JPH1161493A - Electrodepositon coating - Google Patents

Electrodepositon coating

Info

Publication number
JPH1161493A
JPH1161493A JP21876097A JP21876097A JPH1161493A JP H1161493 A JPH1161493 A JP H1161493A JP 21876097 A JP21876097 A JP 21876097A JP 21876097 A JP21876097 A JP 21876097A JP H1161493 A JPH1161493 A JP H1161493A
Authority
JP
Japan
Prior art keywords
coating
electrodeposition
coated
electrodeposition coating
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21876097A
Other languages
Japanese (ja)
Inventor
Asa Satou
麻 佐藤
Keiko Fukushima
敬子 福島
Kenshichirou Shima
謙七郎 島
Yoshinobu Tamura
吉宣 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Shinto Paint Co Ltd
Original Assignee
Nissan Motor Co Ltd
Shinto Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Shinto Paint Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP21876097A priority Critical patent/JPH1161493A/en
Publication of JPH1161493A publication Critical patent/JPH1161493A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrodeposition coating method which is capable of executing stable coating without changing coating quality even by the coating area of materials to be coated, the fluctuation in the kinds of the materials to be coated, etc., and is cost effectively excellent. SOLUTION: This electrodeposition coating method consists in transporting the material 8 to be coated into an electrodeposition vessel 9 in which an electrodeposition coating material 10 is housed and connecting a DC power source 1 between this material to be coated and the electrodes 5, 6 stored in the electrodeposition vessel 9 thereby executing the electrodeposition coating. In such a case, the electrodeposition coating is first started by a preset reference voltage and the coating area and structure of the material to be coated which exists within the electrodeposition vessel are estimated from the change in the current value of the initial period of the electrodeposition coating. The film thickness of the film formed by changing the subsequent voltage is controlled to an adequate value in accordance with the result thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電着塗装方法に関するも
のであり、特に被塗物の塗装面積、被塗物の種類の変動
等によっても、塗装膜厚などの塗装品質が変化すること
なく安定した塗装を行うことができ、かつ経済的にも優
れた塗装技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrodeposition coating method, and more particularly to a method of coating without changing a coating quality such as a coating film thickness even by a change in a coating area of an object to be coated and a kind of the object to be coated. The present invention relates to a coating technique that can perform stable coating and is economically excellent.

【0002】[0002]

【従来の技術】従来から塗装方法としては、静電塗装方
法やスプレー塗装方法、エアレス塗装方法やディッピン
グ塗装方法および電着塗装方法などが行われている。
2. Description of the Related Art Conventionally, coating methods include an electrostatic coating method, a spray coating method, an airless coating method, a dipping coating method, and an electrodeposition coating method.

【0003】このうち、電着塗装方法は、その他の塗装
方法に比較して様々な面で優れた特徴を有しており、例
えば被塗物の袋状構造部および被塗物の各部分間の接合
部などにおいても塗装が可能であるという特徴を有して
いる。また上記のような特徴点に加え、通電量の制御な
どによって膜厚管理も容易であり、しかも塗装された塗
料の「ワキ」、「タレ」なども発生せず、作業性が良好
であることが知られている。
[0003] Among them, the electrodeposition coating method has excellent characteristics in various aspects as compared with other coating methods. For example, the electrodeposition coating method includes a bag-like structure portion of the object to be coated and a space between each part of the object to be coated. It has the feature that painting is possible even at the joints of the above. In addition to the features described above, it is easy to control the film thickness by controlling the amount of electricity, and the workability is good, with no "waki" or "sag" of the coated paint. It has been known.

【0004】[0004]

【発明が解決しようとする課題】電着塗装において、上
記したような膜厚は、一般に通電電圧で制御されるが、
他の要因、例えば、塗料液温、被塗物の搬送速度、塗料
槽内に浸漬されている被塗物数や種類などにも影響を受
ける。すなわち、一定電圧下で塗装を行っていても、塗
料槽内における塗装面積が変動したり、浸漬される被塗
物の被塗物形状の変化などによって、塗膜が形成されに
くくなる場合があり、このような場合、塗膜膜厚が薄く
なってしまい、被塗物の防錆性能が低下し、得られた製
品に錆が早期に発生して機械強度の低下や、外観を損ね
る事態となってしまう。
In the electrodeposition coating, the film thickness as described above is generally controlled by an applied voltage.
It is also affected by other factors, such as the coating liquid temperature, the transport speed of the coating object, and the number and type of the coating objects immersed in the coating tank. In other words, even when the coating is performed under a constant voltage, the coating area in the coating tank may fluctuate, or the coating object may be difficult to be formed due to a change in the shape of the coating object to be immersed. However, in such a case, the thickness of the coating film becomes thin, the rust prevention performance of the object to be coated is reduced, and rust is generated early in the obtained product, and the mechanical strength is reduced and the appearance is impaired. turn into.

【0005】また、前記塗膜がむやみに厚く形成されて
しまう条件となった場合、塗料消費量が増大し、塗装経
済上で好ましくない。
[0005] In addition, when the conditions are such that the coating film is formed unnecessarily thick, the consumption of the coating material increases, which is not preferable in terms of coating economy.

【0006】従来、電着塗装法において、被塗物の塗装
面積、被塗物種の変動などを自動的に検出して、前記電
圧を塗装毎に自動制御するといったことは行われておら
ず、様々な面積と構造を有する被塗物(面積の大小、平
板状構造/袋状構造など)が同一ラインで電着槽へと流
れてきても常に同一の電圧条件にて電着塗装をおこなっ
ているため、形成される電着塗膜膜厚の正確な管理がで
きないと言う問題点を有しているものであった。
Conventionally, in the electrodeposition coating method, it has not been carried out to automatically detect a coating area of an object to be coated, a variation in the type of the object to be coated, and to automatically control the voltage for each coating. Even if objects to be coated having various areas and structures (large or small area, flat structure / bag-like structure, etc.) flow to the electrodeposition tank on the same line, electrodeposition coating is always performed under the same voltage conditions. Therefore, there is a problem in that the thickness of the formed electrodeposition coating film cannot be accurately controlled.

【0007】なお、被塗物の数に応じて電着膜厚を制御
する方法としては、特開昭62−136527号等に提
唱されているが、これらは予め、リミットスイッチ等を
有する被塗物検出装置が必要であり、かつ操作が煩雑で
ある。また、電着塗装中の電流値をモニターし膜厚制御
に利用する例は、特開平7−228997号公報に開示
されているが、これは電流値が一定の値まで降下する時
点を通電停止可能段階として、通電を停止するものであ
って、被塗物の塗装面積、被塗物種の変化等による形成
塗膜膜厚の変動を制御できないものであった。
As a method of controlling the electrodeposition film thickness in accordance with the number of objects to be coated, Japanese Patent Application Laid-Open No. 62-136527 and the like have proposed such methods. A device is required and the operation is complicated. An example in which the current value during electrodeposition coating is monitored and used for film thickness control is disclosed in JP-A-7-228997. As a possible stage, the energization was stopped, and it was not possible to control a change in the thickness of the formed coating film due to a change in the coating area of the object to be coated and a type of the object to be coated.

【0008】従って、本発明は、改良された電着塗装方
法を提供することを課題とする。本発明はさらに、被塗
物の塗装面積、被塗物の種類の変動等によっても、塗装
品質が変化することなく安定した塗装を行うことがで
き、かつ経済的にも優れた電着塗装方法を提供すること
を課題とするものである。
Accordingly, an object of the present invention is to provide an improved electrodeposition coating method. The present invention further provides an electrodeposition coating method capable of performing a stable coating without changing the coating quality even if the coating area of the object to be coated, a change in the type of the object to be coated, and the like, is economically excellent. It is an object to provide

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記諸目
的を達成するために鋭意研究を重ねた結果、様々な組合
せよりなる被塗物が塗装ラインを流れて電着槽に搬入さ
れて電着塗装される際、電着塗料が収容された電着槽に
おける電着初期段階の電流発生の挙動と、電着槽内に存
在する被塗物の数や種類に関連が深いことを見出し、実
際の電着塗装において計測されるこの電着初期段階の電
流値特性から、所望の塗膜膜厚とするのに適正な初期段
階移行の印加電圧(以下、「二次電圧」とも称する。)
をリアルタイムに速やかに判断し、二次電圧をこの適正
な値に制御して印加する方法を考案し、本発明を完成さ
せたものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above objects, and as a result, objects to be coated in various combinations flow through a coating line and are carried into an electrodeposition tank. When electrodeposition coating is performed, it is found that the behavior of current generation in the initial stage of electrodeposition in the electrodeposition tank containing the electrodeposition paint and the number and type of objects to be coated present in the electrodeposition tank are deeply related, From the current value characteristics in the initial stage of electrodeposition measured in actual electrodeposition coating, an applied voltage (hereinafter, also referred to as “secondary voltage”) in the initial stage suitable for obtaining a desired coating film thickness.
The present invention was completed by devising a method of controlling the secondary voltage to an appropriate value and applying the secondary voltage to this proper value promptly in real time.

【0010】すなわち、上記諸目的を達成する本発明
は、(1)電着塗料が収容された電着槽内に被塗物を搬
送し、この被塗物と電着槽内に配置されている電極との
間に直流電源を接続し、電着塗装を行う電着塗装方法に
おいて、まず予め設定された基準電圧によって電着塗装
を開始し、この電着塗装初期の電流値の変化から、電着
槽内に存在する被塗物の塗装面積および構造を推定し、
この結果に基づき、その後の電圧を変化させ形成される
塗膜の膜厚を適正な値に制御することを特徴とする電着
塗装方法である。
That is, according to the present invention, which achieves the above objects, (1) an object to be coated is transported into an electrodeposition tank containing an electrodeposition coating material, and the object is placed in the electrodeposition tank. In the electrodeposition coating method of connecting a DC power source between the electrodes and performing electrodeposition coating, first, the electrodeposition coating is started by a preset reference voltage, and from the change in the current value of the initial electrodeposition coating, Estimate the coating area and structure of the object to be coated in the electrodeposition tank,
The electrodeposition coating method is characterized by controlling the film thickness of the formed coating film to an appropriate value by changing the voltage based on the result.

【0011】さらに本発明は、全電着塗装時間の約1/
3までの時間を、電着塗装初期とするものである上記
(1)に記載の電着塗装方法を示すものである。
Further, the present invention provides that about 1/100 of the total electrodeposition time is required.
3 shows the electrodeposition coating method according to the above (1), wherein the time up to 3 is the initial stage of the electrodeposition coating.

【0012】本発明はまた、(3)予め、使用される塗
装設備において、種々の塗装面積および構造の被塗物を
用いて、これらの被塗物に対する前記基準電圧における
電着塗装初期の電流値特性を計測し、さらにこのような
種々の被塗物に対して所望膜厚の塗膜を形成させるため
に必要とされるその後の電圧としての二次電圧値を決定
しておき、このようにして求められた各種被塗物におけ
る前記電流値特性および前記二次電圧値のデータを、前
記直流電源を制御する電圧制御装置に記憶させておき、
実際の電着塗装を行った際に計測された電着塗装初期の
電流値特性を、この電圧制御装置において前記データと
比較することで二次電圧値を決定し、電着塗装を行うも
のである上記(1)または(2)に記載の電着塗装方法
を示すものである。
The present invention also provides (3) a method in which, in a coating facility to be used in advance, a coating object having various coating areas and structures is used, and the initial current of the electrodeposition coating at the reference voltage is applied to the coating object. The value characteristic is measured, and a secondary voltage value as a subsequent voltage required to form a coating film having a desired film thickness on such various objects to be coated is determined. The data of the current value characteristic and the secondary voltage value in the various objects to be obtained determined in the following are stored in a voltage control device that controls the DC power supply,
The current value characteristic of the initial electrodeposition coating measured when the actual electrodeposition coating was performed, the secondary voltage value is determined by comparing the data with the data in this voltage control device, and the electrodeposition coating is performed. This shows an electrodeposition coating method according to the above (1) or (2).

【0013】[0013]

【発明の実施の形態】以下、本発明を実施態様に基づき
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments.

【0014】電着塗装においては、電圧を印加した際に
おいて、電極と被塗物との間に流れる電流は、被塗物の
外板塗装面積にほぼ比例し、その後の電流値は被塗物の
構造等によって変化する。すなわち、電流値は、電着塗
装設備構造、電着塗料の液伝導度、印加電圧等が、被塗
物の外板塗装面積等に影響されるが、このうち、電着塗
装設備構造、電着塗料の液伝導度は、一般に一定要因で
あり、印加電圧を所定値とすれば、電着槽に搬送される
被塗物種、塗装面積の変化が、前記電流値の変動として
表れることとなる。本発明においては、このことを利用
し、被塗物種、被塗物面積を変えながら連続的に行われ
る電着塗装操作において、電着槽内に存在する被塗物
種、塗装面積を、電流値を計測することによりほぼリア
ルタイムで認識し、適正な膜厚の塗膜を形成するもので
ある。
In the electrodeposition coating, when a voltage is applied, the current flowing between the electrode and the object to be coated is substantially proportional to the outer coating area of the object to be coated. Changes depending on the structure of the device. In other words, the current value is affected by the electrodeposition coating equipment structure, the liquid conductivity of the electrodeposition coating material, the applied voltage, and the like, and the outer coating area of the object to be coated. The liquid conductivity of the coating material is generally a constant factor, and if the applied voltage is a predetermined value, the type of the object to be transferred to the electrodeposition tank, the change in the coating area will appear as a change in the current value. . In the present invention, utilizing this, in the electrodeposition coating operation that is performed continuously while changing the type of the object to be coated, the area of the object to be coated, the type of the object to be coated, the coating area existing in the electrodeposition tank, the current value Is measured in almost real time to form a coating film having an appropriate thickness.

【0015】本発明の電着塗装方法においては、まず、
予め使用する塗装ラインの電着塗料特性、設備条件等か
ら予め基準電圧(被塗物種、塗装面積等が標準であると
き、適正膜厚に塗装できる一定電圧)を設定しておく。
In the electrodeposition coating method of the present invention, first,
A reference voltage (a constant voltage that can be applied to an appropriate film thickness when the type of the object to be coated, the coating area, and the like is standard) is set in advance from the characteristics of the electrodeposition coating material of the coating line to be used and the equipment conditions.

【0016】さらに本発明においては、実際に塗装を行
うに先立ち、次のような予備実験を行う。すなわち、被
塗物種、塗装面積の種々異なる被塗物試料群に対し、上
記のごとく設定した基準電圧にて電着塗装を行った際に
おける塗装初期の電流値特性を計測する。さらに所定の
電着塗装時間の全体を通じてこの基準電圧をかけた場合
において、各被塗物試料の表面に形成される塗膜の膜厚
を測定する。次に、この塗膜膜厚の測定結果に基づき、
各被塗物試料において所望する適正な塗膜膜厚が得られ
るための、塗装初期以降の印加電圧(二次電圧)を決定
する。この二次電圧の決定は、例えば、基準電圧を全塗
装時間にわたりかけた際に得られる塗膜膜厚の結果から
おおよその予測をつけて、塗装初期以降の印加電圧を種
々変えた基礎実験を繰り返し、所望の膜厚が得られた場
合における電圧値を選択することにより行い得る。
Further, in the present invention, the following preliminary experiments are performed prior to actual coating. That is, the current value characteristics of the initial stage of the coating when the electrodeposition coating is performed at the reference voltage set as described above for the sample groups of the coating objects having various types and different coating areas are measured. Further, when the reference voltage is applied throughout the predetermined electrodeposition coating time, the thickness of the coating film formed on the surface of each sample to be coated is measured. Next, based on the measurement result of the coating film thickness,
The applied voltage (secondary voltage) after the initial stage of coating is determined so that a desired appropriate coating film thickness can be obtained for each sample to be coated. The determination of the secondary voltage is based on, for example, a basic experiment in which the applied voltage is variously changed after the initial stage of coating, with an approximate prediction based on the result of the coating film thickness obtained when the reference voltage is applied over the entire coating time. This can be repeated by selecting a voltage value when a desired film thickness is obtained.

【0017】なお、前記電着塗装初期の時間としては、
全電着塗装時間の約1/3までの時間であることが望ま
しい。すなわち、この電着塗装初期の時間をこれ以上長
くとっても電流値の変動が小さくなるため、塗装初期以
降に印加される二次電圧の決定に有効な電流値データは
ほとんど生まれないためである。但し、全電着塗装時間
の1/3の時間を越えて、長時間電流値を計測しなが
ら、二次電圧を、さらに三次電圧、四次電圧…と調整す
ることを制限するものではない。また、電着塗装初期の
時間を、全電着塗装時間の約1/3よりもさらに短くす
ることは、後述するような電圧印加開始後における経時
的な電流値の変化パターンおける初期最大電流値I0
の特徴的な値が示される時点を、当該時間が含む限りに
おいては可能であるが、一般に全電着塗装時間の約1/
10程度までが短縮の限度である。
The initial time of the electrodeposition coating is as follows:
Desirably, the time is up to about 1/3 of the total electrodeposition time. That is, even if the initial time of the electrodeposition coating is set to be longer than this, the fluctuation of the current value becomes small, and therefore, current value data effective for determining the secondary voltage applied after the initial stage of the coating is hardly generated. However, there is no limitation that the secondary voltage is further adjusted to a tertiary voltage, a quaternary voltage, etc. while measuring the current value for a long time exceeding one third of the total electrodeposition time. Further, making the initial time of electrodeposition coating shorter than about one-third of the total electrodeposition coating time is equivalent to the initial maximum current value in the time-dependent current value change pattern after the start of voltage application as described later. The time at which a characteristic value such as I 0 is indicated can be set as long as the time is included, but generally, about 1/1 of the total electrodeposition coating time.
Up to about 10 is the limit of shortening.

【0018】図3は、塗装経過時間における電流値の変
化パターンの一例を示すものであるが、電流値は電圧印
加開始直後に初期最大電流値I0まで上昇し、その後下
降して暫く経過すると一定電流値へと近づき安定し始め
る。印加される基準電圧の大きさ等によっても左右され
るため、一概には規定できないが、例えば、初期最大電
流値I0に達するまでが、印加開始から1〜30秒程
度、さらに初期最大電流値I0より電流が下降し安定し
始めるのは、初期最大電流値I0に到達後約5〜90秒
程度である。
FIG. 3 shows an example of a change pattern of the current value during the elapsed coating time. The current value rises to the initial maximum current value I 0 immediately after the start of the voltage application, and then falls after a while. It approaches a constant current value and starts to stabilize. Since it depends on the magnitude of the applied reference voltage, etc., it cannot be specified unconditionally. For example, it takes about 1 to 30 seconds from the start of application until the initial maximum current value I 0 is reached, and furthermore, the initial maximum current value the current than I 0 starts to stably descends in the order of about 5 to 90 seconds after reaching the initial maximum current value I 0.

【0019】初期最大電流値I0は、被塗物の塗装面積
が大きいほど大きくなり、また初期最大電流値I0到達
後所定時間経過後(前記したような例えば5〜90秒程
度経過後の電流値が安定化し始める時点)の電流値I1
は、被塗物の形状に影響を受け、袋状構造などの比率が
高くなると大きくなる傾向にある。従って、これらの電
流値I0、I1を被塗物種、塗装面積の種々異なる被塗物
試料群に関して求めておき、後述するような実際の塗装
に際して求められた値と対比すれば、実際の塗装におけ
る被塗物種、塗装面積がどのようなものであるかが認定
可能である。
The initial maximum current value I 0 increases as the coated area of the object to be coated increases, and after a predetermined time elapses after reaching the initial maximum current value I 0 (for example, after a lapse of about 5 to 90 seconds as described above). The current value I 1 at the time when the current value starts to stabilize)
Is influenced by the shape of the object to be coated, and tends to increase as the ratio of the bag-like structure or the like increases. Therefore, if these current values I 0 and I 1 are determined for the coating object sample and the coating sample groups having various coating areas, and compared with the values obtained in actual coating as described later, the actual It is possible to certify the type of the object to be coated and the area of the coating in the coating.

【0020】初期最大電流値I0への到達時間、および
その後電流値が安定化し始める時点までの到達時間は、
基礎実験によって容易に知ることができるので、基礎実
験の結果からそれぞれの計測時点を決定し、各計測時点
において測定される電流値をそれぞれI0、I1とみな
す。なお、測定されるI0の値は、真のI0の値とは若干
の相違が生じる可能性があるが、実際の塗装に先立ち測
定される比較データとなる被塗物試料群における計測時
点と、実際の塗装時における計測時点とを一致させてお
けば、実際の塗装時において計測された電流値を試料群
において計測された電流値と対比して、実際の塗装時に
おける被塗物の塗装面積、被塗物種を判断する上で、特
に問題は生じない。
The time required to reach the initial maximum current value I 0 and the time required until the current value starts to stabilize thereafter are as follows:
Since it can be easily known by the basic experiment, each measurement time is determined from the result of the basic experiment, and the current values measured at each measurement time are regarded as I 0 and I 1 , respectively. The measured value of I 0 may have a slight difference from the true value of I 0 , but the measured value of the measured value in the sample group of the workpiece to be compared is measured before the actual coating. If the measurement time at the time of actual painting is matched, the current value measured at the time of actual painting is compared with the current value measured at the sample group, and the There is no particular problem in determining the coating area and the type of the object to be coated.

【0021】また、電着塗装初期における電流値の計測
方法としては、上記したように2つの時点で電流値を測
定する態様に限られず、電着塗装初期における3つ以上
の時点で各被塗物試料の電流値を測定し、これらの3つ
以上の測定点における被塗物試料群の電流値データ作成
し、実際の塗装時において同様の測定点において測定さ
れた電流値と対比して、実際の塗装時における被塗物の
塗装面積、被塗物種を判断することは、当然に可能であ
る。さらに、各被塗物試料に関し電着塗装初期において
連続的に電流値を計測して、被塗物試料群の電着塗装初
期における電流値の変化の波形解析データを作成してお
き、実際の塗装時において電着塗装初期において同様の
連続的な電流値測定を行なって得られた電流値の変化状
態を、この波形解析データに対比させて、実際の塗装時
における被塗物の塗装面積、被塗物種を判断することも
可能である。
The method of measuring the current value at the initial stage of the electrodeposition coating is not limited to the method of measuring the current value at two points as described above. The current value of the object sample is measured, the current value data of the object sample group at these three or more measurement points is created, and compared with the current value measured at the same measurement point at the time of actual coating, Naturally, it is possible to determine the coating area and the type of the object to be coated during the actual coating. Further, the current value is continuously measured in the initial stage of the electrodeposition coating for each of the workpiece samples, and the waveform analysis data of the change in the current value in the initial stage of the electrodeposition coating of the workpiece sample group is prepared, and the actual data is prepared. At the time of painting, the state of change of the current value obtained by performing the same continuous current value measurement at the beginning of electrodeposition coating is compared with this waveform analysis data, the coating area of the object to be coated at the time of actual coating, It is also possible to determine the type of the object to be coated.

【0022】このような予備実験によって、被塗物種、
塗装面積の種々異なる被塗物試料群に対しての塗装初期
の電流値特性データ、および各被塗物試料において所望
する適正塗膜膜厚を得るために印加すべき二次電圧値の
データが得られたら、これら双方のデータを、電圧制御
装置に記憶させておく。
According to such preliminary experiments, the type of the object to be coated,
Current value characteristic data at the initial stage of coating for a group of workpieces with different coating areas and data of the secondary voltage to be applied to obtain the desired proper coating film thickness for each workpiece sample Once obtained, both data are stored in the voltage control device.

【0023】そして、実際の塗装作業を開始する。実際
の塗装においては、様々な組合せよりなる被塗物を塗装
ラインに流して、電着槽に搬入し電着塗装することがで
きる。ある1つの被塗物種ないし複数の同種あるいは異
種の被塗物種の組合せが、電着槽に入槽すると、まず基
準電圧が印加されて電着塗装が開始される。そして電着
初期における上記したような所定の時点で、槽内に流れ
る電流値が計測される。
Then, the actual painting operation is started. In actual coating, an object to be coated composed of various combinations can be flowed into a coating line, carried into an electrodeposition tank, and subjected to electrodeposition coating. When a certain type of the object to be coated or a combination of a plurality of the same or different types of the object to be coated enters the electrodeposition tank, first, a reference voltage is applied to start the electrodeposition coating. Then, at the above-mentioned predetermined point in time of the initial electrodeposition, the value of the current flowing in the tank is measured.

【0024】測定された電流値は、直ちに電気信号とし
て電圧制御装置に送られる。電圧制御装置では、判断プ
ログラムが作動しており、送られてきた測定電流値を、
記憶している前記したような予備実験により得られた被
塗物試料群の電流値特性のデータと対比し、データ中に
おける最も近似する電流値特性を有する試料を選び出
し、二次電圧データ中からこの試料に関する二次電圧値
を解として出す。なお、必要に応じて、このデータ中に
おける最も近似する電流値特性のものと、実際の測定さ
れた電流値特性との解離の度合いから、解答された二次
電圧値に適当な補正をかけるような補正プログラムを併
せて実行することも可能である。電圧制御装置は、この
ようにして決定された二次電圧値が、電着槽においてそ
の後印加されるように、直流電源に対して命令を発す
る。これによって、その後の電着塗装時間において所望
の二次電圧が適用され、電着塗装を行なわれる。
The measured current value is immediately sent to a voltage control device as an electric signal. In the voltage controller, the judgment program is operating, and the measured current value sent is
In comparison with the data of the current value characteristics of the coated object sample group obtained by the preliminary experiment stored above, the sample having the most similar current value characteristics in the data is selected from the secondary voltage data. The secondary voltage value for this sample is found as a solution. If necessary, an appropriate correction is made to the solved secondary voltage value based on the degree of dissociation of the current value characteristic closest to this data and the actually measured current value characteristic. It is also possible to execute various correction programs together. The voltage controller issues a command to the DC power supply so that the secondary voltage value thus determined is subsequently applied in the electrodeposition bath. Thus, a desired secondary voltage is applied in the subsequent electrodeposition coating time, and the electrodeposition coating is performed.

【0025】なお、電圧制御装置に組み込まれるプログ
ラムとしては、上記に例示したような構成のものに何ら
限定されるものではなく、前記予備実験によって得られ
た電流値特性データおよび二次電圧値のデータ、あるい
はさらにこれらのデータより導き出された関数式等によ
って、測定電流値から所望の二次電圧値を決定しうるも
のである限り任意のものであってよい。また、使用され
る電圧制御装置としても、上記したようなプログラムを
実行できるものである限り、任意のものであって良く、
例えば、マイクロコンピュータ、パーソナルコンピュー
タ、オフィスコンピュータ等の演算装置を1ないし複数
台組み込むことで構成され得る。なお、このような電圧
制御装置を使用せず、予備実験によって得られた電流値
特性データおよび二次電圧値のデータと、実際の塗装操
作において得られる塗装初期の電流値から、手作業にて
適正な二次電圧値を割り出し、直流電源電圧を変化させ
ることも可能であるが、電圧制御装置によって、二次電
圧を自動制御することが当然に望ましい態様である。
It should be noted that the program incorporated in the voltage control device is not limited to the configuration as exemplified above, and the current value characteristic data and the secondary voltage value obtained by the preliminary experiment are obtained. Any data may be used as long as the desired secondary voltage value can be determined from the measured current value by the data, or furthermore, a function formula derived from these data. In addition, any voltage control device may be used as long as it can execute the above-described program.
For example, it can be configured by incorporating one or more arithmetic devices such as a microcomputer, a personal computer, and an office computer. In addition, without using such a voltage control device, the current value characteristic data and the secondary voltage value data obtained by the preliminary experiment and the current value at the initial stage of the coating obtained in the actual coating operation are manually set. Although it is possible to determine an appropriate secondary voltage value and change the DC power supply voltage, it is naturally desirable to automatically control the secondary voltage by a voltage control device.

【0026】このように本発明においては、電着塗装に
おける初期一定期間の電流値から、その後の電圧を制御
することによって適正な塗膜膜厚を得ることができるも
のである。
As described above, in the present invention, an appropriate coating film thickness can be obtained by controlling the subsequent voltage from the current value during the initial fixed period in the electrodeposition coating.

【0027】図1は、本発明に係る電着塗装方法を実施
するための装置構成の一例であるカチオン型電着塗装装
置の構成を模式的に示すものである。この装置におい
て、電着槽9には電着塗料10が満たされており、電着
槽9上には被塗物8を搬送して電着塗料10に被塗物8
を浸漬できるようなハンガー7が設置されている。
FIG. 1 schematically shows the configuration of a cationic electrodeposition coating apparatus which is an example of the apparatus configuration for performing the electrodeposition coating method according to the present invention. In this apparatus, the electrodeposition tank 9 is filled with the electrodeposition paint 10, and the object 8 is conveyed onto the electrodeposition tank 9, and
The hanger 7 which can immerse is provided.

【0028】そして電着槽9内には、複数の対向する被
塗物用電極6群が配置されており、各電極6は、直流電
源1の陽極側へと電気的に接続されている。一方、直流
電源1の陰極側には、被塗物8が電気的に接続可能とさ
れている。
In the electrodeposition bath 9, a plurality of groups of opposed electrodes 6 for the object to be coated are arranged, and each electrode 6 is electrically connected to the anode side of the DC power supply 1. On the other hand, a coating object 8 can be electrically connected to the cathode side of the DC power supply 1.

【0029】また、電着槽9内には、電着槽9における
被塗物入槽側端部近傍に、電流特性測定用電極5が配置
されており、この電流特性測定用電極5も直流電源1の
陽極側に電気的に接続されている。
An electrode 5 for measuring current characteristics is arranged in the electrodeposition tank 9 near the end of the electrodeposition tank 9 on the side of the object to be coated. The power supply 1 is electrically connected to the anode side.

【0030】また、電流特性測定用電極5の直流電源1
への接続回路途中には、電流計3が配して有り、この電
流計3によって電流特性測定用電極5と被塗物8間に流
れる電流が計測できるようになっており、さらに被塗物
用電極6の直流電源1への接続回路途中には、電流計2
が配して有り、この電流計2によって被塗物用電極6と
被塗物8間に流れる電流が計測できるようになっいる。
The DC power source 1 for the current characteristic measuring electrode 5
An ammeter 3 is arranged in the middle of the connection circuit to the, and the ammeter 3 can measure a current flowing between the current characteristic measuring electrode 5 and the article 8 to be coated. In the course of the connection of the electrode 6 to the DC power supply 1
The current meter 2 can measure a current flowing between the electrode 6 for the object to be coated and the object 8 to be coated.

【0031】さらに、各電流計2、3は、マイクロコン
ピュータ等から構成される二次電圧制御装置4の入力側
に電気的に接続されており、これら電流計2、3で計測
された電流が電気信号として二次電圧制御装置4へと入
力される。また、二次電圧制御装置4の出力側には、直
流電源1が電気的に接続されており、二次電圧制御装置
4より発せられる命令信号によって直流電源1は印加電
圧を変化させることができるような構成とされている。
Further, each of the ammeters 2 and 3 is electrically connected to an input side of a secondary voltage controller 4 composed of a microcomputer or the like, and the currents measured by these ammeters 2 and 3 are measured. The electric signal is input to the secondary voltage control device 4. Further, a DC power supply 1 is electrically connected to an output side of the secondary voltage control device 4, and the DC power supply 1 can change an applied voltage by a command signal issued from the secondary voltage control device 4. It has such a configuration.

【0032】なお、本発明の電着塗装方法において用い
ることのできる電着塗装装置の構成としては、少なくと
も電着槽内に設置される電極と被塗物(反対電極)との
間に流れる電流値を測定でき、かつこの測定電流値に基
づき印加電圧を制御できる構成を有するものである限
り、図1に示したような装置構成例に何ら限定されるも
のではない。例えば、図1に示す装置構成において、電
着槽9内に配置される被塗物用電極6に代えて、電着槽
9の壁面を直流電源1に接続し、槽内壁電極とする構
成、また、図1に示す装置構成において、電流特性測定
用電極5と被塗物用電極6とをそれぞれ別々の直流電源
に接続する構成等、種々の変更が可能である。
The configuration of the electrodeposition coating apparatus that can be used in the electrodeposition coating method of the present invention includes at least a current flowing between an electrode installed in the electrodeposition tank and an object to be coated (opposite electrode). The apparatus is not limited to the example shown in FIG. 1 as long as it has a configuration capable of measuring a value and controlling an applied voltage based on the measured current value. For example, in the apparatus configuration shown in FIG. 1, the wall surface of the electrodeposition tank 9 is connected to the DC power supply 1 instead of the electrode 6 for the object to be coated arranged in the electrodeposition tank 9, thereby forming a tank inner wall electrode. In the apparatus configuration shown in FIG. 1, various modifications are possible, such as a configuration in which the current characteristic measuring electrode 5 and the object to be coated electrode 6 are respectively connected to separate DC power supplies.

【0033】図1に示す装置を用いて、本発明の電着塗
装方法を実施する場合の概略を説明すると、まず、電着
槽9内に被塗物8を配置して、まず基準電圧のもとで電
着塗装を開始する。そして塗装初期における、電流特性
測定用電極5と被塗物8間に流れる電流値を電流計3に
よって計測する。電流計3によって計測された電流値
は、電気信号として二次電圧制御装置4に送られる。二
次電圧制御装置4では、得られた塗装初期の計測電流値
から、前記したようにして適正な二次電圧値を割り出
し、直流電源1から発する電圧が当該二次電圧値となる
ように、直流電源1に対して命令信号を送る。直流電源
1は、この命令信号によって基準電圧値から所定の二次
電圧値へと自動的に変圧され、ハンガー7での搬送によ
って電着槽9内を移動する被塗物8表面には、当該二次
電圧値を印加する被塗物用電極6群の間を通過する電着
塗装における残りの期間において、所望膜厚の電着塗膜
が堆積されるものである。
An outline of the case of carrying out the electrodeposition coating method of the present invention using the apparatus shown in FIG. 1 will be described. First, an object 8 to be coated is placed in an electrodeposition tank 9 and a reference voltage is first set. Start electrodeposition coating. Then, the value of the current flowing between the current characteristic measuring electrode 5 and the object 8 to be coated in the initial stage of the coating is measured by the ammeter 3. The current value measured by the ammeter 3 is sent to the secondary voltage control device 4 as an electric signal. In the secondary voltage control device 4, an appropriate secondary voltage value is determined from the obtained measured current value in the initial stage of coating as described above, so that the voltage generated from the DC power supply 1 becomes the secondary voltage value. A command signal is sent to the DC power supply 1. The DC power supply 1 is automatically transformed from the reference voltage value to a predetermined secondary voltage value by the command signal, and the surface of the workpiece 8 moving in the electrodeposition tank 9 by being transported by the hanger 7 has An electrodeposition coating film having a desired film thickness is deposited during the remaining period of the electrodeposition coating that passes between the electrodes 6 for applying a secondary voltage.

【0034】[0034]

【実施例】以下、本発明を実施例によりさらに具体的に
説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples.

【0035】図1に示すようなカチオン型電着塗装装置
を用いて、電着塗装を行った。
Electrodeposition coating was carried out using a cationic electrodeposition coating apparatus as shown in FIG.

【0036】使用する被塗物としては、表1に示すよう
に、被塗物A(板状被塗物)と被塗物B(袋状構造物)
をそれぞれ1種で、または2種の混在する組み合わせ
で、用いたが、被塗物数は、被塗物の塗装面積合計の指
数が0.5〜1.5となるようにした。
As shown in Table 1, the substrates to be used are a substrate A (plate-shaped substrate) and a substrate B (bag-shaped structure).
Was used in one kind or in a combination of two kinds, and the number of objects to be coated was such that the index of the total coating area of the objects to be coated was 0.5 to 1.5.

【0037】まず、表1に示す各被塗物種(A1〜A
5、AB1〜AB5、B1〜B5)に対して基準電圧
(240V)のもとで電着塗装した。
First, the types of the substrates to be coated shown in Table 1 (A1 to A
5, AB1 to AB5, B1 to B5) were subjected to electrodeposition coating under a reference voltage (240 V).

【0038】この時電流計3で電流を計測したが、電圧
印加開始後約15秒で最大電流値となった。そこで15
秒の電流値I0と電流が下降し始める25秒後の電流I1
を計測した。電着終了後、被塗物の外板膜厚を測定し
た。結果を表2に示す。
At this time, the current was measured by the ammeter 3, and the current reached the maximum value about 15 seconds after the start of voltage application. So 15
The current value I 0 in seconds and the current I 1 25 seconds after the current starts to decrease
Was measured. After the completion of the electrodeposition, the thickness of the outer plate of the object to be coated was measured. Table 2 shows the results.

【0039】次に、電着後の外板膜厚が20μm(目標
値)になるように、二次電圧(電圧印加開始30秒後か
ら終了時まで印加する電圧)を調整し、電着した結果を
表3に示す。表3に示されるように、二次電圧を設定す
ることにより、外板膜厚を20μmで一定化できること
がわかる。
Next, the secondary voltage (the voltage applied from 30 seconds after the start of voltage application to the end thereof) was adjusted so that the thickness of the outer plate after electrodeposition became 20 μm (target value), and electrodeposition was performed. Table 3 shows the results. As shown in Table 3, it can be seen that by setting the secondary voltage, the thickness of the outer plate can be made constant at 20 μm.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】なお、図2は、電流値I0、I1と二次電圧
の関係を図示するものである。電流値I0は、塗装面積
が大きいほど大きくなり、電流値I1は袋状構造物の比
率が上がると大きくなる。二次電圧は、電流値I0、I1
が大きいほど高くされる。実施例においては、電流計3
によって電流値I0、I1を読み取り、電圧制御装置5に
て適正な二次電圧を割り出し、直流電源1から発する二
次電圧を自動制御した。また、図3は塗装時における経
過時間と、電流変化および印加電圧の関係を、被塗物種
A3の場合を例に取り示すものである。
FIG. 2 illustrates the relationship between the current values I 0 and I 1 and the secondary voltage. The current value I 0 increases as the painting area increases, and the current value I 1 increases as the ratio of the bag-like structure increases. The secondary voltage has a current value I 0 , I 1
The larger is the higher. In the embodiment, the ammeter 3
The current values I 0 and I 1 were read, and a proper secondary voltage was determined by the voltage control device 5, and the secondary voltage generated from the DC power supply 1 was automatically controlled. FIG. 3 shows the relationship between the elapsed time at the time of coating, the current change, and the applied voltage, taking the case of the type A3 as an example.

【0044】[0044]

【発明の効果】以上述べたように本発明の塗装方法にお
いては、電着塗装における初期一定期間の電流値から、
その後の電圧を制御することによって、適正な塗膜膜厚
を得ることができる。また、被塗物の種類、形状等の違
いに左右されず、常に適正な膜厚にて電着塗装ができる
ために、過剰な塗料を消費することもなく、さらに使用
される装置構成としても簡便なもので済むため、塗装経
済上においても有利である。
As described above, in the coating method of the present invention, the current value during the initial fixed period in electrodeposition coating is
By controlling the subsequent voltage, an appropriate coating film thickness can be obtained. Also, since the electrodeposition coating can always be performed with an appropriate film thickness without being influenced by the type, shape, etc. of the object to be coated, there is no need to consume an excessive amount of the coating material, and the device configuration to be further used. Since it is simple, it is advantageous in terms of coating economy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の電着塗装方法の実施において用いら
れる電着塗装装置の一例の構造を使用状態において模式
的に示す図、
FIG. 1 is a diagram schematically showing a structure of an example of an electrodeposition coating apparatus used in carrying out the electrodeposition coating method of the present invention in a use state;

【図2】 本発明の電着塗装方法の実施例において得ら
れた電流値I0、I1と二次電圧の関係を示すグラフ、
FIG. 2 is a graph showing a relationship between current values I 0 and I 1 and a secondary voltage obtained in an example of the electrodeposition coating method of the present invention;

【図3】 本発明の電着塗装方法の一実施例において得
られた電着塗装時における電流値の経時的変化を示すグ
ラフである。
FIG. 3 is a graph showing a time-dependent change in a current value during electrodeposition coating obtained in one embodiment of the electrodeposition coating method of the present invention.

【符号の説明】[Explanation of symbols]

1…直流電源、 2,3…電流計、 4…電圧制御装置、 5…電流特性測定用電極、 6…被塗物用電極、 7…ハンガー、 8…被塗物、 9…電着槽、 10…電着塗料 DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2,3 ... Ammeter, 4 ... Voltage control device, 5 ... Electrode for current characteristic measurement, 6 ... Electrode for coating object, 7 ... Hanger, 8 ... Coating object, 9 ... Electrodeposition tank, 10 ... Electrodeposition paint

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島 謙七郎 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 田村 吉宣 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenshiro Shima, Nissan Motor Co., Ltd., 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture (72) Inventor Yoshinobu Tamura 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture, Nissan Motor Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電着塗料が収容された電着槽内に被塗物
を搬送し、この被塗物と電着槽内に貯溜されている電極
との間に直流電源を接続し、電着塗装を行う電着塗装方
法において、まず予め設定された基準電圧によって電着
塗装を開始し、この電着塗装初期の電流値の変化から、
電着槽内に存在する被塗物の塗装面積および構造を推定
し、この結果に基づき、その後の電圧を変化させ形成さ
れる塗膜の膜厚を適正な値に制御することを特徴とする
電着塗装方法。
An object to be coated is transported into an electrodeposition tank containing an electrodeposition coating material, and a DC power source is connected between the object and an electrode stored in the electrodeposition tank. In the electrodeposition coating method of performing the electrodeposition coating, first, the electrodeposition coating is started by a preset reference voltage, and from the change in the current value at the initial stage of the electrodeposition coating,
The coating area and structure of the object to be coated present in the electrodeposition tank are estimated, and based on the result, the subsequent voltage is changed to control the film thickness of the formed coating film to an appropriate value. Electrodeposition method.
【請求項2】 全電着塗装時間の約1/3までの時間
を、電着塗装初期とするものである請求項1に記載の電
着塗装方法。
2. The electrodeposition coating method according to claim 1, wherein a period of time up to about 1/3 of the total electrodeposition coating time is set as the initial time of the electrodeposition coating.
【請求項3】 予め、使用される塗装設備において、種
々の塗装面積および構造の被塗物を用いて、これらの被
塗物に対する前記基準電圧における電着塗装初期の電流
値特性を計測し、さらにこのような種々の被塗物に対し
て所望膜厚の塗膜を形成させるために必要とされるその
後の電圧としての二次電圧値を決定しておき、このよう
にして求められた各種被塗物における前記電流値特性お
よび前記二次電圧値のデータを、前記直流電源を制御す
る電圧制御装置に記憶させておき、実際の電着塗装を行
った際に計測された電着塗装初期の電流値特性を、この
電圧制御装置において前記データと比較することで二次
電圧値を決定し、電着塗装を行うものである請求項1ま
たは2に記載の電着塗装方法。
3. In advance, in a coating facility to be used, by using objects to be coated having various coating areas and structures, the current value characteristics of the initial stage of electrodeposition coating at the reference voltage for these objects to be coated are measured. Further, a secondary voltage value as a subsequent voltage required for forming a coating film having a desired film thickness on such various objects to be coated is determined in advance, and various values obtained in this manner are determined. The data of the current value characteristic and the secondary voltage value in the object to be coated are stored in a voltage control device that controls the DC power supply, and the initial electrodeposition coating measured during actual electrodeposition coating is performed. The electrodeposition coating method according to claim 1, wherein the secondary voltage value is determined by comparing the current value characteristic of the voltage control device with the data in the voltage control device, and the electrodeposition coating is performed.
JP21876097A 1997-08-13 1997-08-13 Electrodepositon coating Withdrawn JPH1161493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21876097A JPH1161493A (en) 1997-08-13 1997-08-13 Electrodepositon coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21876097A JPH1161493A (en) 1997-08-13 1997-08-13 Electrodepositon coating

Publications (1)

Publication Number Publication Date
JPH1161493A true JPH1161493A (en) 1999-03-05

Family

ID=16724981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21876097A Withdrawn JPH1161493A (en) 1997-08-13 1997-08-13 Electrodepositon coating

Country Status (1)

Country Link
JP (1) JPH1161493A (en)

Similar Documents

Publication Publication Date Title
JP2002327294A (en) Method for calculating thickness of electrodeposited film
ZA200606571B (en) Method and system for determing the thickness of a layer of lacquer
JPS5948649A (en) Method and apparatus for corrosion resistance evaluation of painted metal
Poelman et al. Electrochemical study of the corrosion behaviour at the edges of electrocoated steel
JP2661858B2 (en) Method and system for monitoring phosphate coating quality
US20070224363A1 (en) Process and device for predicting coating thickness
JPH1161493A (en) Electrodepositon coating
JP5001492B2 (en) Coating film thickness prediction apparatus and coating film thickness prediction method in electrodeposition coating
JP7156481B1 (en) CORROSION RESISTANCE TEST METHOD FOR COATED METAL MATERIAL, CORROSION RESISTANCE TESTING APPARATUS, CORROSION RESISTANCE TEST PROGRAM AND RECORDING MEDIUM
JP2732148B2 (en) Electrocoating equipment
JP4876383B2 (en) Measurement method of electrodeposition film thickness
JPH08209398A (en) Method for adjusting thickness of coating electrodeposited on metal component
JPH059793A (en) Method and device for electrodeposition coating
Vatistas A new electrocoating technique to avoid cratering and increase voltage rupture
JPH08246194A (en) Method for electrodeposition coating of work and apparatus therefor
JPH06122996A (en) Method for forming electrodeposited film and device thereof
JP2005049236A (en) Electrodeposition characteristic measuring device, evaluation method and management method
JPH059794A (en) Method and device for electrodeposition coating
JP4167581B2 (en) Coating film thickness prediction apparatus and coating film thickness prediction method in electrodeposition coating
JPH06146079A (en) Electrodeposition coating device
JPH07228997A (en) Method for controlling coating film thickness in electrodeposition coating
JPS59136500A (en) Electrodeposition coating method and apparatus
JP2023037197A (en) Electrodeposition coating device and electrodeposition coating method
JPS6330754A (en) Method and apparatus for deteriorating coating metal
JPH059796A (en) Method and device for electrodeposition coating

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102