JPS6330754A - Method and apparatus for deteriorating coating metal - Google Patents
Method and apparatus for deteriorating coating metalInfo
- Publication number
- JPS6330754A JPS6330754A JP17482486A JP17482486A JPS6330754A JP S6330754 A JPS6330754 A JP S6330754A JP 17482486 A JP17482486 A JP 17482486A JP 17482486 A JP17482486 A JP 17482486A JP S6330754 A JPS6330754 A JP S6330754A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- coated metal
- overvoltage
- electrode
- counter electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 80
- 239000002184 metal Substances 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims description 38
- 238000000576 coating method Methods 0.000 title abstract description 27
- 239000011248 coating agent Substances 0.000 title abstract description 26
- 230000002542 deteriorative effect Effects 0.000 title abstract description 4
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 230000010287 polarization Effects 0.000 claims description 37
- 230000006866 deterioration Effects 0.000 claims description 26
- 239000003973 paint Substances 0.000 claims description 17
- 238000005868 electrolysis reaction Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 9
- 230000000593 degrading effect Effects 0.000 claims 1
- 239000004020 conductor Substances 0.000 abstract description 8
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229940075397 calomel Drugs 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、塗料、ライニング材が塗布された金属の腐食
方法及びその装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for corroding metal coated with paint or lining material.
[従来技術及びその問題点]
塗料あるいはライニング材によって塗布された被覆金属
の腐食による劣化は、腐食環境条件によって異なること
は広く知られている。しかし、一般に劣化速度は極めて
遅い。特に耐食性の優れた塗膜などが被覆された金属の
場合、例えば肉眼で耐食性の良否を判断するには数十年
経過しないと明確にならないこともあると考えられてい
る。それ故、塗膜の耐食寿命を早期に予測する方法の確
立が望まれている。[Prior Art and Problems Therewith] It is widely known that the deterioration of coated metals coated with paint or lining materials due to corrosion varies depending on the corrosive environmental conditions. However, the rate of deterioration is generally extremely slow. Particularly in the case of metals coated with coatings or the like with excellent corrosion resistance, it is thought that it may not be possible to judge the quality of corrosion resistance with the naked eye until several decades have elapsed. Therefore, it is desired to establish a method for early predicting the corrosion resistance life of a coating film.
この寿命予測法において、現状では、如何に劣化を促進
させるかについて注力されている。その内、塗膜下金屈
面の腐食反応を促進する方法として、塗装金属に直流電
圧を印加する、いわゆる電解法が注目されているロ例、
山本池:防食技術35.3(1986)]。あるいは、
塗装金属と裸亜鉛板とをカップルとする、いわゆるカッ
プリング法もある。In this life prediction method, the current focus is on how to accelerate deterioration. Among them, the so-called electrolytic method, in which a DC voltage is applied to the coated metal, is attracting attention as a method to accelerate the corrosion reaction of the metal surface under the coating.
Yamamotoike: Corrosion Prevention Technology 35.3 (1986)]. or,
There is also a so-called coupling method in which a coated metal and a bare zinc plate are coupled together.
いま、上記の電解法を用い、被覆金属と対極(白金、カ
ーボンなど)Cとの間(いわゆる端子間)に腐食液りを
介して一定の大きさの直流電圧Eを印加すると、その場
合に形成される電気回路は第2図に示す等価回路でモデ
ル化できる。ここに、金属には、塗料またはライニング
材が塗布されている。電圧E、。は金属の電極電位であ
り、抵抗Rrは過電圧ηを生じる金属の被覆膜下の表面
近傍での分極抵抗であり、R(は、金属に塗布された塗
料またはライニング材自体の電気抵抗あるいは膜欠陥部
などの錆層、沈着層の電気抵抗である。Roは腐食液り
の電気抵抗である。また、電圧E。0はは対極Cの電極
電位であり、抵抗Rr゛ は過電圧を生じる対極Cの表
面近傍での分極抵抗であり、Rf’ は対極Cの表面近
傍の電気抵抗である。Now, when using the above electrolytic method and applying a DC voltage E of a certain magnitude between the coated metal and the counter electrode (platinum, carbon, etc.) C (so-called between the terminals) through the corrosive liquid, in that case, The electrical circuit formed can be modeled by the equivalent circuit shown in FIG. Here, the metal is coated with paint or lining material. Voltage E. is the electrode potential of the metal, resistance Rr is the polarization resistance near the surface under the coating film of the metal that causes the overvoltage η, and R( is the electrical resistance of the paint or lining material itself applied to the metal or the film It is the electrical resistance of the rust layer or deposited layer in defective parts, etc. Ro is the electrical resistance of the corrosive liquid. Also, the voltage E. 0 is the electrode potential of the counter electrode C, and the resistance Rr is the counter electrode that generates an overvoltage. Rf' is the polarization resistance near the surface of C, and Rf' is the electrical resistance near the surface of the counter electrode C.
この閉回路に流れる電流■の大きさは下式で表わされる
。The magnitude of the current ■ flowing in this closed circuit is expressed by the following formula.
1 =(E−Ey□−Eco)/(R,+Rf+Ro十
Rf’ +Rr’)・・・(1)
電解液(腐食液)Lの濃度が一定ならば、その液抵抗R
0はほぼ一定となる。また、抵抗Rf’ 、 R、’は
小さいので、実質的に無視できると考えると、上記(1
)式は以下の通りとなる。1 = (E-Ey□-Eco)/(R, +Rf+Ro×Rf'+Rr')... (1) If the concentration of the electrolytic solution (corrosive solution) L is constant, the liquid resistance R
0 is almost constant. Also, considering that the resistances Rf', R,' are small and can be virtually ignored, the above (1
) formula is as follows.
1=(E−EWo−E(0)/(Rr+Rf+Ro)
・(1’)ところが、一般に塗料あるいはライニン
グ材が塗布された塗膜(以下これを総称して塗膜と記す
る)の電気抵抗Rfは、塗膜の吸水あるいは脱水あるい
は塗膜中の水滴の形成など、あるいは腐食環境の温度変
化などによって、常に一定値を示すことはない。また、
塗膜に傷あるいはピンホールなどの欠陥が存在する場合
も、この欠陥部分には塗膜下金属の腐食反応生成物、い
わゆる錆が沈着し、この錆層の電気抵抗Rfも変化する
。更にまた、海水中で被覆金属を電解する場合、より具
体的には、例えば被覆金属が還元反応を呈するように電
解すると、海水中に存在するカルシウムイオンなどによ
る沈着物などが被覆金属に沈着する。1=(E-EWo-E(0)/(Rr+Rf+Ro)
・(1') However, in general, the electrical resistance Rf of a paint film coated with paint or lining material (hereinafter collectively referred to as a paint film) is determined by water absorption or dehydration of the paint film, or water droplets in the paint film. It does not always show a constant value due to factors such as formation or temperature changes in the corrosive environment. Also,
Even when a defect such as a scratch or a pinhole exists in the coating film, corrosion reaction products of the metal under the coating film, so-called rust, are deposited in the defective portion, and the electrical resistance Rf of this rust layer also changes. Furthermore, when a coated metal is electrolyzed in seawater, more specifically, if the coated metal is electrolyzed in such a way that a reduction reaction occurs, deposits such as calcium ions present in seawater are deposited on the coated metal. .
この沈着層の電気抵抗R(は海水の温度あるいは沈着の
状態などにより変化する。このように、R4は、塗膜の
性質の変化や腐食の進行に伴い変化する。The electrical resistance R of this deposited layer changes depending on the temperature of the seawater, the state of deposition, etc. In this way, R4 changes with changes in the properties of the coating film and progress of corrosion.
従来から寿命予測に用いられている定電位法では、一定
の直流電圧を印加して反応を進行させている。すなわち
、この塗膜の電気抵抗R(が変化するにもかかわらず、
一定の端子間電圧Eで電解されている。したがって、一
定の大きさの端子間電圧Eを印加したとしても、過電圧
ηは変化する。In the constant potential method, which has been conventionally used for life prediction, a constant DC voltage is applied to allow the reaction to proceed. In other words, despite the change in the electrical resistance R of this coating film,
Electrolysis is carried out with a constant voltage E between terminals. Therefore, even if a constant voltage E between the terminals is applied, the overvoltage η changes.
過電圧ηは金属Wと対極Cとの間に電流を流すために必
要な電圧であり、電流密度などで変化する。The overvoltage η is a voltage required to cause a current to flow between the metal W and the counter electrode C, and changes depending on the current density and the like.
電解中に過電圧ηが変化すると、一定の腐食力で劣化さ
せていることにはならない。If the overvoltage η changes during electrolysis, it does not mean that deterioration is caused by a constant corrosion force.
又、ポテンショスタットいわゆる定電位電解装置は広く
利用されているが、この装置で電解する場合も同じこと
がいえる。この装置は、第2図で説明するならば、対極
CにかかわるJ’、Rr’。Also, a potentiostat, a so-called constant potential electrolysis device, is widely used, and the same can be said for electrolysis using this device. If this device is explained with reference to FIG. 2, J' and Rr' related to the counter electrode C.
Ecoが無視できるようにするため、基準電極(腐食液
中で安定な電極電位を示す、いわゆる参照電極)を溶液
中に挿入し、3電極式で電解するものである。しかし、
この場合も、基準電極からみれば一定の電位差で金属を
保持(電解)できるものの、RrやE。0が変化した場
合に、被覆金属の腐食を支配する過電圧ηを一定に制御
できる乙のではなしたがって、従来の早期寿命予測法は
、腐食反応が一定の力の印加の下で生じていないので、
塗膜の寿命予測結果は、未知の因子に依存していて信頼
できない。腐食反応を一定の力を印加して促進させるた
めには、被覆金属の金属表面近傍の過電圧ηの大きさを
一定にする必要がある。In order to make Eco negligible, a reference electrode (a so-called reference electrode that exhibits a stable electrode potential in the corrosive solution) is inserted into the solution, and electrolysis is performed using a three-electrode system. but,
In this case as well, although the metal can be held (electrolyzed) with a constant potential difference when viewed from the reference electrode, Rr and E. 0 changes, it is not possible to control the overvoltage η that governs the corrosion of the coated metal at a constant level. Therefore, the conventional early life prediction method is not effective because the corrosion reaction does not occur under the application of a constant force. ,
Paint film life prediction results are unreliable as they depend on unknown factors. In order to accelerate the corrosion reaction by applying a constant force, it is necessary to keep the magnitude of the overvoltage η near the metal surface of the coated metal constant.
本発明の目的は、過電圧を一定に保つ被覆金属劣化方法
及びその装置を堤供することである。An object of the present invention is to provide a method and apparatus for deteriorating coated metals that maintain constant overvoltage.
[問題点を解決するための手段]
本発明に係る被覆金属劣化方法は、塗料またはライニン
グ材が塗布された被覆金属と対極とを腐食液中に浸し、
被覆金属と対極との間に電圧を印加して、被覆金属を劣
化させるようにした被覆金属劣化方法において、被覆金
属と対極の間の電気回路の抵抗のうち、過電圧か印加さ
れる分極抵抗と上記の分極抵抗以外の抵抗とを計測し、
この計測結果に基づき過電圧が所定の大きさになるよう
に上記の電圧を制御することを特徴とする。[Means for Solving the Problems] The coated metal deterioration method according to the present invention includes immersing the coated metal coated with paint or lining material and a counter electrode in a corrosive liquid;
In a coated metal deterioration method in which a voltage is applied between the coated metal and the counter electrode to deteriorate the coated metal, the resistance of the electric circuit between the coated metal and the counter electrode is determined by the overvoltage or the applied polarization resistance. Measure the resistance other than the polarization resistance above,
A feature of the present invention is that the above-mentioned voltage is controlled so that the overvoltage reaches a predetermined level based on this measurement result.
本発明に係る被覆金属劣化装置は、塗料又はライニング
材が塗布された被覆金属からなる試料電極と、試料電極
に対する対極と、試料電極に対する基準電極と、試料電
極と対極との間に設定された電圧を印加する電圧可変電
解手段と、電圧可変電解手段にパルス電圧を印加させる
ように電圧を設定するパルス電圧印加手段と、被覆金属
と対極との間に電流がほとんど流れないように電圧可変
電解手段に電圧を設定してパルス分極法により計測し、
計測結果より演算された所定の過電圧を印加できる電圧
値を電圧可変電解手段に設定する印加電圧設定手段とを
備えたことを特徴とする。The coated metal deterioration device according to the present invention includes a sample electrode made of a coated metal coated with paint or a lining material, a counter electrode for the sample electrode, a reference electrode for the sample electrode, and a sample electrode set between the sample electrode and the counter electrode. A variable voltage electrolytic means for applying a voltage, a pulse voltage applying means for setting a voltage so as to apply a pulse voltage to the variable voltage electrolytic means, and a variable voltage electrolytic means for applying a voltage so that almost no current flows between the coated metal and the counter electrode. Set the voltage in the means and measure by pulse polarization method,
The present invention is characterized by comprising applied voltage setting means for setting the voltage variable electrolysis means to a voltage value at which a predetermined overvoltage calculated from the measurement results can be applied.
[作 用コ
本発明に係る被覆金属劣化方法においては、過電圧を所
定の大きさで保持しつつ分極し、腐食を促進できる。[Function] In the coated metal deterioration method according to the present invention, corrosion can be promoted by polarizing while maintaining the overvoltage at a predetermined level.
本発明に係る被覆金属劣化装置においては、パルス分極
法による計測が可能であり、過電圧を所定の大きさに保
持できる。In the coated metal deterioration device according to the present invention, measurement can be performed using a pulse polarization method, and overvoltage can be maintained at a predetermined level.
[実施例] 以下、添付の図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
本発明に係る劣化装置においては、3電極式で電解を行
う。すなわち、第1図左側に示すように、腐食液りを入
れた容器4の中に塗膜を被覆した金属W、対極Cおよび
基準電極Rを浸漬する。そして、被覆電極Wと対極Cと
の間に、電圧Eを印加して、被覆電極Wと基準電極Rと
の電位差がE+E9゜となるようにする。この容器4に
おける等価回路図は、第2図に示したものと同じである
。本実施例の特長は、R(+Ro(Rf’、R,’は小
さいので無視できる)が変化してもRrに印加する過電
圧ηが一定となるように印加電圧Eを補正しつつ被覆金
属を劣化させることである。即ち、J+Roの大きさと
Rrの大きさを検知し、両者の比に応じてRrに加わる
ηを一定になるようにEを変化するようにしたものであ
る。ηを一定の大きさで印加するには、RrとRf+H
□による電圧降下分およびE、。+Ecoの値を常に把
握し、それらの値の変化量に応じて、Eの大きさを変化
させねばならない。In the deterioration device according to the present invention, electrolysis is performed using a three-electrode method. That is, as shown on the left side of FIG. 1, the coated metal W, the counter electrode C, and the reference electrode R are immersed in a container 4 containing a corrosive liquid. Then, a voltage E is applied between the covered electrode W and the counter electrode C so that the potential difference between the covered electrode W and the reference electrode R becomes E+E9°. The equivalent circuit diagram of this container 4 is the same as that shown in FIG. The feature of this embodiment is that the applied voltage E is corrected and the coating metal is In other words, the magnitude of J+Ro and the magnitude of Rr are detected, and E is changed according to the ratio of the two so that η added to Rr becomes constant. To apply with the magnitude of Rr and Rf+H
Voltage drop due to □ and E,. It is necessary to constantly grasp the value of +Eco and change the magnitude of E according to the amount of change in these values.
次に、具体的に数値をあげて説明する。いま、過電圧η
を0.005V に保って電解を行い劣化を進行させる
とする。所定の時間毎にR4と池の抵抗Rf、Roを測
定する(Rr’とRr’は無視できる)。Next, concrete numerical values will be given and explained. Now, overvoltage η
Assume that electrolysis is performed while maintaining the voltage at 0.005V to progress the deterioration. Measure R4 and the resistances Rf and Ro of the pond at predetermined intervals (Rr' and Rr' can be ignored).
当初Rr=IOkΩ、R「=50にΩ、Ro=0.2に
Ωであるならば、Rr/(J+Ro)−10150,2
=115.02となり、RrとRf+R0とに加わる各
々の電圧をI xO,o05Vと5.02X0.005
V、すなわち0.005Vと0.0251Vi:すれば
よい。Initially Rr=IOkΩ, R=50Ω, Ro=0.2Ω, then Rr/(J+Ro)−10150,2
= 115.02, and each voltage applied to Rr and Rf+R0 is I xO, o05V and 5.02X0.005
V, that is, 0.005V and 0.0251Vi:
従って、印加電圧Eは0.005+0.0251.=0
.030+Vに設定すればよい。次に、所定の時間が経
過し、塗膜の電気抵抗Ftfのみが吸水などによって変
化し、30KO+、:低下したとすれば、J−/(Rr
+Ro)=10/30.2=1/3.02となり、印加
電圧Eは、0.005+O,0151=0.020tv
、すなわち0.020tV になるように可変すれば
よい。さらに、所定の時間が経過し、例えば塗膜と金属
との付着劣化に伴い、塗膜ふくれ(ブリスター)が発生
し、R7が減少し、IkΩと検知されたとする。Therefore, the applied voltage E is 0.005+0.0251. =0
.. It is sufficient to set it to 030+V. Next, after a predetermined period of time has elapsed, only the electrical resistance Ftf of the coating film changes due to water absorption, etc., and decreases by 30KO+, J-/(Rr
+Ro)=10/30.2=1/3.02, and the applied voltage E is 0.005+O,0151=0.020tv
, that is, it may be varied so that it becomes 0.020 tV. Furthermore, suppose that a predetermined period of time has elapsed and, for example, due to deterioration of the adhesion between the paint film and the metal, paint film blistering occurs, R7 decreases, and IkΩ is detected.
R(は30にΩ、Roは0.2にΩで電解を続けるとす
るならば、Rr/(Rf+R0)= I/(30+0.
2)=t/30.2であるので、Eの大きさは、l×0
.005+ 30.2X O,QO5= 0.005+
0.0151= O,0156Vで表わせ、故にE=
0.0 I 56Vで電解すればよい。If we continue electrolysis with R(=30Ω and Ro=0.2Ω, then Rr/(Rf+R0)=I/(30+0.
2)=t/30.2, so the size of E is l×0
.. 005+ 30.2X O,QO5= 0.005+
0.0151= O,0156V, therefore E=
Electrolysis can be performed at 0.0 I 56V.
本発明は、このように、Rrh Rf、 R0を検知し
、Rrに加える過電圧ηを予め定められた値に保持すべ
き印加電圧Eの大きさを可変するようにして、被覆金属
を劣化させるものである。但し、Roの変化量が小さい
とするならば、あるいはRrに比べR8の大きさが無視
できる程小さいならば、R(とRrとを検知すればよい
。又、JとRoを合算した値とRrを検知してもよい。The present invention thus detects Rrh Rf, R0 and changes the magnitude of the applied voltage E to maintain the overvoltage η applied to Rr at a predetermined value, thereby deteriorating the coated metal. It is. However, if the amount of change in Ro is small, or if the magnitude of R8 is negligibly small compared to Rr, it is sufficient to detect R (and Rr. Also, the sum of J and Ro Rr may also be detected.
なお、上記の数値を用いて説明したように、過電圧ηの
大きさと印加電圧Eの大きさにほぼ差がない金属すなわ
ち金属表面に被覆膜や、被覆膜の欠陥部に錆の沈着膜が
存在しない金属は本発明の対象外であって、この場合は
、本発明を用いるまでもなく、従来知られているポテン
ショスタットなどで測定できる。As explained using the above numerical values, there is a metal with almost no difference in the magnitude of the overvoltage η and the magnitude of the applied voltage E, that is, there is a coating film on the metal surface and a deposited film of rust on the defective parts of the coating film. Metals that do not have a .
(b)抵抗測定法
J +R0(以下では、R4と略する)とRrを求めろ
方法には、公知の方法としてパルス分極法と掃引分極法
とがある。本実施例では、パルス分極法により求めた。(b) Resistance measurement method J+R0 (hereinafter abbreviated as R4) and Rr are determined. There are two known methods: pulse polarization method and sweep polarization method. In this example, it was determined by the pulse polarization method.
これは短時間の分極でR「とR4が求められるためであ
る。後に説明するように、R4とRrを検知しようとす
る時間中は、Rrに印加される過電圧ηが予め定められ
た大きさに保持できない。たとえば、パルス分極法では
、もともとの印加電圧Eの値を一旦零にして、パルス印
加電圧Vのみを印加させねばならないため、原理的には
過電圧ηが変化される。一方、掃引分極法でも、印加電
圧Vによる掃引中は過電圧ηが変化される。この場合、
パルス分極法は掃引分極法に比してはるかに短時間で実
行できるので、RfとRrを求めるために印加する電圧
Vによる影響を極力小さくするためには、パルス分極法
を用いることが有利である。なお、パルス分極法による
測定は、適当な時間毎に行ない、その都度、R[とR4
を算出し、RfとR2に変化が認められればRfとRr
の大きさに対応して過電圧ηを一定に保持しうるように
Eの大きさを変化させればよい。This is because R' and R4 are determined by short-term polarization.As will be explained later, during the time when R4 and Rr are to be detected, the overvoltage η applied to Rr is set to a predetermined magnitude. For example, in the pulse polarization method, the value of the original applied voltage E must be set to zero and only the pulse applied voltage V must be applied, so in principle the overvoltage η is changed. Also in the polarization method, the overvoltage η is changed during the sweep with the applied voltage V. In this case,
Since the pulse polarization method can be executed in a much shorter time than the sweep polarization method, it is advantageous to use the pulse polarization method in order to minimize the influence of the voltage V applied to determine Rf and Rr. be. Note that measurements using the pulse polarization method are performed at appropriate intervals, and R[ and R4
If a change is observed in Rf and R2, Rf and Rr
The magnitude of E may be changed in accordance with the magnitude of E so that the overvoltage η can be kept constant.
次に、RfとRrを求めるための2つの方法について説
明する。Next, two methods for determining Rf and Rr will be explained.
まず、本実施例において使用するパルス分極法について
説明する。いま、被覆金属の電気的等価回路は、第3図
に示される回路であるとする。第2図に示した回路との
違いは、金属表面の電気二重層容ff1Cdlが考慮さ
れていることである。過電圧ηが小さくRrか一定値で
ある場合、第4図の上側に示される電圧パルスVが第3
図の回路の両端に印加されると、この電圧パルスVに応
答して電流は第4図の下側に示される曲線の上うに変化
* *
する。0≦t≦tての曲線とE≧tでの曲線は、それぞ
れ次の式で表わせる。First, the pulse polarization method used in this example will be explained. Assume now that the electrical equivalent circuit of the coated metal is the circuit shown in FIG. The difference from the circuit shown in FIG. 2 is that the electric double layer capacitance ff1Cdl of the metal surface is taken into consideration. When the overvoltage η is small and Rr is a constant value, the voltage pulse V shown in the upper part of FIG.
When applied across the circuit of the figure, in response to this voltage pulse V, the current changes along the curve shown at the bottom of FIG. 4**. The curve for 0≦t≦t and the curve for E≧t can be expressed by the following equations, respectively.
* *
ここに、tおよびI は電圧パルスVを遮断したときの
時間および電流値である。両辺をVで除算すると
・・(4)
、となり、I/V値は電圧パルスの大きさに関係のない
時間のみの関数となる。そこで
Cd1・R「・Rr2JO3X
R「V
とおき、(5)式の両辺の対数をとると、次式に書きか
えられる。* * Here, t and I are the time and current value when the voltage pulse V is interrupted. Dividing both sides by V...(4) The I/V value becomes a function only of time, which is unrelated to the magnitude of the voltage pulse. Therefore, by setting Cd1.R".Rr2JO3X R"V and taking the logarithm of both sides of equation (5), it can be rewritten as the following equation.
l *
log(−r / V)= logY −−Q −L
) ・・(6)*
故にlOg(−I /V)と(t−t)のグラフの傾き
から* *
X、切片からYの値が各々求められる(I 、t
は第4図より求まる)。従って、下記の値の算出が可能
となる。l*log(-r/V)=logY--Q-L
)...(6)* Therefore, from the slope of the graph of lOg (-I /V) and (t-t) * * the values of X and Y can be found from the intercept (I, t
is determined from Figure 4). Therefore, the following values can be calculated.
*
■
Rr−(y +−)−+ ・・(7)
■
φ
ところが、Rrは過電圧ηが小さいときのみ一定値であ
る。もし電圧パルスを順次大きい値に設定してI/Vと
時間上の曲線に電圧依存性が認められるならば、過電圧
ηが変化し被覆金属の腐食反応が検出されたことになる
。* ■ Rr-(y +-)-+...(7)
■ φ However, Rr is a constant value only when the overvoltage η is small. If voltage dependence is observed in the I/V vs. time curve by sequentially setting the voltage pulses to larger values, this means that the overvoltage η has changed and a corrosion reaction of the coated metal has been detected.
次に、掃引分極法について説明する。Next, the sweep polarization method will be explained.
被覆金属の塗膜抵抗成分Rfか大きいと、掃引分極とし
たときの電位と電流の関係(分極曲線)は■が小さいと
き(分極抵抗域)は見掛上「はぼ直線関係」となり、か
つ被覆金属表面近傍の電気化学的反応成分の分極挙動は
この「はぼ直線関係」の曲線上に含まれる。そこで、全
電解電流rにより掃引初期の全抵抗成分に相当する電位
(E)−電流(1)曲線の勾配の値を常に引算すること
で、電気化学的に関係する微小電流(△i)−電位ぐ△
E)曲線が得られる。そして、△1よりJおよびR2は
次のようにして算出することができる。When the coating film resistance component Rf of the coated metal is large, the relationship between potential and current (polarization curve) when swept polarization becomes a "nearly linear relationship" when ■ is small (polarization resistance region), and The polarization behavior of electrochemically reactive components near the surface of the coated metal is included on the curve of this "sublinear relationship". Therefore, by always subtracting the slope value of the potential (E)-current (1) curve corresponding to the total resistance component at the initial stage of the sweep by the total electrolytic current r, the electrochemically related minute current (△i) -Potential△
E) A curve is obtained. Then, J and R2 can be calculated from Δ1 as follows.
いま、自然電極電位をEr5t、電極電位をE。Now, the natural electrode potential is Er5t, and the electrode potential is E.
電解電流をI、塗膜抵抗をRfおよび分極抵抗をR7と
すると、分極抵抗域におけるEとIの関係は
E−1(Rf十R,)=I −R(・・・(9)で表わ
せ、Rfが一定で、しかも分極抵抗域外な*
らば、Rrは変化を受け(Rrで表わす)、EとIの関
係は
*
E=I(Rf+Rr ) ・・(10
)で表わせ、(9)式および(10)式の差は*
△E=I(Rr−Rr) ・(H)とな
る。(9)式および(10)式の関係を概念的に表した
第5図より、△Eと△iの関係は
△E−△i(R「+Rr)=△i−J −(12)
で表わせ、(11)式および(12)式より*
△i= l /Rt−I (RrRr ) ”・
(13)となる。ところで次式のターフエル式
*
Rr =η/I=(a+blogI)/I =(1
4)が被覆金属に適用できるならば、(14)式に(1
3)式を代入すると
△1=(1/Rt−1−Ry−) L/RL・(a+
b Logl) −(15)となる。△i、r、Eは測
定値であることから、Rは△i/I・町と■の関係の漸
近線の切片より見積もることができる。またRr=Rt
−R。When the electrolytic current is I, the coating resistance is Rf, and the polarization resistance is R7, the relationship between E and I in the polarization resistance region is expressed as E-1 (Rf + R,) = I - R (... (9) , Rf is constant and is outside the polarization resistance range*, then Rr changes (represented by Rr), and the relationship between E and I is *E=I(Rf+Rr)...(10
), and the difference between formulas (9) and (10) is *ΔE=I(Rr−Rr)·(H). From Figure 5, which conceptually represents the relationship between equations (9) and (10), the relationship between △E and △i is △E - △i (R "+Rr) = △i - J - (12)
From equations (11) and (12), * △i= l /Rt-I (RrRr) ”・
(13). By the way, the following Terfel formula * Rr = η/I = (a+blogI)/I = (1
4) can be applied to coated metal, then equation (14) can be changed to (1
3) Substituting the formula, △1=(1/Rt-1-Ry-) L/RL・(a+
b Logl) - (15). Since Δi, r, and E are measured values, R can be estimated from the intercept of the asymptote of the relationship between Δi/I・town and ■. Also, Rr=Rt
-R.
であるため、Rfが求まる。Therefore, Rf can be found.
(C)劣化装置
次に、以上に説明した劣化方法を具現する劣化装置を説
明する。(C) Deterioration device Next, a deterioration device that embodies the deterioration method described above will be described.
第1図に、劣化装置の基本構成を示す。上に説明したよ
うに、容器4内の腐食液りに被覆金属W、基準電極R1
対極Cを浸漬する。被覆金属Wを電気的導線(以下導線
と称する)lにより接地し、基準電極R1対極Cは、導
線2.3によりポテンショスタットPOに接線する。ポ
テンショスタットPOにはパルス印加手段Ep、印加電
圧可変手段Evが導線5,6で接続されており、また、
ポテンショスタットPoの電流変化、電位変化は分極抵
抗R2と被覆膜抵抗R4(以下では、金属Wと対極Cと
の間の全抵抗のうち、Rfを除いたものを指す乙のとす
る)の値を演算する手段(以下演算手段と称する)CL
に導線7で人力されている。一方、予め設定される過電
圧ηは過電圧設定手段I」より演算手段CLに導線8で
その大きさが入力される。FIG. 1 shows the basic configuration of the deterioration device. As explained above, the coating metal W and the reference electrode R1 are placed in the corrosive liquid in the container 4.
Immerse the counter electrode C. The covering metal W is grounded by an electric conductor (hereinafter referred to as a conductor) l, and the reference electrode R1 and the counter electrode C are tangential to the potentiostat PO by a conductor 2.3. A pulse application means Ep and an applied voltage variable means Ev are connected to the potentiostat PO by conductive wires 5 and 6, and
The current change and potential change of the potentiostat Po are determined by the polarization resistance R2 and the coating resistance R4 (hereinafter, B refers to the total resistance between the metal W and the counter electrode C, excluding Rf). Means for calculating values (hereinafter referred to as calculation means) CL
It is manually powered by conductor 7. On the other hand, the magnitude of the preset overvoltage η is input from the overvoltage setting means I to the calculation means CL through a conductor 8.
また、演算手段CLで計算された被覆膜抵抗Rrと分極
抵抗R7の比により、印加電圧可変手段Evの大きさが
制御できるように、導線9でこの手段Evに接続されて
いる。更に、電流、電位、過電圧η、被覆膜抵抗Rf、
分極抵抗Rrあるいは経過時間などが表示できるように
表示手段RECが導線10で演算手段CLと接線されて
いる。一方、ポテンショスタットPOが導線11で接地
されている。但し、容器4が、例えば川や海とすれば、
この導線11で接地すれば測定不可能であるので、ポテ
ンショスタットPOは接地に対してフローティングとす
る。Further, it is connected to the applied voltage variable means Ev by a conductive wire 9 so that the magnitude of the applied voltage variable means Ev can be controlled by the ratio of the coating film resistance Rr and the polarization resistance R7 calculated by the calculation means CL. Furthermore, current, potential, overvoltage η, coating film resistance Rf,
A display means REC is tangentially connected to the calculation means CL by a conducting wire 10 so that polarization resistance Rr or elapsed time can be displayed. On the other hand, the potentiostat PO is grounded through a conductor 11. However, if the container 4 is a river or the sea, for example,
If the conductor 11 is grounded, measurement will not be possible, so the potentiostat PO is made floating with respect to the ground.
被覆された金属Wは、塗料またはライニング材が、スプ
レー、浸漬、ハケ、ロールあるいは電着などの通常のい
かなる方法により金属に被覆され得てもよい。また金属
としては、その種類か限定されるものではない。The coated metal W may be coated with a paint or lining material by any conventional method such as spraying, dipping, brushing, rolling or electrodeposition. Furthermore, the type of metal is not limited.
基準電極Rは、それ自身の電極電位が使用される腐食液
中で安定であれば良く、例えばカロメル電極、銀−塩化
銀電極のように通常用いられるもので良い。The reference electrode R only needs to have its own electrode potential stable in the corrosive solution used, and may be a commonly used electrode such as a calomel electrode or a silver-silver chloride electrode.
対極Cは、被覆される金属Wと同一材質のものでよく、
又、カーボン板・棒でもよい。好ましい対極の材質とし
ては不活性のものが良く、例えば白金、金などがあるが
、特に限定されるものでない。但し、腐食液の量か少な
いときは、白金などの不活性の対極を用いることが望ま
しい。The counter electrode C may be made of the same material as the metal W to be coated,
Alternatively, a carbon plate or rod may be used. Preferable materials for the counter electrode include inert materials such as platinum and gold, but are not particularly limited. However, when the amount of corrosive liquid is small, it is desirable to use an inert counter electrode such as platinum.
ボテンンヨスタットP○いわゆる定電位電解装置は一般
に用いられるもので充分であるが、被覆膜に欠陥が無<
Rfが大きい場合は、このボテンノヨスタットPOの入
力インピーダンスの大きさは、腐食液中での膜抵抗Rf
と分極抵抗Rrの合算値より100倍以上であることが
望ましい。Botenyostat P○ A commonly used constant potential electrolyzer is sufficient, but there are no defects in the coating film.
When Rf is large, the magnitude of the input impedance of this Botennoyostat PO is equal to the membrane resistance Rf in the corrosive liquid.
It is desirable that the value is 100 times or more greater than the sum of the polarization resistance Rr and the polarization resistance Rr.
パルス印加手段Epは、ポテンショスタットPOで一定
の大きさのパルス状の加電圧で被覆金属を電解(いわゆ
る分極)するためある大きさのパルス状の電圧を重複さ
せるものであり、パルス状の電圧の発生器である。The pulse application means Ep overlaps pulsed voltages of a certain magnitude in order to electrolyze (so-called polarization) the coated metal with a pulsed voltage of a certain magnitude using a potentiostat PO. It is a generator of
演算手段CLとは、R4の大きさと、Rrの大きさを算
出するものであって、このJとRrの値を把握し、これ
らの値により第2図中の印加電圧Eの可変量を決定する
ためのものである。The calculation means CL is for calculating the magnitude of R4 and the magnitude of Rr, grasps the values of J and Rr, and determines the variable amount of the applied voltage E in Fig. 2 based on these values. It is for the purpose of
過電圧設定手段Hとは、過電圧ηを予めある大きさに設
定するものであって、R,、Rfが変化してもηが予め
設定された大きさで保持できるようにしたものである。The overvoltage setting means H is used to set the overvoltage η to a certain level in advance, so that even if R, . . . Rf changes, η can be maintained at the preset level.
印加電圧可変手段Evとは、上記の演算手段CLに基づ
いて印加電圧E(第2図)の大きさを可変するものであ
る。The applied voltage variable means Ev varies the magnitude of the applied voltage E (FIG. 2) based on the above-mentioned calculation means CL.
表示手段RFCとは、レコーダーあるいはプリンターな
どであって、上記のE、l’J、 Rr、 i。The display means RFC is a recorder or a printer, and the above E, l'J, Rr, i.
ηなどを表示・記録するものである。It displays and records η, etc.
今、基準電極RからみたWの電位(W自身の自然電極電
位Er5t (vs、 R)が−IV(vs、R)とす
れば、先ず印加電圧可変手段Evにより、+IVを印加
し、C−W間の電流をほぼ零とする。すなわち、W自身
の自然電極電位近傍で電解している状態になる。次いで
、パルス印加手段El)で、前記の第4図のように電圧
パルスVを印加し、(2)式〜(8)式より演算手段C
Lで被覆膜抵抗R4及び分極抵抗Rrを求める。そして
、今、過電圧ηを0.005Vで電解保持する(W極自
身をカソード分極する)とすれば、過電圧設定手段Hを
0.005Vとする。そして、RrがIOkΩ、Rrが
50にΩであったとすれば(Roの大きさは、例えば海
水ならば、Rr>>ROの関係となり、Roを略無視で
きる)、前記したように計算すれば、印加電圧は+〇、
006v となる。故に印加電圧可変手段Evの大きさ
を+1.006Vとなるように+0゜006Vを加算す
るようにすればよい。Now, assuming that the potential of W (natural electrode potential Er5t (vs, R) of W itself) as seen from the reference electrode R is -IV (vs, R), first, +IV is applied by the applied voltage variable means Ev, and C- The current between W is made almost zero. In other words, it becomes electrolyzed near the natural electrode potential of W itself. Next, the voltage pulse V is applied by the pulse application means El) as shown in Fig. 4 above. Then, from equations (2) to (8), calculation means C
The coating film resistance R4 and the polarization resistance Rr are determined by L. Now, if the overvoltage η is to be electrolytically maintained at 0.005V (the W pole itself is cathodically polarized), the overvoltage setting means H is set to 0.005V. If Rr is IOkΩ and Rr is 50Ω (for example, in the case of seawater, the relationship of Ro is Rr>>RO, and Ro can be almost ignored), then if you calculate as described above, , the applied voltage is +〇,
It becomes 006v. Therefore, +0°006V may be added so that the magnitude of the applied voltage variable means Ev becomes +1.006V.
次いで、ある時間が経過したのち、再びRfとRrを求
める。すなわち、−旦電解を中断し、上記の操作をくり
返し、RからみたWの電位を計測し、−1,2V とす
れば、先ず印加電圧可変手段Evにより+1.2V を
印加し、C−W間の電流を略々零としてW自身の自然電
極電位近傍で電解し、次いで、パルス印加手段Epによ
り電圧パルスVを印加し、RfとR2の値を求め、もし
JとR2の比の大きさに変化があれぼ印加電圧可変手段
Evにより印加電圧の大きさを予め設定した・過電圧η
になるように変更すればよい。このように、順次ある時
間毎にR(とRrの値を計測しつつ、印加電圧Eを一定
の過電圧ηになるように可変する。そして、その都度、
表示手段RFCに各々の値を表示又は記録する。Next, after a certain period of time has elapsed, Rf and Rr are determined again. That is, stop the electrolysis once, repeat the above operations, measure the potential of W seen from R, and if it is -1.2V, first apply +1.2V by the applied voltage variable means Ev, and then Electrolysis is carried out near the natural electrode potential of W itself by setting the current between them to approximately zero, and then a voltage pulse V is applied by the pulse application means Ep to find the values of Rf and R2, and if the magnitude of the ratio of J and R2 If there is a change in the applied voltage, the magnitude of the applied voltage is set in advance by the applied voltage variable means Ev.
You can change it so that In this way, while sequentially measuring the values of R (and Rr) at certain time intervals, the applied voltage E is varied to a constant overvoltage η.Then, each time,
Each value is displayed or recorded on the display means RFC.
第6図は、劣化装置の具体例を示す。容器4内に対極0
1基準電極R及び被覆された金属Wが設置され、容器4
内には腐食液りが入っている。基準電極Rはポテンショ
スタットPOの差動増幅23DAの入力(1)に接線さ
れ、対極Cは、その出力(3)に電流計■を介して接続
されている。また、金属Wは接地され、基?$電極Rら
電圧計■を介して接地されている。一方、ポテンショス
タットPOの差動増幅器DAの他方の入力(2)はスイ
ッチSWI及び印加電圧可変用電源Ev及びスイッチS
W2を介して、あるいはパルス印加手段El)を介して
接地されている。また、電圧計■、電流計■の出力は演
算手段CLに入力され、かつ過電圧設定手段Hの過電圧
設定値もこの手段CLに人力されている。更にこの演算
手段CLの出力は表示手段RFC及びサーボモーターM
に接続され、このサーボモーターMは、印加電圧可変手
段Evの電源の大きさを変化させる。FIG. 6 shows a specific example of the deterioration device. Counter electrode 0 in container 4
1 reference electrode R and coated metal W are installed, and container 4
There is a corrosive liquid inside. The reference electrode R is tangentially connected to the input (1) of the differential amplifier 23DA of the potentiostat PO, and the counter electrode C is connected to its output (3) via an ammeter (2). Also, the metal W is grounded and the base? The $ electrode R is grounded via the voltmeter ■. On the other hand, the other input (2) of the differential amplifier DA of the potentiostat PO is connected to the switch SWI, the applied voltage variable power supply Ev, and the switch S
It is grounded via W2 or via the pulse application means El). Further, the outputs of the voltmeter (2) and the ammeter (2) are input to the calculating means CL, and the overvoltage set value of the overvoltage setting means H is also manually input to this means CL. Furthermore, the output of this calculation means CL is sent to the display means RFC and the servo motor M.
The servo motor M changes the magnitude of the power supply of the applied voltage variable means Ev.
今、スイッチSW1が(a)側になっていれば、ポテン
ショスタットの差動増幅器DAの出力(3)は零で、こ
のPOには電圧計■の大きさのみが入力(1)に入力さ
れている。すなわち、金属Wの自然電極電位(対基準電
極R)Erstのみが計測されていることになる。そし
て、電圧計■の出力として演算手段CLに人力され、こ
の電位差の大きさ、すなわちEr5tはこの大きさの逆
数がサーボモーターMによって印加電圧可変用電源で調
整され、この電源の大きさは(−E、j)に設定される
。次いで、スイッチSWIを(b)側にすると、差動増
幅器りの入力、すなわち端子1と2との間の電位差は、
Er5t Er5t ’0となり、DAの出力(3)
はほぼ雰となり、電流計■の出力もほぼ零となる(即ち
、Wの自然電極電位近傍で電解されている)。次いで、
スイッチSW2を(d)側に切換え、パルス印加手段E
ll)を動作させ、パルス電圧(矩形波)を短時間印加
する。即ち、Dの入力(1)と(2)七の間に、このパ
ルス電圧が印加され、C−W間にそのパルス電圧が加わ
ると同時に電圧計■及び電流計■に第4図に示した変化
が表われろことになる。そして、この変化を数式(2)
〜(8)に従い、演算手段CLでRr、 Rrを算出す
る。更に、過電圧設定手段Hに任意の過電圧を設定すれ
ば、被覆金属Wに加わる印加電圧が算出でき、この印加
電圧をサーボモーターMを介して印加電圧可変用電源を
上記の−Erstから算出された印加電圧Eの大きさに
設定する。そして、順次ある時間毎に上記の方法をくり
返し実施すればよい。なお、上記演算手段はアナログ/
デジタル変換器を介して、いわゆるマイクロコンピュー
タ−によりデジタル的に演算し、この結果をデジタル/
アナログ変換器を介して、サーボモーターMを自動制御
してもよい。If the switch SW1 is now on the (a) side, the output (3) of the differential amplifier DA of the potentiostat is zero, and only the magnitude of the voltmeter ■ is input to the input (1) of this PO. ing. That is, only the natural electrode potential (versus the reference electrode R) Erst of the metal W is measured. Then, the magnitude of this potential difference, that is, Er5t, is manually input to the calculation means CL as the output of the voltmeter ■, and the reciprocal of this magnitude is adjusted by the servo motor M with the power supply for varying the applied voltage, and the magnitude of this power supply is ( −E,j). Next, when the switch SWI is set to the (b) side, the potential difference between the input of the differential amplifier, that is, terminals 1 and 2, is
Er5t Er5t ' becomes 0, output of DA (3)
becomes almost atmosphere, and the output of the ammeter (2) also becomes almost zero (that is, electrolysis occurs near the natural electrode potential of W). Then,
Switch SW2 to the (d) side and pulse application means E
ll) and apply a pulse voltage (rectangular wave) for a short time. That is, this pulse voltage is applied between inputs (1) and (2) 7 of D, and at the same time the pulse voltage is applied between C and W, the voltmeter ■ and ammeter ■ show the values shown in Figure 4. Change will appear. Then, this change can be expressed by formula (2)
According to (8), Rr and Rr are calculated by the calculating means CL. Furthermore, by setting an arbitrary overvoltage in the overvoltage setting means H, the applied voltage applied to the coated metal W can be calculated, and this applied voltage is applied to the applied voltage variable power supply via the servo motor M. Set the magnitude of the applied voltage E. Then, the above method may be repeated at certain time intervals. Note that the above calculation means are analog/
A so-called microcomputer calculates the results digitally via a digital converter.
The servo motor M may be automatically controlled via an analog converter.
なお、電圧パルスを印加し、RrとRfの大きさを測定
し、過電圧ηを補正するタイミングは、RrあるいはR
fあるいはRrとR4の両者か変化を受けやすい程、い
わゆる劣化が速い程頻繁にする必要がある。逆に変化が
小さい程、パルス電圧印加によるRr、 Rr(7)測
定のための時間間隔は長くて良い。また、R4の低下速
度がRfの低下速度より大きければ、印加電圧は経時と
ともに大きくなり、逆にRrの低下速度がJの低下速度
より少なければ、印加電圧は経時とともに小さくなる。Note that the timing of applying a voltage pulse, measuring the magnitudes of Rr and Rf, and correcting the overvoltage η is determined by Rr or Rf.
The more f or both Rr and R4 are susceptible to change, the faster the so-called deterioration, the more frequently it is necessary. Conversely, the smaller the change, the longer the time interval for measuring Rr and Rr(7) by applying a pulse voltage may be longer. Further, if the rate of decrease in R4 is higher than the rate of decrease in Rf, the applied voltage increases over time, and conversely, if the rate of decrease in Rr is lower than the rate of decrease in J, the applied voltage decreases over time.
「発明の効果」
過電圧を予め定められた値に保って被覆金、属を劣化さ
せることができる。したがって、被覆金属の寿命予測が
さらに信頼できるようになる。"Effects of the Invention" It is possible to maintain overvoltage at a predetermined value and cause the coating metal to deteriorate. Therefore, prediction of the life of the coated metal becomes more reliable.
第1図は、劣化装置の基本構成図である。
第2図は、劣化装置における電解時のモデル回路である
。
第3図は、被覆金属の電気的等価回路の一例の図である
。
第4図は、被覆金属への電位パルス印加による応答を示
すグラフである。
第5図は、被覆金属の掃引分極時の電圧曲線の概念図で
ある。
第6図は、劣化装置の一例のブロック図である。
W・・被覆金属、C・・・対極、R・・基準電極、L・
・・腐食液、PO・・・ボテンンヨスタット、El)・
・・パルス印加手段、Ev・・・印加電圧可変手段、ト
■・・・過電圧設定手段、CL・・演算手段、RFC・
・表示手段。FIG. 1 is a basic configuration diagram of the deterioration device. FIG. 2 is a model circuit during electrolysis in the deterioration device. FIG. 3 is a diagram of an example of an electrical equivalent circuit of coated metal. FIG. 4 is a graph showing the response to application of a potential pulse to the coated metal. FIG. 5 is a conceptual diagram of a voltage curve during sweep polarization of a coated metal. FIG. 6 is a block diagram of an example of a deterioration device. W...Covered metal, C...Counter electrode, R...Reference electrode, L...
・・Corrosive liquid, PO・Botenyostat, El)・
...Pulse application means, Ev...Applied voltage variable means, G...Overvoltage setting means, CL...Calculation means, RFC...
・Display means.
Claims (4)
対極とを腐食液中に浸し、被覆金属と対極との間に電圧
を印加して、被覆金属を劣化させるようにした被覆金属
劣化方法において、 被覆金属と対極の間の電気回路の抵抗のうち、過電圧が
印加される分極抵抗と上記の分極抵抗以外の抵抗とを計
測し、この計測結果に基づき過電圧が所定の大きさにな
るように上記の電圧を制御することを特徴とする被覆金
属劣化方法。(1) In a coated metal deterioration method, the coated metal coated with paint or lining material and a counter electrode are immersed in a corrosive liquid, and a voltage is applied between the coated metal and the counter electrode to deteriorate the coated metal. Among the resistances of the electric circuit between the coated metal and the counter electrode, measure the polarization resistance to which overvoltage is applied and the resistance other than the above polarization resistance, and adjust the overvoltage to a predetermined level based on the measurement results. A method for degrading a coated metal, characterized by controlling the voltage described above.
方法において、 上記の計測と制御が所定の時間毎に行なわれることを特
徴とする被覆金属劣化方法。(2) A coated metal deterioration method as set forth in claim 1, wherein the measurement and control described above are performed at predetermined intervals.
方法において、 上記の抵抗の計測が被覆金属と対極との間に電流がほと
んど流れない状態でパルス分極法で行われることを特徴
とする被覆金属劣化方法。(3) The coated metal deterioration method described in claim 1, characterized in that the above-mentioned resistance measurement is performed by a pulse polarization method in a state where almost no current flows between the coated metal and the counter electrode. Coated metal deterioration method.
なる試料電極と、 試料電極に対する対極と、 試料電極に対する基準電極と、 試料電極と対極との間に設定された電圧を印加する電圧
可変電解手段と、 電圧可変電解手段にパルス電圧を印加させるように電圧
を設定するパルス電圧印加手段と、被覆金属と対極との
間に電流がほとんど流れないように電圧可変電解手段に
電圧を設定してパルス分極法により計測し、計測結果よ
り演算された所定の過電圧を印加できる電圧値を電圧可
変電解手段に設定する印加電圧設定手段とを備えたこと
を特徴とする被覆金属劣化装置。(4) A sample electrode made of coated metal coated with paint or lining material, a counter electrode for the sample electrode, a reference electrode for the sample electrode, and a variable voltage electrolysis that applies a set voltage between the sample electrode and the counter electrode. means, a pulse voltage applying means for setting a voltage so as to apply a pulse voltage to the variable voltage electrolytic means, and a voltage for setting the voltage to the variable voltage electrolytic means so that almost no current flows between the coated metal and the counter electrode. 1. A coated metal deterioration device comprising applied voltage setting means for setting a voltage value at which a predetermined overvoltage can be applied, which is measured by a pulse polarization method and calculated from the measurement results, to a voltage variable electrolysis means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17482486A JPS6330754A (en) | 1986-07-24 | 1986-07-24 | Method and apparatus for deteriorating coating metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17482486A JPS6330754A (en) | 1986-07-24 | 1986-07-24 | Method and apparatus for deteriorating coating metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6330754A true JPS6330754A (en) | 1988-02-09 |
JPH0449909B2 JPH0449909B2 (en) | 1992-08-12 |
Family
ID=15985304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17482486A Granted JPS6330754A (en) | 1986-07-24 | 1986-07-24 | Method and apparatus for deteriorating coating metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6330754A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07198643A (en) * | 1993-11-05 | 1995-08-01 | Nalco Chem Co | Method for measuring resistance of solution, method for measuring corrosion rate of metal surface using method thereof and device therefor |
JP2006038835A (en) * | 2004-06-22 | 2006-02-09 | Nippon Steel Corp | Method for measuring corrosion rate of metal and corrosion-proof method for metal using the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5429589B2 (en) * | 2008-06-12 | 2014-02-26 | 国立大学法人東京工業大学 | Quantitative evaluation method and system for painted state of painted metal surface |
-
1986
- 1986-07-24 JP JP17482486A patent/JPS6330754A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07198643A (en) * | 1993-11-05 | 1995-08-01 | Nalco Chem Co | Method for measuring resistance of solution, method for measuring corrosion rate of metal surface using method thereof and device therefor |
JP2006038835A (en) * | 2004-06-22 | 2006-02-09 | Nippon Steel Corp | Method for measuring corrosion rate of metal and corrosion-proof method for metal using the same |
JP4593382B2 (en) * | 2004-06-22 | 2010-12-08 | 新日本製鐵株式会社 | Method for measuring corrosion rate of metal and method for preventing metal corrosion by this method |
Also Published As
Publication number | Publication date |
---|---|
JPH0449909B2 (en) | 1992-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gonzalez et al. | Errors in the electrochemical evaluation of very small corrosion rates—I. polarization resistance method applied to corrosion of steel in concrete | |
US4752360A (en) | Corrosion probe and method for measuring corrosion rates | |
Mansfeld et al. | An electrochemical impedance spectroscopy study of reactions at the metal/coating interface | |
US4863572A (en) | Corrosion probe and method for measuring corrosion rates | |
Liu et al. | Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method | |
US4056445A (en) | Determination of corrosion rates by an electrochemical method | |
WO2008021546A2 (en) | Impedance measurement of a ph electrode | |
JPH01501324A (en) | Control method for electroless plating bath | |
US4840719A (en) | Corrosion probe and method for measuring corrosion rates | |
JPS5948649A (en) | Method and apparatus for corrosion resistance evaluation of painted metal | |
US3436320A (en) | Method and apparatus for determination of redox current in redox solutions | |
EP0593168B1 (en) | Method and apparatus for measuring underdeposit localized corrosion rate or metal corrosion rate under tubercles in cooling water systems | |
JPS6330754A (en) | Method and apparatus for deteriorating coating metal | |
JPS5841344A (en) | Voltammetry analysis | |
JP7156481B1 (en) | CORROSION RESISTANCE TEST METHOD FOR COATED METAL MATERIAL, CORROSION RESISTANCE TESTING APPARATUS, CORROSION RESISTANCE TEST PROGRAM AND RECORDING MEDIUM | |
US3694324A (en) | Method of measuring accelerated corrosion rate | |
KR20150106051A (en) | The evaluating method of enduring capacity about film of paint | |
Yin et al. | Parametric study on the electrochemical impedance spectroscopy of organic-coated steels in hydrochloric acid solutions | |
JPH04172241A (en) | Apparatus for measuring corrosion underneath paint film | |
JPH07333188A (en) | Polarization resistance measuring method of under-film metal and polarization resistance measuring sensor therefor | |
EP0608037B1 (en) | Method and apparatus for on-line monitoring the quality of a purified metal sulphate solution | |
Pirnat et al. | A measuring method and instrument for the evaluation of corrosion resistance of chromate layers | |
EP0315386A1 (en) | Method and apparatus for electroless plating | |
RU2820040C1 (en) | Device for determining specific electrical resistance of paint coating in electrolyte | |
JPH0731939A (en) | Method for evaluating washing |