JPH1167130A - Electron beam optical device - Google Patents

Electron beam optical device

Info

Publication number
JPH1167130A
JPH1167130A JP9236505A JP23650597A JPH1167130A JP H1167130 A JPH1167130 A JP H1167130A JP 9236505 A JP9236505 A JP 9236505A JP 23650597 A JP23650597 A JP 23650597A JP H1167130 A JPH1167130 A JP H1167130A
Authority
JP
Japan
Prior art keywords
electron beam
deflection
sample
objective lens
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9236505A
Other languages
Japanese (ja)
Other versions
JP3754186B2 (en
Inventor
Koji Kimura
浩二 木村
Hirotami Koike
紘民 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP23650597A priority Critical patent/JP3754186B2/en
Publication of JPH1167130A publication Critical patent/JPH1167130A/en
Application granted granted Critical
Publication of JP3754186B2 publication Critical patent/JP3754186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To correct oblique aberration, to improve the resolution of an electron beam optical device, and to prevent a sample from being damaged. SOLUTION: A scanning electron microscope to which the subject device can be applied is composed to have an electrostatic magnetic field composite object lens (a deceleration field). In this case, at least one deflection system 5 is installed, a corrected deflection magnetic field and a corrected deflection electric field are overlapped in the vicinity of an object lens 7, corresponding to a deflection orbit 3 of an electron beam deflected by the deflection system 5, and the corrected deflection magnetic field and the corrected deflection electric field correct oblique aberration to realize high resolution. Moreover, the deceleration field is formed, so that a high accelerating voltage is used and furthermore a sample damage is repressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子線を利用した装
置に用いられる電子線光学装置に関するものであり、特
に走査型電子顕微鏡の電子線光学装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam optical device used for an apparatus utilizing an electron beam, and more particularly to an electron beam optical device for a scanning electron microscope.

【0002】[0002]

【従来の技術】走査型電子顕微鏡を利用する分野は半導
体素子、液晶、光磁気ディスク等の先端科学分野、金
属、化学等の材料分野、医学、生物、医薬分野等多岐に
亘る。
2. Description of the Related Art The fields in which a scanning electron microscope is used are wide-ranging, such as the fields of advanced science such as semiconductor devices, liquid crystals and magneto-optical disks, materials such as metals and chemistry, medicine, biology, and medicine.

【0003】例えば半導体製造プロセスに於いてはパタ
ーン成形時のレジストの線幅の測定等が走査型電子顕微
鏡(SEM)により行われている。レジストの線幅等を
観察する場合、残渣の検査、裾引き、オーバハング、異
物の検査を行うのが好ましい。
For example, in a semiconductor manufacturing process, measurement of a line width of a resist at the time of pattern formation is performed by a scanning electron microscope (SEM). When observing the line width or the like of the resist, it is preferable to perform inspection for residue, tailing, overhang, and foreign matter.

【0004】残渣の検査、裾引き、オーバハング、異物
の検査は立体的な観察が必要である。立体的に試料の観
察を行う場合は、電子線を試料に対して傾斜させ入射さ
せる必要があるが、従来の電子線光学装置では試料に対
して常に垂直に電子線を入射させるので、試料に対する
電子線の走査は試料を保持するステージを傾斜させ対象
物の側面が観察できる様にしている。
[0004] Inspection of residues, tailing, overhanging, and inspection of foreign matter require three-dimensional observation. When observing a sample three-dimensionally, it is necessary to incline and impinge the electron beam on the sample. However, in a conventional electron beam optical device, the electron beam is always incident perpendicularly on the sample. The scanning of the electron beam is performed by tilting the stage holding the sample so that the side surface of the object can be observed.

【0005】レンズの収差には、物点が光軸から外れた
場合に生ずる像のコマ、非点、歪み、湾曲軸外色収差等
の軸外収差、又物点が光軸にある場合に生ずる色収差、
球面収差等の軸上収差がある。いずれも分解能に影響を
及ぼすものである。前記した従来の電子線光学装置で、
試料側を傾斜させ電子線を傾斜させていないのは、電子
線を傾斜させた場合には、電子線が対物レンズの光軸か
ら外れ、軸外収差を発生し、小さなプローブを形成する
ことができず分解能が低下するのを避けたからである。
[0005] Lens aberrations include off-axis aberrations such as image coma, astigmatism, distortion, and curved off-axis chromatic aberration that occur when the object point is off the optical axis, and when the object point is on the optical axis. chromatic aberration,
There are axial aberrations such as spherical aberration. Either one affects resolution. In the conventional electron beam optical device described above,
The reason that the sample side is tilted and the electron beam is not tilted is that when the electron beam is tilted, the electron beam deviates from the optical axis of the objective lens, causing off-axis aberration and forming a small probe. This is because it was impossible to prevent the resolution from being lowered.

【0006】尚、軸外収差を補正する電子線光学装置と
しては電子描画装置に用いられている図6、図7に示す
ものがある。先ず、図6に示す電子線光学装置1につい
て説明する。
As an electron beam optical device for correcting off-axis aberrations, there is one shown in FIGS. 6 and 7 which is used in an electronic drawing apparatus. First, the electron beam optical device 1 shown in FIG. 6 will be described.

【0007】図中、2は電子線光学装置の光軸、3は電
子線の偏向軌道、4は試料を示している。前記光軸2上
に第1走査コイル5(第1偏向系)、第2走査コイル6
(第2偏向系)、磁界型レンズである対物レンズ7(図
中では等価な光学レンズとして示してある)、対物レン
ズ7のレンズ磁場の上に電気的に重なる様に補正偏向コ
イル8が配設されている。
In the figure, reference numeral 2 denotes an optical axis of an electron beam optical device, 3 denotes a deflection trajectory of an electron beam, and 4 denotes a sample. A first scanning coil 5 (first deflection system), a second scanning coil 6 on the optical axis 2
(Second deflection system), an objective lens 7 (shown as an equivalent optical lens in the figure), which is a magnetic field type lens, and a correction deflection coil 8 arranged so as to be electrically superimposed on the lens magnetic field of the objective lens 7. Has been established.

【0008】図示しないフィラメントより発せられた電
子線は、前記第1走査コイル5により光軸2に対して偏
角が与えられ、又前記第2走査コイル6により前記光軸
2と平行に偏向される。前記偏角を0〜所定角度範囲で
変更することで前記偏向軌道3は前記試料4に対して走
査される。前記電子線が走査されることで電子線の偏向
軌道3は前記対物レンズ7の光軸2から外れるが、前記
補正偏向コイル8により補正偏向磁場が与えられ、前記
偏向軌道3と対物レンズ7の光軸が一致する様に、前記
磁界型対物レンズ7は傾斜することなく平行移動する。
而して走査した場合の軸外収差が補正される。
An electron beam emitted from a filament (not shown) is deflected to the optical axis 2 by the first scanning coil 5 and deflected by the second scanning coil 6 in parallel with the optical axis 2. You. The deflection trajectory 3 is scanned with respect to the sample 4 by changing the deflection angle in a range of 0 to a predetermined angle. When the electron beam is scanned, the deflection trajectory 3 of the electron beam deviates from the optical axis 2 of the objective lens 7, but a correction deflection magnetic field is given by the correction deflection coil 8, and the deflection trajectory 3 and the objective lens 7 The magnetic field type objective lens 7 moves parallel without tilting so that the optical axes coincide.
Thus, off-axis aberrations when scanning are corrected.

【0009】次に、図7に示す電子線光学装置10につ
いて説明する。尚、図6中で示したものと同一のものに
は同符号を付してある。
Next, the electron beam optical device 10 shown in FIG. 7 will be described. The same components as those shown in FIG. 6 are denoted by the same reference numerals.

【0010】図中、電子線光学装置10の光軸2上に第
1走査コイル5、磁界型レンズである対物レンズ7(図
中では等価な光学レンズとして示してある)、対物レン
ズ7のレンズ磁場の上に重合せる様に補正偏向コイル8
が配設されている。
In FIG. 1, a first scanning coil 5, an objective lens 7 which is a magnetic lens (shown as an equivalent optical lens in the figure), and a lens of the objective lens 7 on the optical axis 2 of the electron beam optical device 10. Correction deflection coil 8 to superimpose on magnetic field
Are arranged.

【0011】図示しないフィラメントより発せられた電
子線は、前記第1走査コイル5により光軸2に対して偏
角が与えられ、前記第1走査コイル5により前記偏角を
0〜所定角度範囲で変化させることで前記偏向軌道3は
前記試料4に対して走査される。前記電子線が走査され
ることで電子線の偏向軌道3は前記対物レンズ7の光軸
2から外れるが前記補正偏向コイル8により補正偏向磁
場が与えられ、前記偏向軌道3と対物レンズ7の光軸が
一致する様に、前記対物レンズ7が前記偏角と同角度で
傾斜されると共に移動する。而して走査した場合の軸外
収差が補正される。
An electron beam emitted from a filament (not shown) is deflected with respect to the optical axis 2 by the first scanning coil 5, and the deflected angle is set within a range of 0 to a predetermined angle by the first scanning coil 5. By changing, the deflection trajectory 3 is scanned with respect to the sample 4. The scanning of the electron beam causes the deflection trajectory 3 of the electron beam to deviate from the optical axis 2 of the objective lens 7, but a correction deflection magnetic field is given by the correction deflection coil 8, and The objective lens 7 is tilted and moved at the same angle as the declination so that the axes coincide. Thus, off-axis aberrations when scanning are corrected.

【0012】[0012]

【発明が解決しようとする課題】上記した様に試料を立
体的に観察する場合は、試料に対する電子線を傾斜させ
る必要がある。ステージを傾斜した場合ステージの位置
精度を出す為にレーザ干渉計を搭載する必要があるが、
レーザ干渉計は重くステージの傾斜機構には搭載するこ
とができない。この為、観察する試料が半導体素子の様
に極微細のものでは傾斜観察を行うことが極めて困難で
あり、実際には測定は常に表面からの観察となり、立体
像は得ていない。この為、充分な観察ができないので必
要とする種々の情報を得ることができなかった。
In order to observe a sample three-dimensionally as described above, it is necessary to tilt an electron beam with respect to the sample. When the stage is tilted, it is necessary to mount a laser interferometer in order to increase the position accuracy of the stage,
The laser interferometer is heavy and cannot be mounted on the tilt mechanism of the stage. For this reason, it is extremely difficult to perform tilt observation when the sample to be observed is extremely fine, such as a semiconductor element. In practice, measurement is always performed from the surface, and a three-dimensional image is not obtained. For this reason, it was not possible to obtain sufficient information because it was not possible to perform sufficient observation.

【0013】又、電子線光学装置1,10で示したもの
は、電子描画装置として開発されたものであり、加速電
圧は50〜100KVと高い。半導体材料を観察する場合
は入射電圧は500〜800V である必要があり、電子
線光学装置1,10では半導体材料に損傷を与えてしま
う。而もできるだけ、試料に入射する角度が垂直或は垂
直に近い角度としている。この為、軸外収差を補正する
ことはできるが立体観察はできない。ここで試料に損傷
を与えない様に加速電圧を低くした場合、対物レンズの
汚れやチャージアップにより電子線が錯乱され、計算通
りに縮小されず分解能が劣化する。更に、加速電圧が低
いと電子銃での空間電荷の影響により、電子銃での輝度
が劣化し、理論輝度が得られない。更に又、色収差、球
面収差等の軸上収差は電子線が試料に入射する時の入射
電圧(VL :ランディングボルテージ)、加速電圧(V
0 )の比、V0 /VL に略比例して減少するので、加速
電圧を低くすると収差が大きくなり分解能が低下すると
いう問題があった。
The electron beam optical devices 1 and 10 have been developed as electron drawing devices, and the acceleration voltage is as high as 50 to 100 KV. When observing a semiconductor material, the incident voltage needs to be 500 to 800 V, and in the electron beam optical devices 1 and 10, the semiconductor material is damaged. In this case, the angle of incidence on the sample is perpendicular or nearly perpendicular. For this reason, off-axis aberrations can be corrected but stereoscopic observation cannot be performed. Here, if the acceleration voltage is lowered so as not to damage the sample, the electron beam is confused by contamination or charge-up of the objective lens, and the resolution is deteriorated without being reduced as calculated. Further, when the acceleration voltage is low, the brightness at the electron gun is deteriorated due to the effect of space charge at the electron gun, and the theoretical brightness cannot be obtained. Further, axial aberrations such as chromatic aberration and spherical aberration are caused by an incident voltage (V L : landing voltage) and an accelerating voltage (V) when an electron beam enters a sample.
0 ), which is substantially proportional to V 0 / V L. Therefore, when the acceleration voltage is reduced, there is a problem that the aberration increases and the resolution decreases.

【0014】本発明は斯かる実情に鑑み軸外収差を補正
し、電子線光学装置の分解能を向上させると共に電子線
光学装置が走査型電子顕微鏡に使用された場合に半導体
素子の観察を可能とし、而も立体観察をも可能にしよう
とするものである。
In view of such circumstances, the present invention corrects off-axis aberrations, improves the resolution of an electron beam optical device, and enables observation of a semiconductor element when the electron beam optical device is used in a scanning electron microscope. However, it is intended to enable both stereoscopic observation.

【0015】[0015]

【課題を解決するための手段】本発明は、静電磁界複合
対物レンズ(減速場)を持つ走査型電子顕微鏡に於い
て、少なくとも1つの偏向系を有し、該偏向系により偏
向された電子線の偏向軌道に対応して対物レンズ近傍に
補正偏向磁場と補正偏向電場を重合わせた電子線光学装
置に係り、又補正偏向磁場、補正偏向電場の少なくとも
1方により下記式を略満たす電子線光学装置に係るもの
である。
According to the present invention, there is provided a scanning electron microscope having an electrostatic magnetic field compound objective lens (deceleration field), comprising at least one deflection system, and an electron beam deflected by the deflection system. The present invention relates to an electron beam optical device in which a correction deflection magnetic field and a correction deflection electric field are superimposed near an objective lens corresponding to a deflection trajectory of a line. The present invention relates to an optical device.

【0016】(1/2)rB′+r′B+(1/2)r
Φ″+r′Φ′ B:対物レンズの軸上磁場分布、Φ:対物レンズの軸上
静電ポテンシャル、r:光軸からの距離、′:光軸座標
(Z)に関する1階微分、″:光軸座標(Z)に関する
2階微分 補正偏向磁場、補正偏向電場により軸外収差が補正さ
れ、高分解能が実現され、更に減速場を形成することで
高い加速電圧を用い而も試料の損傷を抑制する。
(1/2) rB '+ r'B + (1/2) r
Φ ″ + r′Φ ′ B: on-axis magnetic field distribution of the objective lens, Φ: on-axis electrostatic potential of the objective lens, r: distance from the optical axis, ': first derivative with respect to the optical axis coordinate (Z), ″: Second-order differentiation with respect to optical axis coordinate (Z) Off-axis aberration is corrected by the correction deflection magnetic field and correction deflection electric field, high resolution is realized, and a high acceleration voltage is used by forming a deceleration field, so that damage to the sample can be prevented. Suppress.

【0017】[0017]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は本発明の第1の実施の形態を示して
おり、図中、2は電子線光学装置の光軸、3は電子線の
偏向軌道、4は試料を示している。前記光軸2上に第1
走査コイル5、対物レンズ7(図中では等価な光学レン
ズとして示してある)、該対物レンズ7のレンズ磁場に
重合せる様に補正偏向コイル8が配設され、この磁界型
レンズである対物レンズ7の軸外収差を補正する為に、
補正偏向コイル8が設けられる。又、試料4には減速電
圧を印加し、この減速場により減速静電レンズ12を形
成すると共に、減速静電レンズ12の軸外収差補正の為
に補正偏向電極9が設けられる。この様に、補正偏向コ
イル8により補正された磁界型対物レンズ7と、補正偏
向電極9により補正された減速静電レンズ12を重合わ
せることにより、補正された静電磁界複合対物レンズを
形成する。
FIG. 1 shows a first embodiment of the present invention. In the drawing, reference numeral 2 denotes an optical axis of an electron beam optical device, 3 denotes an electron beam deflection orbit, and 4 denotes a sample. The first on the optical axis 2
A scanning coil 5, an objective lens 7 (shown as an equivalent optical lens in the figure), and a correction deflection coil 8 are arranged so as to be superposed on the lens magnetic field of the objective lens 7. In order to correct the off-axis aberration of 7,
A correction deflection coil 8 is provided. A deceleration voltage is applied to the sample 4, a deceleration electrostatic lens 12 is formed by the deceleration field, and a correction deflection electrode 9 is provided for correcting off-axis aberration of the deceleration electrostatic lens 12. In this way, the magnetic field type objective lens 7 corrected by the correction deflection coil 8 and the deceleration electrostatic lens 12 corrected by the correction deflection electrode 9 overlap to form a corrected electrostatic magnetic field compound objective lens. .

【0019】図示しないフィラメントより発せられた電
子線の加速電圧は3KV(電子ボルト)とし、又前記試料
4への減速電圧の印加は−2.2KVとし、入射電圧VL
が800V に制限をしている。尚、加速電圧の値、前記
試料4への減速電圧の値は適宜選択すればよい。
The acceleration voltage of an electron beam emitted from a filament (not shown) is 3 KV (electron volt), the deceleration voltage is applied to the sample 4 at -2.2 KV, and the incident voltage V L
Has a limit of 800V. Note that the value of the acceleration voltage and the value of the deceleration voltage to the sample 4 may be appropriately selected.

【0020】前記電子線は、前記第1走査コイル5によ
り光軸2に対して偏角が与えられ、前記第1走査コイル
5により所定角度偏向させ、その偏向角度を中心として
所定範囲で前記偏向軌道3は前記試料4に対して走査さ
れる。前記電子線が偏向されることで偏向軌道3は前記
対物レンズ7の光軸2から外れるが、前記補正偏向コイ
ル8により補正偏向磁場が与えられ、前記偏向軌道3と
対物レンズ7の光軸が一致する様に、前記対物レンズ7
が前記偏角と同角度で傾斜されると共に移動する。而し
て走査した場合の軸外収差が補正される。更に、前記減
速静電レンズ12により、軸上収差が補正されると共
に、補正偏向電極9により、この減速静電レンズ12の
軸外収差の補正がなされる。
The electron beam is deflected with respect to the optical axis 2 by the first scanning coil 5, is deflected by a predetermined angle by the first scanning coil 5, and is deflected within a predetermined range around the deflection angle. The trajectory 3 is scanned with respect to the sample 4. The deflection trajectory 3 deviates from the optical axis 2 of the objective lens 7 when the electron beam is deflected, but a correction deflecting magnetic field is given by the correction deflecting coil 8 so that the deflection trajectory 3 and the optical axis of the objective lens 7 are shifted. The objective lens 7
Are tilted and moved at the same angle as the declination. Thus, off-axis aberrations when scanning are corrected. Further, the axial aberration is corrected by the deceleration electrostatic lens 12, and the off-axis aberration of the deceleration electrostatic lens 12 is corrected by the correction deflection electrode 9.

【0021】次に、前記補正偏向磁場、補正偏向電場の
作用について説明する。
Next, the operation of the correction deflection magnetic field and the correction deflection electric field will be described.

【0022】補正偏向磁場、補正偏向電場のない場合の
対物レンズを含む近軸の一般式は数式1で表される。
The paraxial general formula including the objective lens when there is no correction deflection magnetic field and correction deflection electric field is expressed by the following equation (1).

【0023】[0023]

【数式1】ω″+ψ′ω′/2ψ+ψ″ω/4ψ−i
[√(η/2ψ)](Bω′+B′ω/2)=0
## EQU1 ## ω ″ + {′ ω ′ / 2} + {″ ω / 4} −i
[√ (η / 2ψ)] (Bω ′ + B′ω / 2) = 0

【0024】次に、補正偏向磁場、補正偏向電場、静電
磁界複合対物レンズを含む近軸の一般式は数式2で表さ
れる。
Next, the paraxial general formula including the correcting deflection magnetic field, the correcting deflection electric field, and the electrostatic field compound objective lens is expressed by the following equation (2).

【0025】[0025]

【数式2】ω″+ψ′ω′/2ψ+ψ″ω/4ψ−i
[√(η/2ψ)](Bω′+B′ω/2)=−VF1
/2ψ+[√(η/2ψ)]ID1 式中、η=e/m、ωはrの複素表示である。
[Formula 2] ω ″ + {′ ω ′ / 2} + {″ ω / 4} −i
[{(Η / 2})] (Bω ′ + B′ω / 2) = − VF 1
/ 2ψ + [√ (η / 2ψ)] ID 1 In the equation, η = e / m and ω is a complex representation of r.

【0026】ここでψは軸上の静電ポテンシャルで減速
場がない磁界レンズのみの時はψ=constant=V0 (加
速電圧)でψ′=ψ″=0となり、数式2は数式3とな
る。
Here, ψ is 軸 = constant = V 0 (acceleration voltage) and ψ ′ = ψ ″ = 0 when only a magnetic lens having no deceleration field due to an on-axis electrostatic potential. Become.

【0027】[0027]

【数式3】ω″−i[√(η/2V0 )](Bω′+
B′ω/2)=[√(η/2V0 )]ID1
## EQU3 ## ω ″ −i [√ (η / 2V 0 )] (Bω ′ +
B′ω / 2) = [√ (η / 2V 0 )] ID 1

【0028】上記電子線光学装置1、電子線光学装置1
0では補正偏向コイル8により補正偏向磁場ID1 とし
て(Bω′+B′ω/2)を加えることにより、ω″=
0となり、補正偏向磁場により軸外収差が補正され、前
記偏向軌道3が対物レンズ7の中心を通過することと等
価になる。
The electron beam optical device 1 and the electron beam optical device 1
By adding a correction deflection field ID 1 a (Bω '+ B'ω / 2) by 0 in the correction deflection coils 8, ω "=
0, the off-axis aberration is corrected by the correction deflection magnetic field, which is equivalent to the deflection trajectory 3 passing through the center of the objective lens 7.

【0029】更に、減速場がある時は、ψ≠constantと
なり、ψ′ω′+ψ″ω/2の項が追加されることとな
る。この項は減速場の軸外収差を表すことになり補正偏
向電極9により補正偏向電場VF1 として(ψ′ω′+
ψ″ω/2)を加えることで更に減速場の軸外収差が補
正される。
Further, when there is a deceleration field, it becomes ψ ≠ constant, and a term of ψ′ω ′ + ψ ″ ω / 2 is added. This term represents off-axis aberration of the deceleration field. As the correction deflection electric field VF 1 by the correction deflection electrode 9, (ψ′ω ′ +
By adding ψ ″ ω / 2), the off-axis aberration of the deceleration field is further corrected.

【0030】前記試料4に減速電圧を印加することで加
速電圧を高電圧に維持して該試料4に対する損傷を抑制
する。前述した様に、収差は入射電圧VL 、加速電圧V
0 の比、V0 /VL に略比例して減少するので軸上収差
を減少させ得る。而して、軸外収差、軸上収差が補正で
き高分解能が実現できる。
By applying a deceleration voltage to the sample 4, the acceleration voltage is maintained at a high voltage, and damage to the sample 4 is suppressed. As described above, the aberrations are the incident voltage V L and the acceleration voltage V
Since the ratio decreases substantially in proportion to the ratio of 0 , V 0 / V L , on-axis aberration can be reduced. Thus, off-axis aberration and on-axis aberration can be corrected, and high resolution can be realized.

【0031】次に、図2により第2の実施の形態につい
て説明する。
Next, a second embodiment will be described with reference to FIG.

【0032】第2の実施の形態では第1の実施の形態に
第2走査コイル6を追加したものである。第2走査コイ
ル6の追加により、試料4に対して電子線を傾斜方向を
変えながら光軸を中心として走査させることができ、試
料の立体的な観察を行うことができる。
In the second embodiment, a second scanning coil 6 is added to the first embodiment. With the addition of the second scanning coil 6, the sample 4 can be scanned around the optical axis while changing the tilt direction of the electron beam, and three-dimensional observation of the sample can be performed.

【0033】次に、図1に示す本件発明の走査型電子顕
微鏡を利用し、試料を斜め方向から観察した像を表示す
る為の表示装置に関して述べる。
Next, a display device for displaying an image obtained by observing a sample from an oblique direction using the scanning electron microscope of the present invention shown in FIG. 1 will be described.

【0034】図3は、走査型電子顕微鏡の光軸O方向か
ら見た試料の模式図を示すもので、13は試料であるウ
ェーハ上に並んだ凸状の各レジストパターンを示すもの
で、電子線をX軸の正方向に偏向させた場合にはAの領
域が、それと逆方向の場合にはCの領域でのレジストパ
ターンが走査され、同様に、Y軸方向に電子線を偏向さ
せた場合には、Bの領域及びDの領域が走査されること
になる。
FIG. 3 is a schematic view of a sample viewed from the direction of the optical axis O of the scanning electron microscope. Reference numeral 13 denotes convex resist patterns arranged on a sample wafer. When the line is deflected in the positive direction of the X axis, the resist pattern is scanned in the area A, and in the reverse direction, the resist pattern is scanned in the area C. Similarly, the electron beam is deflected in the Y axis direction. In this case, the area B and the area D are scanned.

【0035】図4A〜Dは、前記A〜Dの4つの領域で
のそれぞれの観察像を示すもので、図4Aには、凸状の
レジストパターンの左傾斜部を含めた像が観察され、同
様に図4Bは下傾斜部、図4Cは右傾斜部、図4Dは上
傾斜部の像を含めたレジストパターン像が観察される。
この様に電子線の光軸を中心とした同心円状で少なくと
も4つの方向に電子線を偏向させ、それぞれの方向から
見たレジストパターン像を記憶し、この記憶された各像
を同時に並べて表示装置上に表示することにより、凸状
の各レジストパターンの略全周方向から見た立体像を認
識することができる。
4A to 4D show observed images in the four regions A to D, respectively. In FIG. 4A, images including the left inclined portion of the convex resist pattern are observed. Similarly, FIG. 4B shows the resist pattern image including the image of the lower inclined portion, FIG. 4C shows the image of the right inclined portion, and FIG. 4D shows the resist pattern image including the image of the upper inclined portion.
As described above, the electron beam is deflected in at least four directions concentrically around the optical axis of the electron beam, and the resist pattern images viewed from the respective directions are stored, and the stored images are arranged side by side at the same time. By displaying the image on the top, it is possible to recognize a stereoscopic image of each of the convex resist patterns as viewed from substantially the entire circumferential direction.

【0036】尚、図5は前記4つの観察像を重合わせて
表示したものである。尚、これらの4つの観察像を基
に、コンピューターにより演算を行い、真の立体観察像
を表示する様にすることも可能である。尚、図2に示す
本件発明の走査型電子顕微鏡を利用した場合には、光軸
上のレジストパターンの周囲の傾斜面を同時に観察する
ことができる。
FIG. 5 shows the four observation images in an overlapping manner. Incidentally, it is also possible to perform a calculation by a computer based on these four observation images to display a true stereoscopic observation image. When the scanning electron microscope of the present invention shown in FIG. 2 is used, it is possible to simultaneously observe the inclined surface around the resist pattern on the optical axis.

【0037】尚、本発明に斯かる走査型電子顕微鏡を半
導体製造工程に利用した場合、半導体産業では単位時間
当たりのスループットがコストダウンに重要な影響を果
たしているが、立体的な観察を行うのに試料を傾斜させ
る必要がない為、ステージの傾斜機構が省略できる。更
に、機械的に試料を傾斜した場合、視野がずれるので視
野を戻す作業が必要となり、多くの時間を要するが、斯
かる時間ロスを無くすことができ、スループットを向上
させ得る。更に又、傾斜機構等の機構部分が省略できる
ので、ステージの耐振性や位置精度が大幅に向上する。
When the scanning electron microscope according to the present invention is used in the semiconductor manufacturing process, the throughput per unit time plays an important role in reducing the cost in the semiconductor industry. Since there is no need to tilt the sample in advance, the tilt mechanism of the stage can be omitted. Furthermore, when the sample is mechanically tilted, the field of view is shifted, so that an operation of returning the field of view is required, and much time is required. However, such a time loss can be eliminated and the throughput can be improved. Furthermore, since the mechanism such as the tilting mechanism can be omitted, the vibration resistance and the positional accuracy of the stage are greatly improved.

【0038】[0038]

【発明の効果】以上述べた如く本発明によれば、加速電
圧を低くすることなく試料に与える損傷を抑制でき、走
査型電子顕微鏡への実施が可能であると共に、高分解能
を実現でき、更に高加速電圧とすることから電子線が絞
りの汚れに影響を受けることがなく長期間の高分解能を
維持でき、又理論輝度が得られ、明るいSEM像が得ら
れる。又試料に減速電圧を印加し、減速電場を形成して
いるので小さい偏向角度でより大きな入射角が得られる
為、偏向収差も小さく抑えられる。
As described above, according to the present invention, damage to a sample can be suppressed without lowering the accelerating voltage, and the invention can be applied to a scanning electron microscope, and high resolution can be realized. Since the electron beam is set at a high accelerating voltage, high resolution can be maintained for a long time without being affected by dirt on the aperture, theoretical brightness can be obtained, and a bright SEM image can be obtained. In addition, since a deceleration voltage is applied to the sample to form a deceleration electric field, a larger incident angle can be obtained with a small deflection angle, so that deflection aberration can be suppressed to a small value.

【0039】更に、試料に対して電子線を傾斜して入射
できるので、傾斜機構等の機構を設けることなく立体観
察が可能となり、更に傾斜機構等の機構部分が省略でき
るので、ステージの耐振性や位置精度が大幅に向上す
る。
Further, since the electron beam can be incident on the sample while being inclined, three-dimensional observation can be performed without providing a mechanism such as a tilting mechanism. Further, since a mechanism such as a tilting mechanism can be omitted, the vibration resistance of the stage can be reduced. And the positioning accuracy is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す概念図であ
る。
FIG. 1 is a conceptual diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施の形態を示す概念図であ
る。
FIG. 2 is a conceptual diagram showing a second embodiment of the present invention.

【図3】本発明に於ける光軸に対する試料の位置及び走
査範囲を示す説明図である。
FIG. 3 is an explanatory diagram showing a position of a sample with respect to an optical axis and a scanning range in the present invention.

【図4】試料の位置に対応して得られる像の説明図であ
る。
FIG. 4 is an explanatory diagram of an image obtained corresponding to a position of a sample.

【図5】図4A,B,C,Dを合成した像の説明図であ
る。
FIG. 5 is an explanatory diagram of an image obtained by combining FIGS. 4A, 4B, 4C, and 4D.

【図6】従来例の電子線光学装置を示す概念図である。FIG. 6 is a conceptual view showing a conventional electron beam optical device.

【図7】従来例の他の電子線光学装置を示す概念図であ
る。
FIG. 7 is a conceptual diagram showing another conventional electron beam optical device.

【符号の説明】[Explanation of symbols]

1 電子線光学装置 2 光軸 3 偏向軌道 4 試料 5 第1走査コイル 6 第2走査コイル 7 対物レンズ 8 補正偏向コイル 9 補正偏向電極 10 電子線光学装置 12 減速静電レンズ Reference Signs List 1 electron beam optical device 2 optical axis 3 deflection orbit 4 sample 5 first scan coil 6 second scan coil 7 objective lens 8 correction deflection coil 9 correction deflection electrode 10 electron beam optical device 12 deceleration electrostatic lens

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 静電磁界複合対物レンズ(減速場)を持
つ走査型電子顕微鏡に於いて、少なくとも1つの偏向系
を有し、該偏向系により偏向された電子線の偏向軌道に
対応して対物レンズ近傍に補正偏向磁場と補正偏向電場
を重合わせたことを特徴とする電子線光学装置。
A scanning electron microscope having an electrostatic field compound objective lens (deceleration field) has at least one deflection system, and corresponds to a deflection trajectory of an electron beam deflected by the deflection system. An electron beam optical device, wherein a correction deflection magnetic field and a correction deflection electric field are superimposed near an objective lens.
【請求項2】 補正偏向磁場、補正偏向電場の少なくと
も1方により下記式を略満たす請求項1の電子線光学装
置。 (1/2)rB′+r′B+(1/2)rΦ″+r′
Φ′ B:対物レンズの軸上磁場分布、Φ:対物レンズの軸上
静電ポテンシャル、r:光軸からの距離、′:光軸座標
(Z)に関する1階微分、″:光軸座標(Z)に関する
2階微分
2. The electron beam optical device according to claim 1, wherein the following expression is substantially satisfied by at least one of the correction deflection magnetic field and the correction deflection electric field. (1/2) rB '+ r'B + (1/2) rΦ "+ r'
Φ 'B: axial magnetic field distribution of the objective lens, Φ: axial electrostatic potential of the objective lens, r: distance from the optical axis,': first-order derivative with respect to the optical axis coordinate (Z), ″: optical axis coordinate ( Second derivative with respect to Z)
【請求項3】 電子線を試料面上で光軸に対する略同心
円状の各領域に偏向し、各領域での像を同時に表示する
請求項1の電子線光学装置。
3. The electron beam optical apparatus according to claim 1, wherein the electron beam is deflected on the surface of the sample into substantially concentric regions with respect to the optical axis to simultaneously display images in the respective regions.
【請求項4】 互いに直交する2つの方向の4つの傾斜
像を重合わせて同時に表示する請求項2の電子線光学装
置。
4. The electron beam optical device according to claim 2, wherein four tilt images in two directions orthogonal to each other are superimposed and displayed simultaneously.
JP23650597A 1997-08-18 1997-08-18 Electron beam optical device Expired - Fee Related JP3754186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23650597A JP3754186B2 (en) 1997-08-18 1997-08-18 Electron beam optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23650597A JP3754186B2 (en) 1997-08-18 1997-08-18 Electron beam optical device

Publications (2)

Publication Number Publication Date
JPH1167130A true JPH1167130A (en) 1999-03-09
JP3754186B2 JP3754186B2 (en) 2006-03-08

Family

ID=17001726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23650597A Expired - Fee Related JP3754186B2 (en) 1997-08-18 1997-08-18 Electron beam optical device

Country Status (1)

Country Link
JP (1) JP3754186B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015055A (en) * 1999-04-15 2001-01-19 Applied Materials Inc Charged particle beam column
EP1398818A2 (en) * 2002-09-11 2004-03-17 Hitachi High-Technologies Corporation Charged particle beam apparatus and irradiation method
US6717144B2 (en) 2001-12-04 2004-04-06 Kabushiki Kaisha Topcon Scanning electron microscope system
US6787772B2 (en) 2000-01-25 2004-09-07 Hitachi, Ltd. Scanning electron microscope
JP2006128146A (en) * 2006-02-09 2006-05-18 Applied Materials Inc Device and column for test piece inspection
US7800062B2 (en) 2002-06-11 2010-09-21 Applied Materials, Inc. Method and system for the examination of specimen
WO2013077715A1 (en) * 2011-11-22 2013-05-30 Bimurzaev Seitkerim Bimurzaevich Electron lens aberration corrector
JP2014183045A (en) * 2013-03-15 2014-09-29 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh High brightness electron gun, system using high brightness electron gun and method of operating high brightness electron gun
US9480988B2 (en) 2013-01-26 2016-11-01 Hermann Schwelling Shredder
US9583306B2 (en) 2014-12-09 2017-02-28 Hermes Microvision Inc. Swing objective lens

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015055A (en) * 1999-04-15 2001-01-19 Applied Materials Inc Charged particle beam column
US7075078B2 (en) 2000-01-25 2006-07-11 Hitachi, Ltd. Scanning electron microscope
US6787772B2 (en) 2000-01-25 2004-09-07 Hitachi, Ltd. Scanning electron microscope
US6885001B2 (en) 2000-01-25 2005-04-26 Hitachi, Ltd. Scanning electron microscope
US6717144B2 (en) 2001-12-04 2004-04-06 Kabushiki Kaisha Topcon Scanning electron microscope system
US7800062B2 (en) 2002-06-11 2010-09-21 Applied Materials, Inc. Method and system for the examination of specimen
EP1398818A3 (en) * 2002-09-11 2005-12-07 Hitachi High-Technologies Corporation Charged particle beam apparatus and irradiation method
US7282722B2 (en) 2002-09-11 2007-10-16 Hitachi High-Technologies Corporation Charged particle beam apparatus and charged particle beam irradiation method
EP1398818A2 (en) * 2002-09-11 2004-03-17 Hitachi High-Technologies Corporation Charged particle beam apparatus and irradiation method
JP2006128146A (en) * 2006-02-09 2006-05-18 Applied Materials Inc Device and column for test piece inspection
WO2013077715A1 (en) * 2011-11-22 2013-05-30 Bimurzaev Seitkerim Bimurzaevich Electron lens aberration corrector
US9480988B2 (en) 2013-01-26 2016-11-01 Hermann Schwelling Shredder
JP2014183045A (en) * 2013-03-15 2014-09-29 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh High brightness electron gun, system using high brightness electron gun and method of operating high brightness electron gun
US9583306B2 (en) 2014-12-09 2017-02-28 Hermes Microvision Inc. Swing objective lens

Also Published As

Publication number Publication date
JP3754186B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP3968334B2 (en) Charged particle beam apparatus and charged particle beam irradiation method
JP5250350B2 (en) Charged particle beam application equipment
JP2001511303A (en) Correction device for spherical aberration correction in particle-optical apparatus
EP2091064B1 (en) Electron beam device
JP3754186B2 (en) Electron beam optical device
US20140197312A1 (en) Electron microscope and sample observation method
JP5493029B2 (en) Charged particle beam application equipment
JP2023512919A (en) Charged particle manipulation device
JP3953309B2 (en) Scanning electron microscope
US6720558B2 (en) Transmission electron microscope equipped with energy filter
JP4094042B2 (en) Charged particle beam apparatus and charged particle beam irradiation method
JP4627771B2 (en) Charged particle beam equipment
US11967482B2 (en) Charged particle beam device
JP7200062B2 (en) Charged particle beam device
JP3400285B2 (en) Scanning charged particle beam device
JP3195708B2 (en) Astigmatism correction device for transmission electron microscope
US11915903B2 (en) Electron beam application apparatus
JP3717202B2 (en) Electron microscope and alignment method thereof
JP7051655B2 (en) Charged particle beam device
JP2001076659A (en) Manufacture of charged-particle beam microscope, defect- inspecting device, and semiconductor device
JP2000243337A (en) Charged particle beam exposure device, and manufacture of device using this device
TW202405855A (en) Method and system of image-forming multi-electron beams
CN117672786A (en) Magnetic multipole device, charged particle beam apparatus and method of influencing a charged particle beam propagating along an optical axis
JPS6338827B2 (en)
JP2007184215A (en) Electric charge beam irradiation device, electrostatic deflector, and method of manufacturing electrostatic deflector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees