JPH1164329A - Method for estimating content of cement in mud sand - Google Patents
Method for estimating content of cement in mud sandInfo
- Publication number
- JPH1164329A JPH1164329A JP24612797A JP24612797A JPH1164329A JP H1164329 A JPH1164329 A JP H1164329A JP 24612797 A JP24612797 A JP 24612797A JP 24612797 A JP24612797 A JP 24612797A JP H1164329 A JPH1164329 A JP H1164329A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- mud
- content
- water
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固結前のセメント
含有泥土を対象としたセメント含有量の推定方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a cement content of a cement-containing mud before consolidation.
【0002】[0002]
【従来の技術】固結したセメント含有泥土のセメント含
有量の推定方法としては、ポルトランドセメントの化学
分析方法による酸化カルシウムの定量方法(JIS R
5202−1989)が知られている。また固結前の
セメント含有泥土のセメント含有量の推定方法として
は、カルシウムイオン選択性電極によるセメントおよび
石灰の定量試験方法(社団法人日本道路協会:舗装試験
便覧,p216〜p220)が知られている。さらに道
路舗装の一部であるセメント安定処理混合物を対象とし
た日本道路公団基準(KODAN207)が知られてい
る。2. Description of the Related Art As a method for estimating the cement content of consolidated cement-containing mud, a method of quantifying calcium oxide by chemical analysis of Portland cement (JIS R) is known.
5202-1989) are known. As a method for estimating the cement content of the cement-containing mud before consolidation, a quantitative test method for cement and lime using a calcium ion-selective electrode (Japan Road Association: Pavement Test Handbook, p.216 to p.220) is known. I have. Furthermore, the Japan Highway Public Corporation Standard (KODAN207) for a cement stabilization mixture which is a part of road pavement is known.
【0003】[0003]
【発明が解決しようとする課題】前記した従来の泥土の
セメント含有量の推定方法には次のような問題点があ
る。<イ> ポルトランドセメントの化学分析方法によ
る酸化カルシウムの定量方法では、固結後の泥土を測定
対象としているため、固結前の泥土を対象とした測定を
実施することができない。 <ロ> カルシウムイオン選択性電極によるセメントお
よび石灰の定量試験方法やKODAN法では、対象とな
るセメント含有物は、道路舗装の一部である礫、砂、セ
メントと少量の水を混合したセメント安定処理混合物で
あることから、セメント含有の有無を確認はできるもの
の、測定の許容範囲を越えるため、セメント含有泥土の
ように土砂と水とセメントが混合された液状化した混合
物には利用し難かった。The above-mentioned conventional method for estimating the cement content of mud has the following problems. <A> In the method of quantifying calcium oxide by the chemical analysis method of Portland cement, since the mud after consolidation is a measurement target, it is not possible to measure the mud before consolidation. <B> According to the quantitative test method of cement and lime using the calcium ion selective electrode and the KODAN method, the target cement content is gravel, sand, a part of road pavement, cement stable mixed with cement and a small amount of water. Because it is a treated mixture, it can be confirmed whether or not it contains cement, but because it exceeds the permissible range of measurement, it was difficult to use it for a liquefied mixture of soil, water, and cement like cement-containing mud. .
【0004】本発明は以上の問題点を解決するためにな
されたもので、その目的とするところは、セメントの固
結前であっても、セメント含有量の推定を可能とする、
泥土のセメント含有量の推定方法を提供することにあ
る。[0004] The present invention has been made to solve the above problems, and an object of the present invention is to make it possible to estimate the cement content even before cement setting.
It is to provide a method for estimating the cement content of mud.
【0005】[0005]
【課題を解決するための手段】本発明は、固結前のセメ
ント含有泥土中のセメント含有量を推定する方法におい
て、土、含水比の予め分っている泥土にセメント量のみ
を変化させて混合した複数種のセメント含有泥土に加水
し、それぞれに発生した上澄水の体積量を測定し、セメ
ント含有量の変化を求め、前記泥土と同配合の泥土に未
知量のセメントが混合されたセメント含有泥土に加水し
て沈殿させ、セメント含有量に応じて発生する上澄水の
体積量を測定し、前記上澄水の体積値を、前記上澄水の
体積量測定によるセメント含有量の変化に当てはめて、
泥土のセメント含有量を推定することを特徴とする、泥
土のセメント含有量の推定方法である。また本発明は、
前述した泥土のセメント含有量の推定方法において、固
結前のセメント含有泥土と水との体積比が体積基準で、
それぞれ20〜80部,20〜80部であることを特徴
とする、泥土のセメント含有量の推定方法である。さら
に本発明は、前述した泥土のセメント含有量の推定方法
において、測定対象の固結前のセメント含有泥土のセメ
ント含有量がセメント含有泥土1m3 中に50kg〜8
00kgであることを特徴とする、泥土のセメント含有
量の推定方法である。According to the present invention, there is provided a method for estimating the cement content of cement-containing mud before consolidation, wherein only the amount of cement is changed to mud having a predetermined soil and water content. Water is added to the mixed plural types of cement-containing mud, the volume of supernatant water generated in each is measured, the change in cement content is determined, and an unknown amount of cement is mixed with the mud having the same composition as the mud. Precipitate by adding water to the contained mud, measure the volume of supernatant water generated according to the cement content, and apply the volume value of the supernatant water to the change in cement content by the volume measurement of the supernatant water. ,
A method for estimating the cement content of mud, comprising estimating the cement content of mud. The present invention also provides
In the above-described method for estimating the cement content of mud, the volume ratio of cement-containing mud and water before consolidation is based on volume,
It is a method for estimating the cement content of mud, which is 20 to 80 parts and 20 to 80 parts, respectively. Further, the present invention provides the method for estimating the cement content of mud as described above, wherein the cement content of the cement-containing mud before consolidation to be measured is 50 kg to 8 kg / m 3 of cement-containing mud.
It is a method for estimating the cement content of mud, which is characterized by being 00 kg.
【0006】[0006]
【発明の実施の形態1】以下図面を参照しながら本発明
の泥土のセメント含有量の推定方法について説明する。
本発明の泥土のセメント含有量の推定方法は、地盤改良
工事などに伴って発生する余剰泥土であるセメント含有
泥土を、流動化処理用などの泥水として再利用する場合
に、予め泥水中に含まれるセメント量を推定する必要が
あり、これを迅速かつ簡易に行うための方法である。First Embodiment A method for estimating the cement content of mud according to the present invention will be described below with reference to the drawings.
The method for estimating the cement content of mud according to the present invention includes a method of reusing cement-containing mud, which is surplus mud generated due to soil improvement work, as muddy water for fluidization treatment, etc. It is necessary to estimate the amount of cement to be used, and this is a method for performing this quickly and easily.
【0007】<イ>推定原理 本発明の泥土のセメント含有量の推定は、通常安定した
状態にある土、水、セメントから構成される混合物であ
る固結前のセメント含有泥土に、強制的に水を加えて材
料分離を発生させ、この材料分離により発生した上澄水
の体積量を測定し、予めセメント量の変化に対する上澄
水の体積量の変化を例えば、セメント量の変化と上澄水
の体積量の変化とを示す関係図化するなどして、これに
実際に現場採取した泥土から発生する上澄水の体積量を
当てはめて行う。以下、具体的な推定原理について説明
する。ここで推定の対象となるセメント含有泥土の構成
成分の一例としては、土の比重(土の場合、密度)は、
2.38〜2.78g/cm3 [(社)土質工学会刊、
土質試験の方法と解説、p.46,表−2.1.2]、
水の比重は、1.0g/cm3 (液体)、セメントの比
重(高炉セメントB種)は、3.04g/cm
3 [(社)セメント協会刊、セメントの常識´89、
p.28,29下表]となり、それぞれ比重が異なる。<A> Estimation Principle The estimation of the cement content of the mud according to the present invention is carried out by forcibly adding the cement-containing mud, which is a mixture of soil, water and cement, which is normally in a stable state, before consolidation. Water is added to cause material separation, and the volume of the supernatant water generated by the material separation is measured, and the change in the volume of the supernatant water with respect to the change in the amount of cement in advance is, for example, the change in the amount of cement and the volume of the supernatant water. The volume of the supernatant water generated from the mud actually collected at the site is applied to this by making a relational chart showing the change in the amount. Hereinafter, a specific estimation principle will be described. Here, as an example of the constituent components of the cement-containing mud to be estimated, the specific gravity of the soil (in the case of soil, the density) is
2.38 to 2.78 g / cm 3 [published by the Japan Geotechnical Society,
Method and explanation of soil test, p. 46, Table-2.1.2],
The specific gravity of water is 1.0 g / cm 3 (liquid), and the specific gravity of cement (blast furnace cement B) is 3.04 g / cm.
3 [Corporation of Cement Association, common sense of cement '89,
p. 28, 29 below], and each has a different specific gravity.
【0008】従って、混合直後は安定を保っていても、
時間が経過すると比重が小さく、液体である水が分離し
て上昇しようとする。これとは逆に、他の成分である
土、セメント分は比重により沈降するため、上部の水分
量が増加する現象、ブリージング現象が発生する。この
際の土、セメント分沈降のメカニズムには、様々な要因
があるが、原理的には水との比重差によるものである。
そして、土、セメント含水比の配合が予め分っているセ
メント含有泥土について、セメント量を変化させて加水
後の上澄水の体積量を測定することにより、加水後のブ
リージング率を測定することができ、この数値をセメン
ト量の変化と上澄水の体積量の変化とを示す関係図化す
るなどして被推定対象であるセメント含有泥土のセメン
ト含有量を推定できる。この際、被推定対象であるセメ
ント含有泥土中に含まれる対象土と含水比は、予め認識
されており、対象土と同じ比重および含水率の泥土に異
なったセメント量を加えて上澄水の体積量を測定したグ
ラフを基に、被推定対象のセメント含有泥土中のセメン
ト量を推定することができる。本発明では、特にセメン
ト含有量がセメント含有泥土1m3 中に50〜800k
gで、沈殿量が小さく、上澄水容量が小さなセメント含
有泥土を対象としたセメント含有量の推定に好適であ
る。Therefore, even if the stability is maintained immediately after mixing,
As the time elapses, the specific gravity is low, and the liquid water tends to separate and rise. On the contrary, soil and cement, which are other components, settle down due to specific gravity, so that a phenomenon in which the amount of water in the upper portion increases and a breathing phenomenon occur. There are various factors in the mechanism of soil and cement sedimentation at this time, but in principle, it is due to the difference in specific gravity with water.
Then, for the cement-containing mud in which the composition of the soil and the cement water content is known in advance, the breathing rate after the water addition can be measured by changing the cement amount and measuring the volume of the supernatant water after the water addition. It is possible to estimate the cement content of the cement-containing mud, which is the estimation target, by plotting this numerical value as a relation diagram showing the change in the cement amount and the change in the volume of the supernatant water. At this time, the target soil and the water content included in the cement-containing mud to be estimated are known in advance, and the volume of the supernatant water is calculated by adding a different amount of cement to the mud having the same specific gravity and water content as the target soil. Based on the graph of the measured amount, the amount of cement in the cement-containing mud to be estimated can be estimated. In the present invention, in particular, the cement content is 50 to 800 k / m 3 in the cement containing mud.
g, which is suitable for estimating the cement content of a cement-containing mud having a small sedimentation amount and a small supernatant water capacity.
【0009】<ロ>対象泥土 本発明のセメント含有量の推定方法により、測定対象と
なる固結前のセメント含有泥土は、土砂と、水と、セメ
ントとが混合されて液状化した混合物であり、放置して
おけば固化する建設汚泥などが好適である。<B> Target mud According to the method for estimating the cement content of the present invention, the cement-containing mud before consolidation to be measured is a mixture liquefied by mixing earth and sand, water, and cement. However, construction sludge which solidifies when left to stand is preferred.
【0010】<ハ>体積比 固結前のセメント含有泥土と水との体積比が体積基準で
それぞれ20〜80部,20〜80部ならば固結前のセ
メント含有泥土に沈殿が生じると共に、ブリージング現
象を発生させて上澄水の発生量を測定することが可能で
ある。この際、セメント含有泥土と水との体積基準は、
上述した範囲の中でも25〜75部,25〜75部とす
ることが好ましい。セメント含有泥土と水との体積基準
を上記の範囲に限定したのは、固結前のセメント含有泥
土、水の体積比が上記範囲の上限または下限を外れる
と、上澄水の容量値が小さかったり、大きすぎたりして
上澄水の測定値の信頼性が低くなり、推定効果を発揮で
きないためである。<C> Volume ratio If the volume ratio of the cement-containing mud before consolidation and water is 20 to 80 parts and 20 to 80 parts by volume, respectively, sedimentation occurs in the cement-containing mud before consolidation, It is possible to measure the amount of supernatant water generated by causing a breathing phenomenon. At this time, the volume standard of the cement-containing mud and water is:
It is preferable to use 25 to 75 parts and 25 to 75 parts in the above range. The reason that the volume basis of the cement-containing mud and water is limited to the above range is that if the volume ratio of the cement-containing mud before consolidation, the water deviates from the upper limit or the lower limit of the above range, the volume value of the supernatant water is small or This is because the reliability of the measured value of the supernatant water becomes too low, and the estimation effect cannot be exhibited.
【0011】[0011]
【実施例1】海成粘土(含水率181.8%)と、水
と、高炉セメントとより構成するセメント含有泥土であ
って、図1に示すように各成分の配合割合を変えて複数
種類の泥土の試料(No.1〜No.5)を得る。次
に、セメント含有泥土の各試料と水との配合比を体積基
準でそれぞれ[50体積部、50体積部]と、[33体
積部、67体積部]とした二種類の混合物を1000c
m3 、メスシリンダ容器に投入し、3時間放置した。各
試料の沈殿により生じた上澄水の体積量を測定した。こ
の測定結果を図2に示す。また、セメント含有泥土1m
3 当たりの高炉セメント含有量の変化と、混合物100
0m3 中の3時間放置後の上澄水の体積量の変化を示す
関係図を図3に示す。図3に示すように、セメント含有
泥土中のセメント含有量の増加により上澄水の体積量の
増加が認められた。また同じセメント含有量でもセメン
ト含有泥土と水の配合比の違いにより、上澄水の体積量
の違いが確認され、水の配合比が大きいほど上澄水の体
積量は大きいことが認められた。EXAMPLE 1 Cement-containing mud composed of marine clay (water content: 181.8%), water, and blast furnace cement, as shown in FIG. To obtain the mud samples (No. 1 to No. 5). Next, the mixture ratio of each sample of cement-containing mud and water was set to [50 parts by volume, 50 parts by volume] and [33 parts by volume, 67 parts by volume] on a volume basis.
m 3 , put into a measuring cylinder container, and left for 3 hours. The volume of supernatant water generated by precipitation of each sample was measured. FIG. 2 shows the measurement results. In addition, cement-containing mud 1m
Change in blast furnace cement content per 3 and mixture 100
FIG. 3 is a relational diagram showing a change in the volume of the supernatant water after standing for 3 hours in 0 m 3 . As shown in FIG. 3, an increase in the volume of the supernatant water was observed due to an increase in the cement content in the cement-containing mud. In addition, even with the same cement content, a difference in the volume of the supernatant water was confirmed due to the difference in the mixing ratio of the cement-containing mud and the water, and it was confirmed that the volume of the supernatant water was larger as the mixing ratio of the water was larger.
【0012】[0012]
【実施例2】実施例2においては標準砂、乾燥粘土を用
いて、標準砂と乾燥粘土の配合割合が乾燥重量比で、そ
れぞれ[50重量部、50重量部]と、[25重量部、
75重量部]になる2種類の混合割合土と1種類の乾燥
粘土によりセメント含有泥土作製用に用いる3種類の試
料土を構成する。次に3種類の試料土に含水比がそれぞ
れ75,100,125%となるように水を混合して、
9種類のセメント未含有試料土を構成する。続いて、前
述した9種類のセメント未含有試料土にセメント含有泥
土の1m3当たりに対して、高炉セメント含有量がそれ
ぞれ小(150kg),中(300kg),大(450
kg)となるように高炉セメントと調整用の水を混合
し、図4に示す27種類のセメント含有泥土を構成す
る。なお、本実施例における上記のセメント含有量は一
例であり、含有量は細かく区分することにより、さらに
推定幅が広くなることは勿論である。Example 2 In Example 2, standard sand and dry clay were used, and the mixing ratio of standard sand and dry clay was [50 parts by weight, 50 parts by weight] and [25 parts by weight,
75 parts by weight], and three kinds of sample soils used for producing a cement-containing mud are composed of two kinds of mixed ratio soils and one kind of dry clay. Next, water was mixed with the three types of sample soil so that the water content was 75, 100, and 125%, respectively.
Construct 9 types of cement-free sample soils. Subsequently, the blast furnace cement content was small (150 kg), medium (300 kg), and large (450 kg) per 1 m 3 of the cement-containing mud in the nine types of cement-free sample soils described above.
kg), and the blast furnace cement and water for adjustment are mixed to form 27 types of cement-containing mud shown in FIG. Note that the above cement content in the present embodiment is an example, and it is a matter of course that the estimation range is further widened by finely dividing the content.
【0013】そして、前述のように構成した各種セメン
ト含有泥土を用いてセメント含有泥土と水の配合比を体
積基準でそれぞれ[33体積部、67体積部]となるよ
うに水を加えた1000cm3 の混合物をメスシリンダ
ー容器に投入する。次いでこの混合物を3時間程度放置
した後、構成物質の沈殿により生じた上澄水の体積量を
測定すると図4に示すような測定値が得られた。セメン
ト含有泥土1m3 当たりの高炉セメント含有量の変化と
混合物1000m3 中の3時間放置後の上澄水の体積量
の変化とを示す関係図を図5に示す。図5に示すよう
に、セメント含有泥土中のセメント含有量の増加により
上澄水の体積量の増加が認められた。また同じセメント
含有量でも、セメント含有泥土中の標準砂と乾燥粘土の
配合割合、水量の違いにより上澄水の体積量の違いが確
認され、標準砂の配合比が大きいほど水量も大きくな
り、上澄水の体積量が大きくなることが認められる。Then, using the various types of cement-containing mud constructed as described above, 1000 cm 3 of water was added so that the mixing ratio of cement-containing mud and water was [33 parts by volume, 67 parts by volume], respectively, on a volume basis. Is charged into a measuring cylinder container. Then, after the mixture was allowed to stand for about 3 hours, the volume of the supernatant water generated by the precipitation of the constituent materials was measured, and the measured value as shown in FIG. 4 was obtained. FIG. 5 is a relationship diagram showing a change in the blast furnace cement content per 1 m 3 of the cement-containing mud and a change in the volume of the supernatant water after standing for 3 hours in 1000 m 3 of the mixture. As shown in FIG. 5, an increase in the volume of the supernatant water was observed due to an increase in the cement content in the cement-containing mud. Also, even with the same cement content, the difference in the volume of supernatant water was confirmed due to the difference in the mixing ratio of standard sand and dry clay in the cement-containing mud and the amount of water, and the larger the mixing ratio of the standard sand, the larger the water volume. It can be seen that the volume of clear water increases.
【0014】[0014]
【発明の効果】本発明は以上説明したようになるから次
のような効果を得ることができる。 <イ> 固結前の泥土を対象とした、正確なセメント含
有量を推定することができる。 <ロ> 固結前の土砂、水、セメントの配合割合が判明
することから、固結後の強度推定が可能となる。 <ハ> 固結材のセメント含有泥土を、要求される強度
に応じた用途への利用が可能となる。As described above, the present invention has the following effects. <a> An accurate cement content can be estimated for mud before consolidation. <B> Since the mixing ratio of soil, water and cement before consolidation is known, the strength after consolidation can be estimated. <C> The cement-containing mud as a consolidation material can be used for applications corresponding to required strength.
【図1】 セメント含有量を推定する試料土の重量配合
比表図FIG. 1 is a table showing a weight mixing ratio of a sample soil for estimating a cement content.
【図2】 実施例1における上澄水の体積量の変化表図
1FIG. 2 is a table showing changes in the volume of supernatant water in Example 1.
【図3】 セメント含有量の変化と上澄水の体積量の変
化を示す関係図1FIG. 3 is a relationship diagram 1 showing a change in cement content and a change in volume of supernatant water.
【図4】 セメント含有量の増加による上澄水の体積量
の変化表図2FIG. 4 is a table showing changes in the volume of supernatant water due to an increase in cement content.
【図5】 セメント含有量の変化と上澄水の体積量の変
化を示す関係図2FIG. 5 is a relationship diagram 2 showing a change in cement content and a change in volume of supernatant water.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 範行 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 久野 悟郎 東京都文京区大塚4丁目2番地15号 (72)発明者 岩淵 常太郎 東京都港区港南1−6−34 東京日産港ビ ル 社 団法人日本建設業経営協会中央技 術研究所内 (72)発明者 関口 昌男 東京都港区港南1−6−34 東京日産港ビ ル 社 団法人日本建設業経営協会中央技 術研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Noriyuki Mori 1 Asahi, Oaza, Tsukuba, Ibaraki Pref. Public Works Research Institute, Ministry of Construction (72) Inventor Goro Kuno 4-2-1, Otsuka 15 Bunkyo-ku, Tokyo Jotaro Iwabuchi 1-34-34 Konan, Minato-ku, Tokyo Tokyo Nissan Port Building Central Technology Research Institute, Japan Construction Management Association (72) Inventor Masao Sekiguchi 1-34-34 Konan, Minato-ku, Tokyo Minato Building Inside the Central Technical Research Institute, Japan Construction Management Association
Claims (3)
ト含有量を推定する方法において、 土成分、含水比の予め分っている泥土にセメント量のみ
を変化させて混合した複数種のセメント含有泥土に加水
し、それぞれに発生した上澄水の体積量を測定し、セメ
ント含有量の変化を求め、 前記泥土と同配合の泥土に未知量のセメントが混合され
たセメント含有泥土に加水して沈殿させ、 セメント含有量に応じて発生する上澄水の体積量を測定
し、 前記上澄水の体積値を、前記上澄水の体積量測定による
セメント含有量の変化に当てはめて、泥土のセメント含
有量を推定することを特徴とする、 泥土のセメント含有量の推定方法。1. A method for estimating a cement content in a cement-containing mud before consolidation, comprising a method of estimating a cement content of a mud having a soil component and a water content ratio which are previously determined by changing only the cement amount. Water is added to the mud, the volume of the supernatant water generated in each is measured, the change in the cement content is determined, and the mud of the same composition as the mud is mixed with an unknown amount of cement and added to the cement-containing mud to precipitate. The volume of the supernatant water generated according to the cement content is measured, and the volume value of the supernatant water is applied to the change in the cement content by the volume measurement of the supernatant water to determine the cement content of the mud. A method for estimating the cement content of mud, characterized by estimating.
量の推定方法において、固結前のセメント含有泥土と水
との体積比が体積基準で、それぞれ20〜80部,20
〜80部であることを特徴とする、泥土のセメント含有
量の推定方法。2. The method for estimating the cement content of mud according to claim 1, wherein the volume ratio between the cement-containing mud before consolidation and water is 20 to 80 parts and 20 parts by volume, respectively.
A method for estimating the cement content of mud, characterized in that the amount is up to 80 parts.
のセメント含有量の推定方法において、測定対象の固結
前のセメント含有泥土のセメント含有量がセメント含有
泥土1m3 中に50kg〜800kgであることを特徴
とする、泥土のセメント含有量の推定方法。3. The method for estimating the cement content of mud according to claim 1, wherein the cement content of the cement-containing mud before consolidation to be measured is 50 kg to 800 kg per 1 m 3 of cement-containing mud. A method for estimating the cement content of mud.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24612797A JPH1164329A (en) | 1997-08-27 | 1997-08-27 | Method for estimating content of cement in mud sand |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24612797A JPH1164329A (en) | 1997-08-27 | 1997-08-27 | Method for estimating content of cement in mud sand |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1164329A true JPH1164329A (en) | 1999-03-05 |
Family
ID=17143890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24612797A Pending JPH1164329A (en) | 1997-08-27 | 1997-08-27 | Method for estimating content of cement in mud sand |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1164329A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011220092A (en) * | 2010-03-23 | 2011-11-04 | Mitani Sekisan Co Ltd | Estimation method of cement amount in pile hole foot protection part |
CN103808908A (en) * | 2014-03-04 | 2014-05-21 | 北京林业大学 | Method for calculating soil loss amount caused by water erosion |
CN113884540A (en) * | 2021-06-21 | 2022-01-04 | 中国水利水电科学研究院 | Rapid detection device and detection method for mud content of cemented gravel sand material |
CN114034839A (en) * | 2021-11-03 | 2022-02-11 | 广东中煤江南工程勘测设计有限公司 | Soil bonding curing agent and soil detection method |
-
1997
- 1997-08-27 JP JP24612797A patent/JPH1164329A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011220092A (en) * | 2010-03-23 | 2011-11-04 | Mitani Sekisan Co Ltd | Estimation method of cement amount in pile hole foot protection part |
CN103808908A (en) * | 2014-03-04 | 2014-05-21 | 北京林业大学 | Method for calculating soil loss amount caused by water erosion |
CN113884540A (en) * | 2021-06-21 | 2022-01-04 | 中国水利水电科学研究院 | Rapid detection device and detection method for mud content of cemented gravel sand material |
CN114034839A (en) * | 2021-11-03 | 2022-02-11 | 广东中煤江南工程勘测设计有限公司 | Soil bonding curing agent and soil detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Torrance | A laboratory investigation of the effect of leaching on the compressibility and shear strength of Norwegian marine clays | |
US5018906A (en) | Pulverulent product stabilizing soils in place and method of application | |
Moayed et al. | Stabilization of saline silty sand using lime and micro silica | |
Kushwaha et al. | Stabilization of red mud by lime and gypsum and investigating its possible use in geoenvironmental engineering | |
JPH1164329A (en) | Method for estimating content of cement in mud sand | |
JP2012220229A (en) | Method for measuring content rate of fine-grained fraction of displaced soil and method for manufacturing raw material soil for earthwork material | |
Dungca et al. | Strength properties of road base materials blended with waste limestones | |
JPH0782984A (en) | Fluidization treatment method | |
JP4054848B2 (en) | Method for producing fluidized soil | |
JP2957939B2 (en) | Simple compounding method of wet ground improvement material | |
US4911584A (en) | Method for soil injection | |
CN106977147A (en) | A kind of mortar | |
JP4748570B2 (en) | Mud improvement method and mud improvement material addition rate evaluation method | |
JP2503771B2 (en) | Solidifying material for cohesive soil of volcanic ash | |
Ramonu et al. | Geotechnical properties of lateritic soil stabilized with yam peel ash for subgrade construction | |
CN107162516B (en) | A kind of curing agent and its application method for curing process discarded slurry | |
Middleton | Factors influencing the binding power of soil colloids | |
KR100501926B1 (en) | Method for stabilization and strength improvement of dredged soil using oyster shell | |
JP2002129158A (en) | Method for formulating cement-based hardening material | |
Thenoux et al. | Evaluation of hexahydrated magnesium chloride performance as chemical stabilizer of granular road surfaces | |
Prasad et al. | POTASSIUM CHLORIDE EFFECT ON EFFICIENCY OF FINE SLAG USED FOR TREATMENT OF EXPANSIVE SOIL | |
JP2005015321A (en) | Cement hydration accelerator | |
US20220250126A1 (en) | System and method of remediating industrial, tailings, and/or fracking soil | |
Ali et al. | Investigating the Potential of Water Treatment Sludge for Improvement of the Geotechnical Properties of Gypseous Soil | |
RU2005699C1 (en) | Method for designing composition of sand concrete mix |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20040525 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070327 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070525 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070904 |