power
Wu et al. Design and analysis of an asymmetrically fed insulated coaxial slot antenna with enhanced tip-heating performance
Suseela Investigations on the Use of Hyperthermia for Breast Cancer Treatment
Habash et al. Optimal sar distribution from waveguide applicators for hyperthermia of deep-seated tumours