JPS5841344A - Voltammetry analysis - Google Patents

Voltammetry analysis

Info

Publication number
JPS5841344A
JPS5841344A JP13974881A JP13974881A JPS5841344A JP S5841344 A JPS5841344 A JP S5841344A JP 13974881 A JP13974881 A JP 13974881A JP 13974881 A JP13974881 A JP 13974881A JP S5841344 A JPS5841344 A JP S5841344A
Authority
JP
Japan
Prior art keywords
voltage
cleaning
electrode
current
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13974881A
Other languages
Japanese (ja)
Inventor
Shigeru Makino
繁 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAIONIKUSU KIKI KK
Original Assignee
BAIONIKUSU KIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAIONIKUSU KIKI KK filed Critical BAIONIKUSU KIKI KK
Priority to JP13974881A priority Critical patent/JPS5841344A/en
Publication of JPS5841344A publication Critical patent/JPS5841344A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes

Abstract

PURPOSE:To prevent the development of error in the analysis by changing over an applied voltage between a specified measurement voltage and a specified cleaning voltage that are different with a specified temporal interval and estimating the steady current from the current curve for the unsteady state by means of applying the measurement voltage and by cleaning the electrode by applying the cleaning voltage. CONSTITUTION:In voltammetry analysis, an applied voltage is applied by changing-over with a specified temporal internal t1 and t2 to a specified measurement voltage E1 and a specified cleaning voltage E2 that are respectively different. The steady limit current curve (ifinfinity ) is estimated by curve fitting of a current curve in the unsteady state obtained by the measurement voltage E1. On the other hand the substance that crystallizes on the electrode by the cleaning voltage E2 is made to dissolve. With this arrangement the measurement time t1 can be within 1sec and the cleaning time within about 2sec, and one cycle can be within a few seconds. Furthermore, exact analysis can be made with error due to pollution of the electrode prevented.

Description

【発明の詳細な説明】 本発明は、ポルタンメトリー分析法に関する。[Detailed description of the invention] The present invention relates to a portammetric analysis method.

昨今、ポルタンメトリー法及びそれを応用した種々の電
気化学的分析法が開発され、数多く実用化されており、
他の分析法に比べて迅速な分析が可能となった。
Recently, the portammetry method and various electrochemical analysis methods that apply it have been developed and put into practical use in large numbers.
This allows for faster analysis compared to other analytical methods.

しかし、その多くは、一定の加電圧もしくは低速度の掃
引加電圧により得られる定常もしくは準定常状態の拡散
限界電流を直接的に測定し、分析を行なうものである。
However, most of these methods directly measure and analyze the diffusion-limited current in a steady or quasi-steady state obtained by applying a constant applied voltage or a low-speed sweep applied voltage.

したがって、この方法の場合には、被測定物質、妨害物
質及び電極反応によってこれらの物質から生成した物質
等により、電極表面状態が変化し、それに伴って感度変
化が生じ、これによる誤差を生じるという欠点がある。
Therefore, in the case of this method, the electrode surface condition changes due to the substance to be measured, interfering substances, and substances generated from these substances by electrode reactions, resulting in changes in sensitivity and errors due to this. There are drawbacks.

この点においては、交流ポーラログラフの場合も同様に
電極汚染による誤差を持つ。
In this respect, AC polarography similarly has errors due to electrode contamination.

これらの間1lt−回避する九め、電極表面を機械的に
研磨し、ありいは滴下水銀電極のように電極表面を物理
的に更新する方法が用いられてき九が、これらは機構的
に問題があp%堆扱い上不便であるという欠点がある。
In order to avoid these problems, methods of mechanically polishing the electrode surface or physically renewing the electrode surface such as dripping mercury electrodes have been used, but these have mechanical problems. However, it has the disadvantage that it is inconvenient to handle the p% compost.

また、電極表面の汚染を除去する目的で、測定中に加え
た電圧と逆極性の電圧を印加し、電気分解により汚染物
質を溶出させる方法も知られているが、この方法では、
測定をしばしば中断しなければならず、連続測定が困難
な上に、電気分解直前と直後のデーjlKかな)の差が
生じ、データの信頼性が低下してしまうという問題があ
る。
In addition, in order to remove contamination from the electrode surface, a method is known in which a voltage with the opposite polarity to the voltage applied during measurement is applied and the contaminants are eluted by electrolysis.
The measurement must be frequently interrupted, making continuous measurement difficult, and there is a problem in that there is a difference between the data immediately before and after the electrolysis, which reduces the reliability of the data.

本発明は、上述の如き問題点を解決する目的でなされた
ものであり、限界電流の測定と電極表面の洗浄とを極〈
短時間に連続して行零うことによ〕、短時間で正確な分
析を行なうことができ、tた連続測定が可能な方法を提
供するものである。
The present invention was made for the purpose of solving the above-mentioned problems, and it makes the measurement of the limiting current and the cleaning of the electrode surface extremely easy.
By continuously dropping lines in a short period of time, accurate analysis can be performed in a short period of time, and a method capable of continuous measurement is provided.

本発明の特徴は、加電圧を所定の異なる測定電圧と洗浄
電圧とに所定時間間隔で切り換え、測定電圧の印加によ
り非定常状態の電流曲線を得ると共に、洗浄電圧の印加
により電極表@1)洗浄を行ない、上記非定常状態の電
流自蔵のカーブ拳フィッティングによ〕定常限界電流を
推定すゐ点にある0本発明のさらに他の特徴は、上記洗
浄電圧によって電極上に析出した物質が溶出する電圧を
さらに印加し、電極表面が2種以上の物質により汚染さ
れた場合の洗fIptよp効果的に行なう点KToゐ。
A feature of the present invention is that the applied voltage is switched between predetermined different measurement voltages and cleaning voltages at predetermined time intervals, and an unsteady state current curve is obtained by applying the measurement voltage, and an electrode surface @ 1) is obtained by applying the cleaning voltage. Another feature of the present invention is that the steady-state limit current is estimated by performing cleaning and using the above-mentioned non-steady-state current self-contained curved fitting. The point KTo is that a voltage for elution is further applied to more effectively wash fIpt when the electrode surface is contaminated with two or more types of substances.

以下、添付11mを参−at、て本発明を説明する。The present invention will be described below with reference to Attachment 11m.

第1図はポルメンメトリー法の概略回路図を示し、tr
iポテンクオスタット、2は電解七ル、3は作用極、4
は対極、5は参照極を示す、第1図のように構成された
ポテンシオスタットの作用極3の等価回路は、第2図の
とおpである。
Figure 1 shows a schematic circuit diagram of the polmenmetry method, with tr
i potentuostat, 2 is electrolytic electrode, 3 is working electrode, 4
The equivalent circuit of the working electrode 3 of the potentiostat constructed as shown in FIG. 1 is p as shown in FIG. 2, where 5 is a counter electrode and 5 is a reference electrode.

ここでRj2は電極抵抗%R@は電極反応抵抗、Cdt
F!電気二重層容量、目はファラデー電流、ldAは電
気二重層充電電流である。第2図に示す電圧Eは、ポテ
ンシオスタットの作Mにより第1図の電圧lと等しくな
るように規制畜れている。
Here, Rj2 is electrode resistance %R@ is electrode reaction resistance, Cdt
F! Electric double layer capacitance, dA is Faraday current, and ldA is electric double layer charging current. The voltage E shown in FIG. 2 is regulated to be equal to the voltage l shown in FIG. 1 by the operation M of a potentiostat.

とζろで、電圧E及び被測定溶液管適轟に調整し、かつ
電圧を印加した後充分な時間を経て、Reの成分が反応
種の移動過糧による抵抗Bfに近似できるように条件を
整え、その時のIf即ち限界電流1ftxsを求めるの
が一般のポーラ四グラフである。
By adjusting the voltage E and the temperature of the solution tube to be measured, and after a sufficient period of time has passed after applying the voltage, conditions are set so that the component of Re approximates the resistance Bf due to the migration of reactive species. A general polar graph is used to determine If, that is, the limit current 1ftxs at that time.

これに対し、本発明による第一の方法は、第3図人に示
すように、加電圧t−測定電圧]81と洗渉電圧B雪と
に所定時間間隔で切9換え、これによって得られる第3
@Bに示す非定常電流iの電流曲線(11の範!2I)
のカーブ・フィッティングにより、限界電流1teat
推定し、被測定溶液の分析を行なうものである。ここで
、測定電圧とは、一般に目的反応 が拡散律速となる電
圧、即ちプラトー電圧をいい、洗浄電圧と拉電極上に析
出した物質が溶出する電圧をい5゜ ここで、第3図Bに示す電流蔽は、第2図に示し丸目と
idtの和となぁ。
On the other hand, in the first method according to the present invention, as shown in FIG. Third
@Current curve of unsteady current i shown in B (Range of 11! 2I)
By curve fitting, the limiting current 1teat
This is used to estimate and analyze the solution to be measured. Here, the measuring voltage generally refers to the voltage at which the desired reaction becomes diffusion-limited, that is, the plateau voltage, and the cleaning voltage and the voltage at which the substance deposited on the sample electrode elutes. Here, as shown in Figure 3B, The current shield shown is the sum of the circle and idt shown in Figure 2.

H−目+t ab       (1)一方、第2図に
より、これらは8.vについてE−マ+(IdA十目)
Rj(2) 1=v+〔Cdj(ty/dt)+  w/Re)Rg
      (2’)の関係を持つ。
H-th+t ab (1) On the other hand, according to FIG. 2, these are 8. E-ma + (IdA tenth) for v
Rj (2) 1=v+[Cdj(ty/dt)+w/Re)Rg
It has the relationship (2').

一般に、電気二重層容量Cdtはダにより変化し、電極
反応抵抗R,%!及び電圧を切換えてからの時間tの関
数となゐ、解析的に式(2′)を解くことは困難である
が、電極反応速度が拡散速度に対し充分速い反応速度を
もつ反応について、濃度境界層の厚さが薄くなるように
、適当な一定の流速を被測定溶液に持九せた場合(例え
ば電解セル中で一定の流速で被測定溶液を流すなど)に
は、単純な近似式を用いて曳好な限界電流1foo  
の推定が可能となる。例えば、被測定溶液中の残留塩素
浸度を測定する場合には、約α5m/秒程度の流速で充
分でああ。このような場合には、一般に第3図Bの電流
1について、 1(t)  −1fco  +  Rj6  @xp(
−bt)  (3)の近似式が適用でき、所定時間(1
1の範囲)のデータについて上記式(3)をフィッティ
ングしてtfaot”求めることができる。この限界電
流1fo。
Generally, the electric double layer capacitance Cdt changes depending on the electrode reaction resistance R,%! It is difficult to solve equation (2') analytically, but for reactions where the electrode reaction rate is sufficiently faster than the diffusion rate, the concentration is If the solution to be measured is kept at an appropriate constant flow rate so that the boundary layer becomes thinner (for example, flowing the solution to be measured at a constant flow rate in an electrolytic cell), a simple approximation formula can be used. The limiting current 1foo is calculated using
becomes possible to estimate. For example, when measuring the degree of residual chlorine immersion in a solution to be measured, a flow rate of approximately α5 m/sec is sufficient. In such a case, generally for the current 1 in Figure 3B, 1(t) -1fco + Rj6 @xp(
-bt) The approximation formula (3) can be applied, and the predetermined time (1
tfaot" can be obtained by fitting the above equation (3) to the data in the range of 1). This limiting current 1fo.

は被測定溶液中の被測定物質の濃度と一般に1接関係が
あるのて、予めIf66と濃度との検量線を作成してお
けば、容易に被測定溶液の濃度を求めることができる。
Since there is generally a linear relationship between If66 and the concentration of the substance to be measured in the solution to be measured, the concentration of the solution to be measured can be easily determined by creating a calibration curve between If66 and the concentration in advance.

なお、上記近似式は、電流曲線に応じてよす適轟な近似
式で置き換えることもできるい 本発明方法では、加電圧切換え〇−周期の時間が数秒以
内で完了するため、実用上は連続測定とみなすことがで
き、また測定時間(tl)は1秒以内で充分である九め
、この間の電極変化は無視できる。
The above approximation formula can also be replaced with a suitable approximation formula depending on the current curve. In the method of the present invention, the applied voltage switching cycle time is completed within a few seconds, so in practice, continuous This can be regarded as a measurement, and the measurement time (tl) is sufficient within 1 second, and electrode changes during this time can be ignored.

なお、測定電圧E1は、被測定溶液中の被測定物質に応
じ、正に設定する場合もまた員に設定する場合もある*
tl洗浄電圧Etは上記測定電圧と逆極性の場合はもと
より、同極性に設定する場合もある。一般には、被測定
物質の種類により異なるが、測定電圧Heは一2v〜+
1!OOmV、洗渉電圧E1はf 3 VC)範囲ニあ
る(但し、この電圧は第2図に示す電圧8を表わし、ポ
テンシオスタット上の電圧はこれの逆極性となる。)。
Note that the measurement voltage E1 may be set to positive or negative depending on the substance to be measured in the solution to be measured.*
The tl cleaning voltage Et may be set to have the same polarity as the measurement voltage, as well as the opposite polarity. In general, the measurement voltage He varies depending on the type of substance to be measured, but the measurement voltage He is -2v to +
1! OO mV, the interference voltage E1 is in the f 3 VC range (provided that this voltage represents voltage 8 shown in FIG. 2, and the voltage on the potentiostat has the opposite polarity).

本発明方法によれば、被測定溶液中の残留塩素、チオ硫
酸ナトリウム、ヒドラジン、亜硫酸ソーダ、シラン、ホ
スフィン、アルシンその他数多くの物質の濃度を1正確
かつ迅速に定量的に測定することができ251 次に、本発明方法によって得られる推定限界電流と被測
定溶液の濃度との関係、及び相対感度について、実施例
を示して説明する。
According to the method of the present invention, the concentrations of residual chlorine, sodium thiosulfate, hydrazine, sodium sulfite, silane, phosphine, arsine, and many other substances in a solution to be measured can be quantitatively and accurately measured251. Next, the relationship between the estimated limit current obtained by the method of the present invention and the concentration of the solution to be measured, and the relative sensitivity will be explained by showing examples.

実施例1゜ 残留塩素too q/1−rot/l@Fltv被fl
J’r定溶液に対し、作用極として面積的1.2 wm
”の白金電極を用い、tたAs+ −APC4参照極、
面積1278Us316L対極を用い、被測定溶液の流
速的α5V)、t+ −500m鯵sロー11の条件で
第4図に示す加電圧を加え、測定した。得られた電流1
 (t)のデータのうち、t−5011s 4500 
mmのデータについて、 1(t)−j  fao  +  l  f s   
*xp  (−bt  ン      (:I)tフィ
ッティングし、  1faoを求めたところ、残留塩素
濃度について第5図に示すような嵐好な直線性が得られ
友。
Example 1゜Residual chlorine too q/1-rot/l @ Fltv subject fl
For J'r constant solution, the area is 1.2 wm as a working electrode.
” using a platinum electrode, an As+ -APC4 reference electrode,
Using a counter electrode with an area of 1278 Us and 316 L, the measurement was carried out by applying the applied voltage shown in FIG. 4 under the conditions of the flow velocity of the solution to be measured α5V) and t+ -500 mSlow 11. Obtained current 1
Among the data of (t), t-5011s 4500
For the data in mm, 1(t)-j fao + l f s
*xp (-bt n (:I)t fitting was performed to find 1fao, and excellent linearity was obtained for the residual chlorine concentration as shown in Figure 5.

第5図から明らかかように、本方法によって推定される
限界電流値から被測定溶液のate極めて正確に知るこ
とができ、を九、推定限界電流値は被測定溶液C) p
Hに影譬されないという利点もある。
As is clear from Fig. 5, it is possible to know the limit current value of the solution to be measured very accurately from the limit current value estimated by this method.
It also has the advantage of not being affected by H.

!l!施例流 側記胃流側1と同一条件で、一般の水道水に次亜塩票酸
す) IJウムを加えて調整し大1000QB/leq
 C1tの被測定溶液について、上記実施例Cと同様に
して1fooを長期間連続して測定し、経過日数に対す
る相対感度の変化t−mべた。比較のため、加電圧の切
換えを行なわず、B −600yaVv* APClと
する以外は上記と同一条件とし、定常状態となった限界
電流1fooを直IIs定し、経過日数に対する相対感
度の変化を調べた。その結果を第6図に示す。本発明方
法による場合(曲線T)には、感度変化は殆んど起こら
ないが、加電圧の切換えを行なわずに定常状態の限界電
流t[I!測測定た従来法の場合(曲線n)には、経過
日数と共に相対感度が着しく低下した。なお、曲ill
 l(相対感度の上昇部分がみもれるのは、作用極表面
の付着物の剥落、触媒作用物質の付着等に起因するもの
と推測される。
! l! Under the same conditions as gastric flow side 1, add hypochlorite to general tap water and adjust by adding IJum to 1000QB/leq.
Regarding the solution to be measured with C1t, 1foo was continuously measured for a long period of time in the same manner as in Example C, and the change in relative sensitivity with respect to the number of days t-m was plotted. For comparison, the conditions were the same as above except that the applied voltage was not changed and B -600yaVv*APCl was used, and the limit current 1foo that reached a steady state was determined directly, and the change in relative sensitivity with respect to the number of days elapsed was investigated. Ta. The results are shown in FIG. In the case of the method of the present invention (curve T), almost no change in sensitivity occurs, but the steady state limit current t[I! In the case of the conventional method measured (curve n), the relative sensitivity decreased steadily as the number of days elapsed. In addition, the song ill
(It is assumed that the reason why the increased relative sensitivity is not observed is due to the peeling off of deposits on the surface of the working electrode, the adhesion of the catalytic substance, etc.)

以上のように、本発明方法によれば短時間で正確な分析
が可能となる。また、電極表面を機械的に研磨する必要
がなく、分析操作が極めて簡便である。さらに、一定に
よる感度変化が殆んど生じないため、長期間にわたって
連続測定が可能であるという利点【有する。
As described above, the method of the present invention enables accurate analysis in a short time. Furthermore, there is no need to mechanically polish the electrode surface, making analysis operations extremely simple. Furthermore, since there is almost no change in sensitivity due to constant sensitivity, continuous measurement is possible over a long period of time, which is an advantage.

このように、前記本発明方法によれは、従来法において
測定中に作用極表面にイオン性の汚染物質(主に金属I
I)が析出し、相対感度が変化してしまうことに対し、
これら汚染物質t−溶出させる電圧82に:よって一周
期俗に洗浄し、常に電極を一定の状態に維持し、安定し
7を測定が可能となる、しかし、被測定溶液中に加電圧
Bs#cより逆に電極に析出するような物質が共存する
場合には、上記の方法では電極の状態が変化し、感度に
影響を及ぼすので不適当である。
As described above, according to the method of the present invention, ionic contaminants (mainly metal I
I) is precipitated and the relative sensitivity changes,
These contaminants t-eluted voltage 82: Therefore, the electrodes are regularly washed for one period, and the electrodes are always maintained in a constant state, making it possible to stably measure 7.However, the voltage Bs# applied to the solution to be measured is Conversely, if a substance that would deposit on the electrode coexists, the above method is inappropriate because it changes the state of the electrode and affects the sensitivity.

/ このような場合には、本発明によゐ第二の方法! (1が好適に採用できる。/ In such a case, the second method according to the present invention! (1 can be suitably adopted.

すなわち、本発明による第二の方法は、洗浄加電圧Im
により析出した物質が溶出する加電圧をさらに印加する
ととによって、電@を一定の状態に維持するものである
That is, in the second method according to the present invention, the applied cleaning voltage Im
The voltage is maintained at a constant state by further applying an applied voltage that causes the precipitated substance to elute.

以下に実施例を示して、本方法についてさらに詳細に説
明する。
The present method will be explained in more detail with reference to Examples below.

実施例1 水道水にイオウ(8)としてαOしυyts*となるよ
うにチオ硫酸ナトリウム(Nax8*Oi )を加え、
さらに次亜塩素酸ナトリウムを加えて残雪に示す加電圧
を用いる外は、実施例2と同様に測定した。得られた相
対感度の経時変化を第6図に示す(曲線璽)。比較のた
めに、前記実施例2の方法を適用した場合(曲線1)及
び加電圧の切換えを行なわずに定常状態の限界電流を直
**定し九従来法の場合(曲線v)を併せて示す。
Example 1 Add sodium thiosulfate (Nax8*Oi) to tap water so that αO and υyts* are obtained as sulfur (8),
Measurements were carried out in the same manner as in Example 2, except that sodium hypochlorite was further added and the applied voltage shown in the residual snow was used. The obtained relative sensitivity change over time is shown in FIG. 6 (curve mark). For comparison, the case where the method of Example 2 is applied (curve 1) and the case where the steady state limit current is directly determined without changing the applied voltage (curve v) are combined. Shown.

第6図から明らかなように、イオウなどOように洗浄電
圧H!により逆に電極上に析出する物質が被測定物質中
に存在する場合には、該物質が溶出する電圧をさらに印
加することによって、電極表面の洗浄が有効に行なわれ
、相対感度も殆んど変化しな−。これは、測定中に作用
極表面に析出したイオン性の汚染物質は洗浄電圧E!に
よって溶出し、一方、諌洗滲電圧IIsの印加により析
出し危イオウ等の汚染物質社第2の洗浄電圧mlによっ
て溶出するためである。
As is clear from Figure 6, the cleaning voltage H! Conversely, if there is a substance to be measured that precipitates on the electrode, applying a voltage that causes the substance to elute will effectively clean the electrode surface and reduce the relative sensitivity. Don't change. This means that the ionic contaminants deposited on the working electrode surface during the measurement are removed by the cleaning voltage E! On the other hand, contaminants such as dangerous sulfur precipitated by application of the second washing voltage IIs are eluted by the second washing voltage ml.

したがって、洗浄電圧]!1により析出する物質が2種
以上存在する被測定溶液の場合には、それぞれに応じ九
2種以上の加電圧Th、Bs二・・・・を印加すること
も可能である。
Therefore, the cleaning voltage]! In the case of a solution to be measured in which two or more types of substances that precipitate according to 1 are present, it is also possible to apply 92 or more types of applied voltages Th, Bs2, etc. depending on each substance.

なお、本発明方法においても、他のポルタンメトリー法
同様、温度によ〕感度が多少変化するが、その補正には
従来の方法がそのまま適用できる。
Incidentally, in the method of the present invention as well as in other portammetry methods, the sensitivity changes somewhat depending on temperature, but conventional methods can be applied to correct this as is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポルタンメトリー法の概略回路図、第2@は第
1図に示すポテンシオメタットO作用極の等価回路図、
第3図は本発明方法による加電圧の切換え(第3図人)
及びそれに伴危う電流の変化(第3図Bat−示す概略
説明図、第4@は実施例1において用いた加電圧の切換
え管示すグラフ、第5図は実施例1において測定された
推定限界電流と残留塩素濃度との関係を示すグラフ、第
61!llは実施例2にシいて測定てれfe@界電流の
相対感度の経時変化を示すグラフ、第7図は実施例3に
おいて用いた加電圧O切換えを示すグラフ、第8図は実
施例3において測定された限界電流の相対感度の経時変
化を示すグラフである。 lはポテンシオスタット、2は電解セル、3社作用極、
4は対極、5祉参照極。
Figure 1 is a schematic circuit diagram of the portammetry method, Figure 2 is an equivalent circuit diagram of the potentiometer O working electrode shown in Figure 1,
Figure 3 shows switching of applied voltage by the method of the present invention (Figure 3 person)
and the accompanying change in current (Figure 3 is a schematic explanatory diagram showing Bat-, Figure 4 is a graph showing the switching tube of the applied voltage used in Example 1, Figure 5 is the estimated limit current measured in Example 1) Fig. 61 is a graph showing the relationship between FE @ field current and the residual chlorine concentration, Fig. 61 is a graph showing the relative sensitivity of the field current measured in Example 2, and Fig. 7 is a graph showing the relationship between the value and the residual chlorine concentration. FIG. 8 is a graph showing the change in relative sensitivity of the limiting current measured in Example 3. 1 is a potentiostat, 2 is an electrolytic cell, a working electrode from 3 companies,
4 is the opposite pole, 5 is the welfare reference pole.

Claims (1)

【特許請求の範囲】 (+)  加電圧を、所定の異なる測定電圧と洗浄電圧
とに所定時間間隔で切り換え、測定電圧の印加により非
定常状態の電流臼Sを得ると共に、洗浄電圧の印加によ
シミ極lII面の洗浄を行ない、得られ友上記非定常状
態の電流曲線のカーブ−フィンティングによシ定常限界
電流を推定することt−特徴とするポルタンメトリー分
析法。 (2)加電圧を所定の異なる測定電圧と洗鰺電圧とに所
定時間間隔で切シ換見、測定電圧の印加によって得た非
定常状態の電流曲線のカーブ・フィッティングにより定
常限界電流を推定する方法にして、上記洗浄電圧によっ
て電極上に析出する物質が溶出する電圧をさらに印加し
、電極表面の洗#を有効に行なうことを特徴とするポル
タンメトリー分析法。
[Claims] (+) The applied voltage is switched between a predetermined different measurement voltage and a cleaning voltage at predetermined time intervals, and a current mill S in an unsteady state is obtained by applying the measurement voltage, and at the same time, the application of the cleaning voltage is A portammetry analysis method characterized by estimating a steady-state limit current by curve-finting of the unsteady-state current curve obtained by cleaning the stained electrode surface. (2) Switch the applied voltage between predetermined different measurement voltages and washing voltages at predetermined time intervals, and estimate the steady-state limit current by curve fitting the current curve in the unsteady state obtained by applying the measurement voltages. A portammetry analysis method characterized in that the electrode surface is effectively washed by further applying a voltage that causes substances precipitated on the electrode to elute by the washing voltage.
JP13974881A 1981-09-07 1981-09-07 Voltammetry analysis Pending JPS5841344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13974881A JPS5841344A (en) 1981-09-07 1981-09-07 Voltammetry analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13974881A JPS5841344A (en) 1981-09-07 1981-09-07 Voltammetry analysis

Publications (1)

Publication Number Publication Date
JPS5841344A true JPS5841344A (en) 1983-03-10

Family

ID=15252458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13974881A Pending JPS5841344A (en) 1981-09-07 1981-09-07 Voltammetry analysis

Country Status (1)

Country Link
JP (1) JPS5841344A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0140286A2 (en) * 1983-10-19 1985-05-08 Hewlett-Packard Company Electrochemical detector
JPS61118160A (en) * 1984-10-30 1986-06-05 オウトクンプ オイ Measurement and control of electrochemical potential and/or component content in treatment process of expensive material
JPS6423155A (en) * 1987-07-17 1989-01-25 Daikin Ind Ltd Electrode refreshing device for biosensor
JPH01501324A (en) * 1986-10-31 1989-05-11 アンプ―アクゾ コーポレイション Control method for electroless plating bath
EP0415388A2 (en) * 1989-08-30 1991-03-06 Daikin Industries, Limited Method and apparatus for reviving an electrode of a biosensor
EP0459782A2 (en) * 1990-05-31 1991-12-04 Capital Controls Company, Inc. Amperimetric measurement with cell electrode deplating
DE10309022A1 (en) * 2003-03-01 2004-09-09 Dr. A. Kuntze Gmbh Process for cleaning electrode surfaces and device for carrying out the process
JP2004537723A (en) * 2001-08-02 2004-12-16 オックスフォード バイオセンサーズ リミテッド Ion-selective biosensor for voltammetry
JP2015087234A (en) * 2013-10-30 2015-05-07 ダイハツ工業株式会社 Hydrazine concentration detector
JP2017534875A (en) * 2014-11-10 2017-11-24 カレラ コーポレイション Measurement of ion concentration in the presence of organic matter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0140286A2 (en) * 1983-10-19 1985-05-08 Hewlett-Packard Company Electrochemical detector
JPH06222037A (en) * 1983-10-19 1994-08-12 Hewlett Packard Co <Hp> Method for cleaning electrochemical detector
JPS61118160A (en) * 1984-10-30 1986-06-05 オウトクンプ オイ Measurement and control of electrochemical potential and/or component content in treatment process of expensive material
JPH01501324A (en) * 1986-10-31 1989-05-11 アンプ―アクゾ コーポレイション Control method for electroless plating bath
JPS6423155A (en) * 1987-07-17 1989-01-25 Daikin Ind Ltd Electrode refreshing device for biosensor
EP0415388A2 (en) * 1989-08-30 1991-03-06 Daikin Industries, Limited Method and apparatus for reviving an electrode of a biosensor
EP0459782A2 (en) * 1990-05-31 1991-12-04 Capital Controls Company, Inc. Amperimetric measurement with cell electrode deplating
JP2004537723A (en) * 2001-08-02 2004-12-16 オックスフォード バイオセンサーズ リミテッド Ion-selective biosensor for voltammetry
DE10309022A1 (en) * 2003-03-01 2004-09-09 Dr. A. Kuntze Gmbh Process for cleaning electrode surfaces and device for carrying out the process
JP2015087234A (en) * 2013-10-30 2015-05-07 ダイハツ工業株式会社 Hydrazine concentration detector
JP2017534875A (en) * 2014-11-10 2017-11-24 カレラ コーポレイション Measurement of ion concentration in the presence of organic matter

Similar Documents

Publication Publication Date Title
Polk et al. Ag/AgCl microelectrodes with improved stability for microfluidics
EP0242530B1 (en) Method for analyzing additive concentration
JPS5841344A (en) Voltammetry analysis
FR2356935A1 (en) METHOD AND APPARATUS FOR DETECTION OF THE CONCENTRATION OF AN ELECTROACTIVE CONSTITUENT IN A COATING SOLUTION
Gerlach et al. The generalized standard addition method: intermetallic interferences in anodic stripping voltammetry
JP3361237B2 (en) Residual chlorine measuring method and apparatus and residual chlorine detecting probe
US3436320A (en) Method and apparatus for determination of redox current in redox solutions
Dickinson et al. The kinetics of the chlorine electrode reaction at a platinum electrode
Barnard et al. An investigation into the determination of stability constants of metal complexes by convolution—deconvolution cyclic voltammetry
Kemula Polarographic methods of analysis
JP3795769B2 (en) Method for measuring chlorine concentration in plating solution
JPS63277962A (en) Lithium and sodium ion concentration ratio determination method
Makrides Corrosion in Dilute Acids. Part I. A Modified Linear Polarization Technique
AU664505B2 (en) Method and apparatus for on-line monitoring the quality of a purified metal sulphate solution
JPS6330754A (en) Method and apparatus for deteriorating coating metal
US4430164A (en) Fault-compensating electro-analytical measuring process and equipment
Powley et al. Bipolar pulse conductometric monitoring of ion-selective electrodes: Part 1. Method development with a calcium-selective electrode and elucidation of the basic principles involved
Protopopoff et al. Potential Measurements with Reference Electrodes
JPH0240551A (en) Washing method of electrode by electrolysis
JPH10111274A (en) Residual chlorine meter
Haider et al. Electrodes in potentiometry
Tutunji Determination of formation constants of metal complexes by potentiometric stripping analysis
JPS5841343A (en) Voltammetry analysis
JP3265185B2 (en) Corrosion rate measuring method and apparatus
JPH034104B2 (en)