JPH1164121A - X-ray stress measuring method - Google Patents

X-ray stress measuring method

Info

Publication number
JPH1164121A
JPH1164121A JP9216463A JP21646397A JPH1164121A JP H1164121 A JPH1164121 A JP H1164121A JP 9216463 A JP9216463 A JP 9216463A JP 21646397 A JP21646397 A JP 21646397A JP H1164121 A JPH1164121 A JP H1164121A
Authority
JP
Japan
Prior art keywords
measured
ray
stress
distribution
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9216463A
Other languages
Japanese (ja)
Inventor
Kiyobei Otani
清兵衛 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9216463A priority Critical patent/JPH1164121A/en
Publication of JPH1164121A publication Critical patent/JPH1164121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure three-dimensional stress distribution by x-ray stress analyzing method. SOLUTION: This x-ray stress measuring method is to estimate the stress of an object 3 to be measured by radiating white x-ray 15 to the object 3 to be measured and detecting x-ray 16 diffracted by the object 3 to be measured to detect the crystal lattice strain of the object 3 to be measured. Three- dimensional stress distribution of the object 3 to be measured corresponding to the three dimensional distribution of the crystal lattice strain of the object 3 to be measured is estimated by detecting three-dimensional distribution of the crystal lattice strain of the object 3 to be measured in the X, Y, and Z directions by successively changing the white x-ray 15 radiation parts of the object 3 to be measured in the XY plane while keeping the diffraction angle θ.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線応力測定方法
に関し、特に被測定物のXYZ方向の3次元の応力分布
を測定できる技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray stress measuring method, and more particularly to a technique capable of measuring a three-dimensional stress distribution in an XYZ direction of an object to be measured.

【0002】[0002]

【従来の技術】従来のX線応力測定法においては、低エ
ネルギーの単色X線を被測定物に照射し、該測定物で回
折したX線を検出して該被測定物の応力を測定してい
る。例えば、被測定物(例えば鉄板等)のXY平面上の
応力変動量が重要な特性で在るような場合、これと該被
測定物の深さ方向(Z方向)の応力分布とを合わせた3
次元応力分布を迅速にX線応力測定方法により計測する
必要がある。
2. Description of the Related Art In a conventional X-ray stress measurement method, an object is irradiated with low-energy monochromatic X-rays, X-rays diffracted by the object are detected, and the stress of the object is measured. ing. For example, when the amount of stress fluctuation on the XY plane of an object to be measured (for example, an iron plate) is an important characteristic, this is combined with the stress distribution in the depth direction (Z direction) of the object to be measured. 3
It is necessary to quickly measure the three-dimensional stress distribution by the X-ray stress measurement method.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の従来例
では、1つの単色X線エネルギーでのみで被測定物の応
力の計測をするため、被測定物の深さ方向の応力の情報
は1つであるので、測定された応力の分布は、XY方向
の2次元にしかならない。このため、被測定物の深さ方
向の応力分布を得るため、照射単色X線のエネルギーを
逐次変換する必要があるが、このためには、X線発生装
置に大幅な構造変更が必要となる。したがって、本願発
明の課題は、上述の従来例の欠点をなくし、簡単な装置
で被測定物の3次元応力分布を測定することができるX
線応力測定方法を提供することである。
However, in the above-mentioned conventional example, since the stress of the object to be measured is measured with only one monochromatic X-ray energy, the information of the stress in the depth direction of the object to be measured is one. Therefore, the measured stress distribution is only two-dimensional in the XY directions. For this reason, in order to obtain a stress distribution in the depth direction of the object to be measured, it is necessary to sequentially convert the energy of the irradiated monochromatic X-ray, but this requires a significant structural change in the X-ray generator. . Therefore, an object of the present invention is to eliminate the above-mentioned disadvantages of the conventional example and to measure a three-dimensional stress distribution of an object to be measured with a simple device.
It is to provide a method for measuring a linear stress.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本願の発明の構成は、白色X線を被測定物に照射し
て、該被測定物により回折したX線を検出することによ
り、該被測定物の結晶格子歪みを検出することにより該
被測定物の応力を推定するX線応力測定方法であって、
前記回折角を一定に保ちつつ、前記被測定物の前記白色
X線照射部位をXY平面上にて逐次変化させて、前記被
測定物の結晶格子歪みのXYZ方向の3次元分布を検出
し、前記被測定物の結晶格子歪みの3次元分布に対応し
た前記被測定物の3次元応力分布を推定することを特徴
とするX線応力測定方法である。
Means for Solving the Problems In order to solve the above problems, the structure of the present invention is to irradiate an object with white X-rays and detect X-rays diffracted by the object. An X-ray stress measurement method for estimating stress of the object by detecting a crystal lattice strain of the object,
While keeping the diffraction angle constant, the white X-ray irradiation site of the object to be measured is sequentially changed on an XY plane to detect a three-dimensional distribution of crystal lattice distortion of the object to be measured in the XYZ directions, An X-ray stress measurement method characterized by estimating a three-dimensional stress distribution of the measured object corresponding to a three-dimensional distribution of crystal lattice strain of the measured object.

【0005】上記発明の構成のX線応力測定方法によ
り、白色X線を被測定物に照射して、該被測定物により
回折したX線を検出することにより、該被測定物の結晶
格子歪みを検出することにより該被測定物の応力を推定
するので、白色X線の各波長に応じた深さの部位で回折
が生じる。このため、被測定物の深さ方向(Z方向)の
結晶格子歪みの分布を得ることができる。同時に、前記
回折角を一定に保ちつつ、前記被測定物の前記白色X線
照射部位をXY平面上にて逐次変化させるので、被測定
物のXY方向の結晶格子歪みの分布を得ることができ
る。このため、前記被測定物の結晶格子歪みのXYZ方
向の3次元分布を検出し、前記被測定物の結晶格子歪み
の3次元分布に対応した前記被測定物の3次元応力分布
を推定することができる。
According to the X-ray stress measuring method of the present invention, the object is irradiated with white X-rays, and the X-ray diffracted by the object is detected, whereby the crystal lattice distortion of the object is detected. Is detected, the stress of the object is estimated, so that diffraction occurs at a portion having a depth corresponding to each wavelength of the white X-ray. For this reason, it is possible to obtain the distribution of the crystal lattice strain in the depth direction (Z direction) of the measured object. At the same time, while maintaining the diffraction angle constant, the white X-ray irradiation site of the object is sequentially changed on the XY plane, so that the distribution of the crystal lattice strain in the XY direction of the object can be obtained. . Therefore, detecting the three-dimensional distribution of the crystal lattice strain of the device under test in the XYZ directions and estimating the three-dimensional stress distribution of the device under test corresponding to the three-dimensional distribution of the crystal lattice strain of the device under test. Can be.

【0006】[0006]

【発明の実施の形態】図1は本願発明の実施の形態に係
わるX線応力測定方法に使用する測定装置を示し、図2
は図1に示すものの一部分の右側面を示している。この
測定装置は、一定の手順に基づき自動的に被測定物の応
力の測定を行うことができるものである。一般に、資料
台2上に載置された被測定物3(例えば多結晶の鉄板)
の測定部位に傾角ψ、回折角θにて白色X線(波長が連
続したスペクトルを有するX線)15を照射すると、種
々のエネルギーのX線はその回折角θでブラッグ(Brag
g)の回折条件を満たす格子面を選んで回折するので、
一度に、(2,1,1)面等の面指数を有する各種格子
面(h,k,l)からの回折X線が得られることにな
る。
FIG. 1 shows a measuring apparatus used for an X-ray stress measuring method according to an embodiment of the present invention.
Indicates a right side surface of a part of the one shown in FIG. This measuring device is capable of automatically measuring the stress of an object to be measured based on a predetermined procedure. Generally, the DUT 3 placed on the data base 2 (for example, a polycrystalline iron plate)
Is irradiated with white X-rays (X-rays having a spectrum having a continuous wavelength) 15 at a tilt angle ψ and a diffraction angle θ, X-rays of various energies are Bragg at the diffraction angle θ.
g) Selects a grating plane that satisfies the diffraction condition and diffracts it.
At a time, diffracted X-rays from various lattice planes (h, k, l) having plane indices such as the (2, 1, 1) plane can be obtained.

【0007】回折装置本体1は、ψ軸14aの回りに回
動自在になるように図示しないフレームに取り付けられ
ている。なお、14はψ軸回転制御部である。回折装置
本体1には、X線管11、X線検出器12及び位置決め
センサ13が取り付けられている。X線管11は、半導
体検出器(Solid State Semiconductor Detector:SS
D)であり、X線のエネルギーに対応したX線強度を検
出することができるため、各回折X線16毎の回折エネ
ルギー値を測定することができる。位置決めセンサ13
は、被測定物3とX線管11との相対位置を決めるため
に、被測定物3にレーザ光17を照射して、位置決めサ
ンサ13と被測定物3との距離を測定するものである。
被測定物3(例えば多結晶の鉄板)は資料台2上に載置
されている。被測定物3の測定面は水平に保たれてい
る。なお、資料台2は例えばXYZ方向に位置を調整で
きるテーブルである。なお、図2において、3aは白色
X線を照射する水平な被測定面であり、3bは被測定面
3aに垂直な法線である。
The main body 1 of the diffraction device is mounted on a frame (not shown) so as to be rotatable about a ψ axis 14a. Reference numeral 14 denotes a ψ-axis rotation control unit. An X-ray tube 11, an X-ray detector 12, and a positioning sensor 13 are attached to the diffraction device body 1. The X-ray tube 11 is a solid state semiconductor detector (SS).
D), and the X-ray intensity corresponding to the energy of the X-ray can be detected, so that the diffraction energy value for each diffracted X-ray 16 can be measured. Positioning sensor 13
In order to determine the relative position between the DUT 3 and the X-ray tube 11, the DUT 3 is irradiated with a laser beam 17 to measure the distance between the positioning sensor 13 and the DUT 3. .
The DUT 3 (for example, a polycrystalline iron plate) is placed on the reference table 2. The measurement surface of the device under test 3 is kept horizontal. The data base 2 is a table whose position can be adjusted in the XYZ directions, for example. In FIG. 2, reference numeral 3a denotes a horizontal surface to be irradiated with white X-rays, and 3b denotes a normal line perpendicular to the surface to be measured 3a.

【0008】高圧電源部4はX線管11の電源であり、
その容量は、60kV,50mA〜100kV,30m
A程度である。制御部5は、高圧電源部4、ψ軸回転制
御部14及びデータ処理部8を制御するものである。信
号変換部6はX線検出器12のアナログ出力信号(各回
折X線の強度を示す。)を増幅し、デジタル信号に変換
するものである。波高分析部7は信号変換部6のデジタ
ル信号を受けて、検出されたX線の波の高さ(ピークエ
ネルギー)を分析して、被測定物3の結晶格子の歪みを
検出するものである。データ処理部8は、波高分析部7
の分析結果をデータ処理するとともに、制御部5に制御
信号を送るものである。
The high-voltage power supply 4 is a power supply for the X-ray tube 11,
The capacity is 60kV, 50mA ~ 100kV, 30m
It is about A. The control unit 5 controls the high-voltage power supply unit 4, the ψ-axis rotation control unit 14, and the data processing unit 8. The signal converter 6 amplifies the analog output signal (indicating the intensity of each diffracted X-ray) of the X-ray detector 12 and converts it into a digital signal. The wave height analyzer 7 receives the digital signal from the signal converter 6, analyzes the height (peak energy) of the detected X-ray wave, and detects the distortion of the crystal lattice of the DUT 3. . The data processing unit 8 includes the wave height analysis unit 7
And a control signal is sent to the control unit 5.

【0009】上記装置を使用したエネルギー分散X線応
力測定において、回折角θ、傾角ψを一定に保ったま
ま、被測定面3aからの距離を一定に制御しつつ、被測
定面3a上を一定速度で白色X線15を走査し、回折X
線16のエネルギーピークの変動を測定することによっ
て応力の分布を分析する。図3(a)に示すように、X
線管11は被測定物3の各測定位置(1、2〜m−1、
m)に白色X線15を照射する。X線検出器12は被測
定物3で回折したX線16を検出する。この検出した回
折X線により、結晶格子の歪みを検出し、該結晶格子の
歪みに弾性定数(ヤング率)を掛けて、該結晶格子の歪
みに対応した応力を推定することができる。
In the energy dispersive X-ray stress measurement using the above apparatus, while keeping the diffraction angle θ and the inclination angle 一定 constant, the distance from the measured surface 3a is kept constant, and Scan the white X-ray 15 at the speed
The distribution of stress is analyzed by measuring the variation of the energy peak in line 16. As shown in FIG.
The wire tube 11 is provided at each measurement position (1, 2 to m−1,
m) is irradiated with white X-rays 15. The X-ray detector 12 detects X-rays 16 diffracted by the device under test 3. The strain of the crystal lattice is detected from the detected diffraction X-rays, and the stress corresponding to the strain of the crystal lattice can be estimated by multiplying the strain of the crystal lattice by an elastic constant (Young's modulus).

【0010】即ち、被測定物3を資料台2上にセット
し、測定部位を回折点に合わせ、かつ、被測定面3aを
測定応力方向に直角に姿勢制御しながら順次測定部位を
指定した速さ(a(m/s)でトレースする。検出され
る回折X線を波高分析部7で逐次エネルギー分析し、指
定した一定時間(b(sec))各チャンネル毎に積算
し、連番を付けて(s1、s2、─sn)格納する。
(i−k)番目から(i+k)番目までの2k個のデー
タを積算したデータの各格子面(hkl)による回折ピ
ーク分析結果のi番目の集まりを{En(hkl)i}
とする。なお、応力ゼロの回折ピーク{En(hkl)
o}に対するi番目のピーク値の偏差{ΔEn(hk
l)i}を求める。
That is, the object to be measured 3 is set on the data base 2, the measured part is adjusted to the diffraction point, and the measured part is sequentially designated while controlling the posture of the measured surface 3a at right angles to the direction of the measured stress. (A (m / s). The detected diffracted X-rays are sequentially analyzed in energy by the wave height analyzer 7 and integrated for each channel for a specified fixed time (b (sec)), and a serial number is assigned. (S1, s2, ─sn).
{En (hkl) i} is the i-th set of diffraction peak analysis results for each lattice plane (hkl) of the data obtained by integrating the (ik) -th to (i + k) -th 2k data.
And The diffraction peak at zero stress ΔEn (hkl)
} ΔEn (hk)
l) Find i}.

【0011】応力ゼロの回折ピーク{En(hkl)
o}で除し{ΔEn(hkl)i}/{En(hkl)
o}を算出する。これは、基点より(a×b×i)mm
進んだ付近のψ軸に直交する方向の応力による結晶格子
の歪みの測度といえ、これにX線的弾性定数を掛けた数
値は同様の応力の測度といえる。応力ゼロの回折ピーク
が不明な場合には任意のEn(hkl)iを適用すれば
基準に対する相対値を求めることができる。
Diffraction peak at zero stress ΔEn (hkl)
o divided by {ΔEn (hkl) i} / {En (hkl)
} is calculated. This is (a × b × i) mm from the base point.
It can be said that this is a measure of the strain of the crystal lattice due to the stress in the direction orthogonal to the ψ axis in the vicinity of the advanced state, and the numerical value obtained by multiplying this by the X-ray elastic constant can be said to be a similar measure of the stress. When the diffraction peak at zero stress is unknown, a relative value with respect to the reference can be obtained by applying any En (hkl) i.

【0012】なお、ある結晶格子面で回折するX線の被
測定物3の表面からの有効侵入深さteは回折角θに対
して式(1)の関係に従って変化する。 ここに、θ:回折角 ρ:被測定物3の密度 μ:被測定物3の質量吸収係数
The effective penetration depth te of the X-ray diffracted at a certain crystal lattice plane from the surface of the object 3 changes according to the relationship of the equation (1) with respect to the diffraction angle θ. Where θ: diffraction angle ρ: density of DUT 3 μ: mass absorption coefficient of DUT 3

【0013】図3(b)は、測定結果を示している。被
測定物3の深さ方向の部位毎に、前記各測定位置に対応
した応力が測定される。なお、図3(b)での「格子
面」は回折条件を満足する被測定物3の格子面である。
FIG. 3B shows the measurement results. The stress corresponding to each of the measurement positions is measured for each portion of the DUT 3 in the depth direction. The “grating plane” in FIG. 3B is a grating plane of the DUT 3 that satisfies the diffraction condition.

【0014】即ち、回折角θを一定にし、任意の傾角ψ
にて所望の位置(i、j)で逐次回折ピークエネルギー
Enijを計測する。i、jはX線照射面3aの測定点の
位置を示す座標(i=1〜n,j=1〜m)である。あ
る格子面(hkl)の基準ピークエネルギーをEnoとす
ると、任意のij点の傾角ψ方向の格子面間隔の基準点
に対する偏差率Δdijは(2)式で表せる。 基準点に対するX線的応力の偏差ΔσXijは下式(3)
で求めることができる。
That is, the diffraction angle θ is made constant, and the arbitrary inclination angle ψ
, Successive diffraction peak energies En ij are measured at desired positions (i, j). i and j are coordinates (i = 1 to n, j = 1 to m) indicating the position of the measurement point on the X-ray irradiation surface 3a. Assuming that the reference peak energy of a certain lattice plane (hkl) is E no , the deviation rate Δd ij of an arbitrary ij point with respect to the reference point of the lattice plane spacing in the direction of the inclination で can be expressed by equation (2). The deviation ΔσX ij of the X-ray stress with respect to the reference point is given by the following equation (3)
Can be obtained by

【0015】[0015]

【発明の効果】本願発明に係わるX線応力測定方法によ
れば、該被測定物の表面をエッチングすることなく、非
破壊的に該測定物の3次元方向の応力分布を精密に測定
することができる。このため、自動車に使用する鉄板等
の加工後の残留応力の3次元分布を精密に測定すること
ができる。
According to the X-ray stress measuring method according to the present invention, the stress distribution in the three-dimensional direction of the measured object can be precisely measured nondestructively without etching the surface of the measured object. Can be. For this reason, the three-dimensional distribution of the residual stress after processing of an iron plate or the like used for an automobile can be accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明のX線応力測定方法に使用する装置の
説明図である。
FIG. 1 is an explanatory view of an apparatus used for an X-ray stress measurement method of the present invention.

【図2】図1に示す装置の側面の一部分の説明図であ
る。
FIG. 2 is an explanatory view of a part of a side surface of the device shown in FIG. 1;

【図3】上記X線応力測定方法及び測定結果の説明図で
ある。
FIG. 3 is an explanatory diagram of the X-ray stress measurement method and measurement results.

【符号の説明】[Explanation of symbols]

3 被測定物 11 X線管 12 X線検出器 15 照射X線 16 回折X線 θ 回折角 3 DUT 11 X-ray tube 12 X-ray detector 15 Irradiation X-ray 16 Diffraction X-ray θ Diffraction angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 白色X線を被測定物に照射して、該被測
定物により回折したX線を検出することにより、該被測
定物の結晶格子歪みを検出することにより該被測定物の
応力を推定するX線応力測定方法であって、 前記回折角を一定に保ちつつ、前記被測定物の前記白色
X線照射部位をXY平面上にて逐次変化させて、前記被
測定物の結晶格子歪みのXYZ方向の3次元分布を検出
し、前記被測定物の結晶格子歪みの3次元分布に対応し
た前記被測定物の3次元応力分布を推定することを特徴
とするX線応力測定方法。
1. An object to be measured is irradiated with white X-rays to detect X-rays diffracted by the object to detect crystal lattice distortion of the object to detect the X-rays. An X-ray stress measurement method for estimating stress, wherein the white X-ray irradiation site of the object is sequentially changed on an XY plane while the diffraction angle is kept constant, and the crystal of the object is measured. An X-ray stress measuring method comprising: detecting a three-dimensional distribution of lattice strain in the XYZ directions; and estimating a three-dimensional stress distribution of the device under test corresponding to the three-dimensional distribution of crystal lattice strain of the device. .
JP9216463A 1997-08-11 1997-08-11 X-ray stress measuring method Pending JPH1164121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9216463A JPH1164121A (en) 1997-08-11 1997-08-11 X-ray stress measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9216463A JPH1164121A (en) 1997-08-11 1997-08-11 X-ray stress measuring method

Publications (1)

Publication Number Publication Date
JPH1164121A true JPH1164121A (en) 1999-03-05

Family

ID=16688878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9216463A Pending JPH1164121A (en) 1997-08-11 1997-08-11 X-ray stress measuring method

Country Status (1)

Country Link
JP (1) JPH1164121A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095467A1 (en) * 2005-03-09 2006-09-14 National Institute For Materials Science X-ray diffraction analyzing method and analyzer
WO2007069639A1 (en) * 2005-12-13 2007-06-21 Riken Keiki Co., Ltd. X-ray analyzer
JP2007163262A (en) * 2005-12-13 2007-06-28 Riken Keiki Co Ltd X-ray analyzer
JP2008039559A (en) * 2006-08-04 2008-02-21 Riken Keiki Co Ltd X-ray analyzer
JP2008111781A (en) * 2006-10-31 2008-05-15 Riken Keiki Co Ltd Measuring treatment method of x-ray analyzer
JP2012083349A (en) * 2010-10-11 2012-04-26 Commissariat A L'energie Atomique Method for measuring orientation and elastic strain of grains in polycrystalline materials
CN102608144A (en) * 2012-03-28 2012-07-25 苏州科技学院 Device and method for measuring three-dimensional distribution of residual stress in metal microstructure
US8953743B2 (en) 2012-07-25 2015-02-10 Rigaku Corporation X-ray stress measurement method and apparatus
JP2015062039A (en) * 2015-01-07 2015-04-02 株式会社リガク X-ray diffraction method and portable x-ray diffraction apparatus using the same
KR20160029851A (en) * 2013-07-08 2016-03-15 노바 메주어링 인스트루먼츠 엘티디. Method and system for determining strain distribution in a sample
CN115112922A (en) * 2022-06-28 2022-09-27 长春理工大学 Sub-nanometer scale three-dimensional atomic coordinate measuring method and system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095467A1 (en) * 2005-03-09 2006-09-14 National Institute For Materials Science X-ray diffraction analyzing method and analyzer
JP2006250642A (en) * 2005-03-09 2006-09-21 National Institute For Materials Science X-ray diffraction analyzing method and x-ray diffraction analyzer
JP4581126B2 (en) * 2005-03-09 2010-11-17 独立行政法人物質・材料研究機構 X-ray diffraction analysis method and X-ray diffraction analysis apparatus
JP2007163262A (en) * 2005-12-13 2007-06-28 Riken Keiki Co Ltd X-ray analyzer
WO2007069639A1 (en) * 2005-12-13 2007-06-21 Riken Keiki Co., Ltd. X-ray analyzer
JP4619282B2 (en) * 2005-12-13 2011-01-26 理研計器株式会社 X-ray analyzer
JP2008039559A (en) * 2006-08-04 2008-02-21 Riken Keiki Co Ltd X-ray analyzer
JP2008111781A (en) * 2006-10-31 2008-05-15 Riken Keiki Co Ltd Measuring treatment method of x-ray analyzer
JP2012083349A (en) * 2010-10-11 2012-04-26 Commissariat A L'energie Atomique Method for measuring orientation and elastic strain of grains in polycrystalline materials
CN102608144A (en) * 2012-03-28 2012-07-25 苏州科技学院 Device and method for measuring three-dimensional distribution of residual stress in metal microstructure
US8953743B2 (en) 2012-07-25 2015-02-10 Rigaku Corporation X-ray stress measurement method and apparatus
KR20160029851A (en) * 2013-07-08 2016-03-15 노바 메주어링 인스트루먼츠 엘티디. Method and system for determining strain distribution in a sample
JP2015062039A (en) * 2015-01-07 2015-04-02 株式会社リガク X-ray diffraction method and portable x-ray diffraction apparatus using the same
CN115112922A (en) * 2022-06-28 2022-09-27 长春理工大学 Sub-nanometer scale three-dimensional atomic coordinate measuring method and system

Similar Documents

Publication Publication Date Title
US7231016B2 (en) Efficient measurement of diffuse X-ray reflections
US20080048125A1 (en) Convertible radiation beam analyzer system
JPH1164121A (en) X-ray stress measuring method
CN109374659A (en) A kind of localization method of short wave length X-ray diffraction test sample
KR20060051095A (en) Combined x-ray reflectometer and diffractometer
GB2083215A (en) Apparatus for x-ray diffraction
US8953743B2 (en) X-ray stress measurement method and apparatus
JP2005121372A (en) X-ray crystal orientation measuring instrument, and x-ray crystal orientation measuring method
US7978821B1 (en) Laue crystallographic orientation mapping system
US11131637B2 (en) Analysis method for fine structure, apparatus, and program
EP1495311B1 (en) High-resolution x-ray diffraction apparatus
JP3982732B2 (en) X-ray fluorescence measurement equipment
JP4563701B2 (en) X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method
CN113740366B (en) Method and device for nondestructively detecting crystal orientation difference and grain boundary defect in monocrystal or directional crystal
JP4211192B2 (en) X-ray diffractometer
JPH1151786A (en) X-ray stress measuring method
JP3017634B2 (en) X-ray stress measurement apparatus and X-ray stress measurement method
JPH10246708A (en) Apparatus and method for nondestructive inspection
US3504178A (en) Method for determining crystall-ographic orientation
JPH11295158A (en) X-ray stress measuring method and device
JPS61167849A (en) Quantitative measuring method and device for radiation absorption
JP2003207467A (en) X-ray analyzer
JP4540184B2 (en) X-ray stress measurement method
JPH02266249A (en) Method for measuring x-ray diffraction of crystal plane
JPH06265489A (en) X-ray diffractometer