JPH1161399A - Production of ceramic coated powder - Google Patents

Production of ceramic coated powder

Info

Publication number
JPH1161399A
JPH1161399A JP9214702A JP21470297A JPH1161399A JP H1161399 A JPH1161399 A JP H1161399A JP 9214702 A JP9214702 A JP 9214702A JP 21470297 A JP21470297 A JP 21470297A JP H1161399 A JPH1161399 A JP H1161399A
Authority
JP
Japan
Prior art keywords
powder
coated
ceramic
coating
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9214702A
Other languages
Japanese (ja)
Inventor
Junji Saida
淳治 才田
Yasusuke Tanaka
庸介 田中
Masato Araiyama
政人 新井山
Eiki Takeshima
鋭機 竹島
Yasushi Shirai
安 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP9214702A priority Critical patent/JPH1161399A/en
Publication of JPH1161399A publication Critical patent/JPH1161399A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic coated powder in which an uniform ceramic coated layer is formed on a particle surface. SOLUTION: When a powder particle is coated with a ceramic by a sputtering method while rotating a rotary barrel charged with the powder particles at a peripheral speed of >=0.1 m/min, a partial pressure ratio of a reaction gas in a sputtering gas is set to 10-70%, a crystal diameter calculated by a X ray diffraction peak half value width of a coated layer is <=100 nm, as taking a specific surface of a fine particle to be coated for Sm<2> /g and a density of a ceramic to coat for (m) g/m<3> , a ceramic coated layer is formed with a coated quantity X mass % so that a film thickness (t) μm assumed as uniformly coated one by one of powder particles as theoretically defined in a formula t= X/(100×m×S)}×10<6> is turned to a range 1×10<-3> -1×10<-1> . N2 , O2 , water vapor, hydrocarbon, etc., are used for a reaction gas source, a decomposed N, O, C, etc., are allowed to react with a target metal of Ti, Al, Cr, Zr, etc., flying from a sputtering source to be turned to a nitride, an oxide, a carbide, etc., further coating the powder particle surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、工具材料への添加剤,
装飾性が要求される顔料等として好適なセラミックス被
覆粉末を製造する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an additive for a tool material,
The present invention relates to a method for producing a ceramic-coated powder suitable as a pigment or the like requiring decorativeness.

【0002】[0002]

【従来の技術】TiN,TiC等のセラミックスコーテ
ィングは、塗装,溶射,蒸着等、種々の方法で鋼板,ガ
ラス基板,金属部材,セラミックス部材等に施されてい
る。しかし、金属,ガラス,セラミックス等の粉末に対
するセラミックコーティングは、一般的でない。この
点、本出願人が開発した粉末スパッタリング法(特開平
2−153068号公報,特開平5−271920号公
報参照)はセラミックスコーティングに適したものとい
える。この方法では、粉末を充填した回転バレルの回転
によって粉末の流動層を形成し、この流動層にスパッタ
リングすることにより、粉末粒子表面に金属等の被覆を
施している。このとき、N2 ,O2 ,炭化水素等の反応
性雰囲気を使用すると、スパッタリング源から出射され
た金属が目的物である粉末粒子に到達するまでに雰囲気
中のガス成分と反応し、窒化物,酸化物,炭化物等のコ
ーティングが粉末粒子の表面に施される。
2. Description of the Related Art Ceramic coatings such as TiN and TiC are applied to steel plates, glass substrates, metal members, ceramic members, and the like by various methods such as painting, thermal spraying, and vapor deposition. However, ceramic coating on powders of metals, glass, ceramics and the like is not common. In this regard, the powder sputtering method developed by the present applicant (see JP-A-2-153068 and JP-A-5-271920) is suitable for ceramic coating. In this method, a fluidized bed of powder is formed by rotation of a rotary barrel filled with powder, and the fluidized bed is subjected to sputtering to coat the surface of powder particles with a metal or the like. At this time, if a reactive atmosphere such as N 2 , O 2 , and hydrocarbon is used, the metal emitted from the sputtering source reacts with gas components in the atmosphere until reaching the target powder particles, and nitrides are formed. , Oxides, carbides, etc. are applied to the surface of the powder particles.

【0003】[0003]

【発明が解決しようとする課題】少ない被覆量で安定し
た品質をもつセラミックス被覆粉末を得るためには、粉
末粒子の表面にセラミックスを均一にコーティングする
ことが要求される。しかし、金属に比較して延性に乏し
く脆いセラミックスの被覆層を粉末粒子の表面に均一に
形成することは困難である。たとえば、前掲した粉末ス
パッタリング法では、スパッタリング中の粉末は回転バ
レル中で流動層となっており、粉末粒子が相互に衝突を
繰返しながらスパッタリングされる。粉末粒子相互の衝
突は、粉末粒子の表面に形成されたセラミックス被覆層
に亀裂や剥離を発生させる原因となる。その結果、必要
な厚みで均一にセラミックスコーティングされた粉末の
回収率が低下し易い。本発明は、このような問題を解消
すべく案出されたものであり、反応性ガスの分圧,撹拌
条件,被覆量等を適正に調節することにより、粉末粒子
の表面に均一なセラミックス被覆層を形成することを目
的とする。
In order to obtain a ceramic coating powder having a stable quality with a small amount of coating, it is required to uniformly coat the surface of the powder particles with the ceramic. However, it is difficult to uniformly form a coating layer of a ceramic, which is less ductile than a metal and is brittle, on the surface of the powder particles. For example, in the powder sputtering method described above, the powder being sputtered forms a fluidized bed in a rotating barrel, and the powder particles are sputtered while repeatedly colliding with each other. The collision between the powder particles causes a crack or peeling in the ceramic coating layer formed on the surface of the powder particles. As a result, the recovery rate of the powder having the required thickness and uniformly coated with the ceramics tends to decrease. The present invention has been devised to solve such a problem. By appropriately adjusting the partial pressure of the reactive gas, stirring conditions, and the amount of coating, the surface of the powder particles can be uniformly coated with ceramics. The purpose is to form a layer.

【0004】[0004]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、粉末粒子を装入した回転バレル
を周速0.1m/分以上で回転させながら反応性スパッ
タリング法で粉末粒子をセラミックスで被覆する際、ス
パッタリングガス中の反応性ガスの分圧比を10〜70
%とし、被覆層のX線回折ピーク半価幅から計算される
結晶子径が100nm以下であり、被覆される微粒子の
比表面積をS(m2 /g),被覆するセラミックスの密
度をm(g/m3 )とするとき、式(1)で定義される
理想的に粉末粒子1粒ずつに均一に被覆されたと仮定し
た膜厚t(μm)が1×10-3〜1×10-1の範囲にな
るように被覆量X(質量%)でセラミックス被覆層を形
成することを特徴とする。 t={X/(100×m×S)}×106 ・・・・(1) 反応性ガス源としては、N2 ,O2 ,炭化水素の1種又
は2種以上が使用される。N2 ,O2 ,炭化水素等の分
解により発生したN,O,C等がスパッタリング源から
飛翔したTi,Al,Cr,Zr等のターゲット金属と
反応し、窒化物,酸化物,炭化物等となって粉末粒子表
面を被覆する。
In order to attain the object, the production method of the present invention comprises the steps of: rotating a rotary barrel loaded with powder particles at a peripheral speed of 0.1 m / min or more by a reactive sputtering method. When coating the particles with ceramics, the partial pressure ratio of the reactive gas in the sputtering gas is 10 to 70.
%, The crystallite diameter calculated from the X-ray diffraction half width at half maximum of the coating layer is 100 nm or less, the specific surface area of the fine particles to be coated is S (m 2 / g), and the density of the ceramic to be coated is m ( g / m 3 ), the film thickness t (μm) assuming that the powder particles ideally defined by the formula (1) are uniformly and uniformly coated is 1 × 10 −3 to 1 × 10 −. The ceramic coating layer is formed with a coating amount X (% by mass) so as to fall within the range of 1 . t = {X / (100 × m × S)} × 10 6 (1) As the reactive gas source, one or more of N 2 , O 2 , and hydrocarbons are used. N, O, C, etc. generated by the decomposition of N 2 , O 2 , hydrocarbons, etc. react with target metals, such as Ti, Al, Cr, Zr, flying from a sputtering source, and form nitrides, oxides, carbides, etc. To cover the surface of the powder particles.

【0005】[0005]

【実施の形態】粉末スパッタリングには、たとえば図1
に示す装置が使用される。この粉末スパッタリング装置
は、回転バレル1を2本のロール2で支持し、その一方
のロール2をモーター3で回転させるようになってい
る。回転バレル1の内部には、2個のスパッタリング源
4が配置されており、投入した粉末原料5に向けてスパ
ッタリング源4からの金属が飛翔する。回転バレル1の
内部は、反応性ガスを含む雰囲気に維持されている。反
応性ガスとしては、窒化物を生成させる場合にはN2
を、酸化物を生成させる場合にはO2 を、炭化物を生成
させる場合にはメタン,アセチレン等の炭化水素が使用
される。スパッタリング源から飛翔した金属は、反応性
ガスと反応し、窒化物,酸化物,炭化物等となって粉末
原料5の表面に被着する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS For powder sputtering, for example, FIG.
The following device is used. In this powder sputtering apparatus, a rotary barrel 1 is supported by two rolls 2, and one of the rolls 2 is rotated by a motor 3. Inside the rotary barrel 1, two sputtering sources 4 are arranged, and a metal from the sputtering source 4 flies toward the charged powder raw material 5. The inside of the rotary barrel 1 is maintained in an atmosphere containing a reactive gas. As the reactive gas, N 2 is used for forming nitride.
, And oxides, O 2 , and hydrocarbons, such as methane and acetylene, are used. The metal flying from the sputtering source reacts with the reactive gas and becomes a nitride, an oxide, a carbide, or the like, and adheres to the surface of the powder raw material 5.

【0006】粉末粒子を被覆するスパッタリング法で
は、被覆面積が大きく、スパッタリングされた粒子の核
生成及び成長サイトが多いことから、板材等への被覆に
比較して反応性ガスの分圧比を10〜70%と高い値に
設定することが必要である。反応性ガスの分圧比が10
%に満たないと、未反応の金属が粉末原料5の表面に被
着し、必要とするセラミックス被覆層が形成されない。
逆に70%を超える分圧比では、皮膜構造が不規則化
し、内部応力の上昇や未反応ガスの混入が生じ、被覆状
態が劣化すると共に被覆速度も低下する。
In the sputtering method for coating powder particles, since the coating area is large and the number of nucleation and growth sites of the sputtered particles is large, the partial pressure ratio of the reactive gas is 10 to 10 in comparison with coating on a plate material or the like. It is necessary to set a high value of 70%. Reactive gas partial pressure ratio of 10
%, The unreacted metal adheres to the surface of the powder raw material 5, and a required ceramic coating layer is not formed.
Conversely, if the partial pressure ratio exceeds 70%, the coating structure becomes irregular, the internal stress increases, and unreacted gas is mixed in, and the coating state deteriorates and the coating speed decreases.

【0007】回転バレル1の上方には、外周に加熱コイ
ル6を有する減圧処理室7が配置されている。減圧処理
室7の底部は、バルブ8を備えた供給管9を介して回転
バレル1に接続されている。バルブ8よりも下方の位置
で、供給管9の内部に二重管構造のガス導入管10が挿
入されている。ガス導入管10は、側面から回転バレル
1の内部に挿入され、先端が回転バレル1の底部に延び
ている。バルブ8よりも下方の位置で、供給管9に分岐
管11が設けられ、分岐管11の先端が流体ジェットミ
ル12に接続されている。流体ジェットミル12の出側
は、循環管13を介して減圧処理室7の上部に接続され
ている。分岐管11,循環管13にはバルブ14,バル
ブ15が組み込まれており、循環管13には固気分離装
置16が接続されている。
Above the rotary barrel 1, a decompression processing chamber 7 having a heating coil 6 on its outer periphery is arranged. The bottom of the decompression processing chamber 7 is connected to the rotary barrel 1 via a supply pipe 9 provided with a valve 8. At a position below the valve 8, a gas introduction pipe 10 having a double pipe structure is inserted inside the supply pipe 9. The gas introduction pipe 10 is inserted into the inside of the rotary barrel 1 from the side, and the tip extends to the bottom of the rotary barrel 1. A branch pipe 11 is provided in the supply pipe 9 at a position below the valve 8, and a tip of the branch pipe 11 is connected to the fluid jet mill 12. The outlet side of the fluid jet mill 12 is connected to the upper part of the decompression processing chamber 7 via the circulation pipe 13. A valve 14 and a valve 15 are incorporated in the branch pipe 11 and the circulation pipe 13, and a solid-gas separation device 16 is connected to the circulation pipe 13.

【0008】回転バレル1に装入される粉末原料5は、
特にその種類や材質に制約を受けるものではないが、ガ
ラス,ダイヤモンド,アルミナ,窒化硼素,炭化ケイ
素,窒化ケイ素,炭化タングステン,チタン等が使用さ
れる。回転バレル1に所定量の粉末原料5を装入し、減
圧処理室7を減圧した後、反応性ガスを含むArガスを
ガス導入管10から回転バレル内に導入する。粉末原料
5は、分岐管11、流体ジェットミル12及び循環管1
3経由で減圧処理室7で加熱コイル6により加熱され、
乾燥・脱ガス後に、回転バレル1に落下される。この条
件下で回転バレル1を0.1m/分以上の周速で回転さ
せながら、減圧雰囲気下でスパッタリング源4により粉
末原料5をスパッタリングする。回転バレル1の周速
は、粉末原料5の撹拌状態に大きく影響する。スパッタ
リングに好適な流動状態を形成する上では、0.1m/
分以上の周速が必要である。0.1m/分に達しない周
速では、粉末原料5が十分に流動化せず、未被覆の粉末
粒子が残存する割合が高くなる。
The powder raw material 5 charged in the rotary barrel 1 is
Although there is no particular restriction on the type and material, glass, diamond, alumina, boron nitride, silicon carbide, silicon nitride, tungsten carbide, titanium and the like are used. After a predetermined amount of the powder raw material 5 is charged into the rotary barrel 1 and the pressure in the decompression processing chamber 7 is reduced, an Ar gas containing a reactive gas is introduced into the rotary barrel from the gas introduction pipe 10. The powder raw material 5 includes a branch pipe 11, a fluid jet mill 12, and a circulation pipe 1.
Heated by the heating coil 6 in the decompression processing chamber 7 via 3
After drying and degassing, it is dropped on the rotary barrel 1. The powder material 5 is sputtered by the sputtering source 4 under a reduced pressure atmosphere while rotating the rotary barrel 1 at a peripheral speed of 0.1 m / min or more under these conditions. The peripheral speed of the rotary barrel 1 greatly affects the stirring state of the powder raw material 5. In order to form a flow state suitable for sputtering, 0.1 m /
A peripheral speed of at least a minute is required. If the peripheral speed does not reach 0.1 m / min, the powder raw material 5 does not sufficiently fluidize, and the ratio of uncoated powder particles remaining increases.

【0009】所定時間経過後にスパッタリングを中止
し、減圧処理室7を減圧にすると共に、ガス導入管10
からArとN2 の混合ガスを導入し、粉末原料5を流体
ジェットミル12経由で減圧処理室7に吸引返送し、ス
パッタリング中に塊状になった粉末原料5をできるだけ
個々の粒子にほぐす。このスパッタリング操作を数回繰
り返すことにより、所定の厚みをもつセラミックス被覆
層が粉末原料5の表面に形成される。所定厚みまでセラ
ミックス被覆層が形成した粉末は、固気分離装置16か
ら回収される。
After a predetermined time has elapsed, the sputtering is stopped, the pressure in the decompression processing chamber 7 is reduced, and
, A mixed gas of Ar and N 2 is introduced, and the powder raw material 5 is sucked and returned to the decompression processing chamber 7 via the fluid jet mill 12 to loosen the powder raw material 5 which has been agglomerated during sputtering as much as possible into individual particles. By repeating this sputtering operation several times, a ceramic coating layer having a predetermined thickness is formed on the surface of the powder raw material 5. The powder having the ceramic coating layer formed to a predetermined thickness is recovered from the solid-gas separation device 16.

【0010】このようなスパッタリングによって粉末原
料5にセラミックス被覆層を形成するとき、被覆層のX
線回折ピーク半価幅から計算される結晶子径を100n
m以下にすることが均一な被覆層を形成するために必要
である。被覆層のX線回折ピーク半価幅から計算される
結晶子径は、被覆層の結晶粒径と対応しており、一般に
本発明方法のように蒸着層を形成する場合、基材又は基
板上に柱状又は粒状に析出する。したがって、結晶子径
はこのような柱状又は粒状結晶層の大きさを意味し、結
晶子径を100nm以下とすることにより基材への均一
被覆を阻害する粗大柱状晶や粗大粒状晶の発生が抑制さ
れ、良好な被覆が施される。100nmを超える結晶子
径では、皮膜の成長が阻害されて均一な被覆層が形成さ
れず、セラミックスが粒状に付着する虞れがある。通
常、スパッタリング法による表面処理では、基板に対す
る被覆厚み(膜厚)により特性が影響されることが多
い。しかし、セラミックス被覆では、被覆状態が粉末粒
子間で異なる他、微細粉末粒子1粒に対する被覆厚みの
測定が困難なため、流動する粉末への被覆中には膜厚計
等を使用した測定もできない。
When a ceramic coating layer is formed on the powdery raw material 5 by such sputtering, the X of the coating layer
The crystallite diameter calculated from the half width of the X-ray diffraction peak is 100 n
m or less is necessary to form a uniform coating layer. The crystallite diameter calculated from the X-ray diffraction peak half width of the coating layer corresponds to the crystal grain size of the coating layer. Precipitate in columnar or granular form. Therefore, the crystallite diameter means the size of such a columnar or granular crystal layer, and by setting the crystallite diameter to 100 nm or less, the occurrence of coarse columnar crystals or coarse granular crystals that hinder uniform coating on the substrate is prevented. It is suppressed and a good coating is applied. If the crystallite diameter exceeds 100 nm, the growth of the film is hindered, so that a uniform coating layer is not formed, and there is a possibility that ceramics may adhere in a granular manner. Usually, in the surface treatment by the sputtering method, the characteristics are often affected by the coating thickness (film thickness) of the substrate. However, in the case of ceramic coating, since the coating state differs between powder particles, and it is difficult to measure the coating thickness of one fine powder particle, measurement using a film thickness meter or the like cannot be performed during coating on flowing powder. .

【0011】この点、本発明者等は、被覆される微粒子
の比表面積と被覆するセラミックスの密度,種類,性状
等が定まった場合、粉末粒子1粒ずつにセラミックスが
均一被覆したと仮定して、被覆量によって計算上で求め
られる被覆厚み(膜厚)が本発明で規定した範囲にある
とき良好な被覆状態が得られることを見い出した。すな
わち、反応性スパッタリングによって粉末粒子1粒ずつ
に均一にセラミックスが被覆されると仮定した場合、被
覆される微粒子の比表面積をS(m2 /g),被覆する
セラミックスの密度をm(g/m3 ),被覆量をX(質
量%)とするとき、次のように膜厚を計算することがで
きる。
[0011] In this regard, the present inventors assume that when the specific surface area of the fine particles to be coated and the density, type, and properties of the ceramic to be coated are determined, the ceramics are uniformly coated on each of the powder particles. It has been found that a good coating state can be obtained when the coating thickness (film thickness) calculated by the coating amount is within the range specified in the present invention. That is, assuming that the ceramic is uniformly coated on each of the powder particles by reactive sputtering, the specific surface area of the coated fine particles is S (m 2 / g), and the density of the coated ceramic is m (g / g). m 3 ), and when the coating amount is X (% by mass), the film thickness can be calculated as follows.

【0012】単位重量1g当りの粉末に被覆されたセラ
ミックスの重量は、被覆率がX(質量%)であるので、
X/100(g)で表される。同じく、単位重量1g当
りの粉末に被覆されたセラミックスの体積は、被覆重量
X/100(g)を密度m(g/m3 )で割ることによ
り、X/(100×m)(m)として表される。ここ
で、体積X/(100×m)のセラミックスが均一に粉
末を被覆していると仮定すると、単位重量1当りの粉末
の比表面積がS(m2 /g)であることから、被覆する
セラミックスの体積X/(100×m)を粉末の比表面
積Sで割ることにより、X/(100×m×S)(m)
として求められる。これらの式で表された膜厚の単位を
mからμmに変換すると、膜厚t(μm)は、前掲の式
t={X/(100×m×S)}×106 として得られ
る。
The weight of the ceramics coated on the powder per 1 g of the unit weight is represented by the following formula:
X / 100 (g). Similarly, the volume of the ceramics coated on the powder per 1 g of unit weight is calculated as X / (100 × m) (m) by dividing the coating weight X / 100 (g) by the density m (g / m 3 ). expressed. Here, assuming that ceramics having a volume of X / (100 × m) uniformly coats the powder, the specific surface area of the powder per unit weight is S (m 2 / g). By dividing the volume X / (100 × m) of the ceramic by the specific surface area S of the powder, X / (100 × m × S) (m)
Is required. When the unit of the film thickness represented by these equations is converted from m to μm, the film thickness t (μm) is obtained as the above equation t = {X / (100 × m × S)} × 10 6 .

【0013】ここで、膜厚tが0.001〜0.1μm
となるように設定すると、粉末粒子間で不可避的に発生
する被覆量のバラツキに起因する未被覆粒子の存在が実
質的に排除され、且つ過剰被覆に起因したセラミックス
被覆層の内部応力の増大による皮膜剥離を抑制すること
ができる。このような膜厚になるような被覆量Xは、t
={X/(100×m×S)}×106 =1×10-3
1×1-1であるので、X=(1×10-7×m×S)〜
(1×10-5×m×S)と表すことができる。膜厚tが
0.001μm未満では、粉末粒子間の被覆状態の相違
によって多数の未被覆粒子が存在するようになり、実質
的にセラミックス被覆の効果が得られない。逆に0.1
μmを超える膜厚tでは、粉末粒子への被覆率は向上す
るものの、過剰被覆によってコストが上昇するばかりで
なく、セラミックス皮膜の熱歪みに起因する内部応力の
増大によって皮膜剥離が生じ易くなり、却って被覆状態
が劣化することにより未被覆粒子が多くなる。その結
果、剥離したセラミックス皮膜が微粒子状の不純物とし
て混入する虞れがある。
Here, the film thickness t is 0.001 to 0.1 μm
When set so that the presence of uncoated particles caused by the variation of the coating amount inevitably generated between the powder particles is substantially eliminated, and the internal stress of the ceramic coating layer caused by the excessive coating is increased. Film peeling can be suppressed. The coating amount X such as to achieve such a film thickness is t
= {X / (100 × mx × S)} × 10 6 = 1 × 10 -3
Since it is 1 × 1 −1 , X = (1 × 10 −7 × mxS )
(1 × 10 −5 × m × S). When the thickness t is less than 0.001 μm, a large number of uncoated particles are present due to the difference in the coating state between the powder particles, and the effect of the ceramic coating cannot be substantially obtained. Conversely 0.1
When the film thickness t exceeds μm, the coating rate on the powder particles is improved, but not only the cost is increased due to excessive coating, but also film peeling is likely to occur due to an increase in internal stress due to thermal distortion of the ceramic film, On the contrary, the uncoated particles increase due to the deterioration of the coated state. As a result, the peeled ceramic film may be mixed as fine particle impurities.

【0014】[0014]

【実施例】【Example】

実施例1:種々の粒径をもつ絶縁性セラミックス粉末
に、前掲の式(1)から求められた膜厚になるようにT
iN,AlN,TiC,ZrN,CrN等の弱導電性セ
ラミックスを反応性スパッタリングで被覆した。内径1
0mmの絶縁性ダイスに被覆粉末を充填し、圧力10M
Paで加圧した後、上下の電極間の電気抵抗を測定し
た。また、比較のため同重量割合で粉末原料及び被覆原
料を絶縁性ダイスに充填し、同様に加圧して電気抵抗を
測定した。このうち、立方晶BN粉末にTiNを被覆し
た場合で、電気抵抗が粉末原料よりも2桁以上改善され
た被覆粉末の表面状態を観察したところ、図2に示すよ
うに立方晶BN粉末粒子の表面がTiN層で均一に被覆
されていた。他方、電気抵抗が粉末原料よりも1桁以上
改善された被覆粉末の表面状態を観察したところ、図3
に示すようにTiN層は膜状ではなく粒状で立方晶BN
粉末粒子の表面に付着していた。
Example 1: Insulating ceramic powders having various particle diameters were mixed with each other so as to have a film thickness determined by the above-mentioned equation (1).
Weakly conductive ceramics such as iN, AlN, TiC, ZrN, and CrN were coated by reactive sputtering. Inner diameter 1
0 mm insulating die is filled with the coating powder, and the pressure is 10M.
After pressurizing with Pa, the electric resistance between the upper and lower electrodes was measured. Further, for comparison, an insulating die was filled with the powder raw material and the coating raw material at the same weight ratio, and the electric resistance was measured by similarly applying pressure. Of these, when the cubic BN powder was coated with TiN, the surface state of the coated powder whose electrical resistance was improved by at least two orders of magnitude compared to the powder raw material was observed, and as shown in FIG. The surface was uniformly covered with the TiN layer. On the other hand, when the surface state of the coated powder whose electric resistance was improved by one digit or more than the powder raw material was observed, FIG.
As shown in the figure, the TiN layer is not a film but a granular cubic BN.
It adhered to the surface of the powder particles.

【0015】そこで、電気抵抗が2桁以上改善された場
合を粉末粒子がセラミックスで均一に被覆されているも
の(○),電気抵抗の改善度が2桁に満たないものを不
均一被覆(×)と判定し、各粉末原料に対する被覆原料
の付着状態を調査した。ただし、粉末原料が導電性のT
i粉末に絶縁性のAl23 を被覆したものでは、逆に
電気抵抗が2桁以上下がった場合を均一被覆(○),電
気抵抗の低下度が2桁に満たない場合を不均一被覆
(×)と判定した。判定結果を示す表1〜4にみられる
ように、本発明で規定した条件下の反応性スパッタリン
グによって被覆したものでは、何れも均一な被覆層が得
られていることが確認された。これに対し、本発明で規
定した条件を外れる反応スパッタリングで形成された被
覆層は、粒状又は島状の不連続皮膜になっていた。
Therefore, when the electric resistance is improved by two digits or more, the case where the powder particles are uniformly coated with the ceramic (○) and the case where the degree of improvement of the electric resistance is less than two orders are unevenly coated (×) ), And the adhesion state of the coating material to each powder material was investigated. However, if the powder material is conductive T
On the other hand, in the case where i powder is coated with insulating Al 2 O 3 , conversely, when the electric resistance is reduced by two digits or more, the coating is uniform (○), and when the degree of decrease in the electric resistance is less than two digits, the coating is uneven. (X) was determined. As can be seen from Tables 1 to 4 showing the results of the determination, it was confirmed that a uniform coating layer was obtained in each case coated by reactive sputtering under the conditions specified in the present invention. On the other hand, the coating layer formed by the reactive sputtering deviating from the conditions specified in the present invention was a granular or island-shaped discontinuous coating.

【0016】 [0016]

【0017】 [0017]

【0018】 [0018]

【0019】 [0019]

【0020】実施例2:絶縁性セラミックス粉末Al2
3 に、前掲の式(1)から求めた膜厚が5×10-2μ
mとなるように弱導電性セラミックスTiNを反応性ス
パッタリングで被覆した。このとき、反応性ガスの分圧
比を一定値50%,被覆層の結晶子径を一定値100n
m以下に維持し、バレル周速を変化させた。得られた被
覆粉末の電気抵抗を実施例1と同様に測定し、被覆の均
一性に及ぼすバレル周速の影響を調査した。図4の調査
結果にみられるように、バレル周速を0.1m/分以上
とするとき、良好な均一被覆された粉末が得られること
が判る。
Example 2: Insulating ceramic powder Al 2
In O 3 , the film thickness obtained from the above equation (1) is 5 × 10 −2 μm.
m was coated by reactive sputtering with a weakly conductive ceramic TiN. At this time, the reactive gas partial pressure ratio was set to a fixed value of 50%, and the crystallite diameter of the coating layer was set to a fixed value of 100 n.
m or less, and the barrel peripheral speed was changed. The electrical resistance of the obtained coating powder was measured in the same manner as in Example 1, and the effect of the peripheral speed of the barrel on the uniformity of the coating was investigated. As can be seen from the investigation results in FIG. 4, when the barrel peripheral speed is set to 0.1 m / min or more, a good uniformly coated powder can be obtained.

【0021】実施例3:絶縁性セラミックス粉末Al2
3 に、前掲の式(1)から求めた膜厚が2×10-2μ
mとなるように弱導電性セラミックスTiN,TiCを
反応性スパッタリングで被覆した。また、導電性粒子A
gに、同様な膜厚条件下でAl23 を被覆した。この
とき、バレル周速を一定値0.1m/分に、被覆層の結
晶子径を100nm以下に維持し、反応性ガスの分圧比
を変化させた。得られた被覆粉末の電気抵抗を実施例1
と同様に測定し、被覆の均一性に及ぼす反応性ガスの分
圧比の影響を調査した。本実施例では、電気抵抗が3桁
変化した場合を特に被覆状態が優れているもの(◎)と
判定した。図5の調査結果にみられるように、反応性ガ
スの分圧比を10〜70%の範囲に維持するとき良好な
被覆状態が得られ、なかでも30〜50%の分圧比で優
れた被覆状態になることが判る。
Example 3 Insulating ceramic powder Al 2
In O 3 , the film thickness obtained from the above formula (1) is 2 × 10 −2 μm.
m, weakly conductive ceramics TiN and TiC were coated by reactive sputtering. In addition, conductive particles A
g was coated with Al 2 O 3 under the same film thickness conditions. At this time, the barrel peripheral speed was maintained at a constant value of 0.1 m / min, the crystallite diameter of the coating layer was maintained at 100 nm or less, and the reactive gas partial pressure ratio was changed. The electric resistance of the obtained coated powder was measured in Example 1.
The effect of the partial pressure ratio of the reactive gas on the uniformity of the coating was investigated. In this example, the case where the electrical resistance changed by three digits was determined to be particularly excellent in the coating state (◎). As can be seen from the investigation results in FIG. 5, when the partial pressure ratio of the reactive gas is maintained in the range of 10 to 70%, a good coating state is obtained, and in particular, an excellent coating state is obtained at a partial pressure ratio of 30 to 50%. It turns out that it becomes.

【0022】実施例4:絶縁性セラミックス粉末Al2
3 に、前掲の式(1)から求めた膜厚が1×10-2μ
mとなるように弱導電性セラミックスTiNを反応性ス
パッタリングで被覆した。このとき、バレル周速を一定
値0.1m/分に、反応性ガスの分圧比を一定値50%
に維持し、種々の結晶粒子径となるようにスパッタリン
グ出力及び基材温度を変化させた。得られた被覆粉末の
電気抵抗を実施例1と同様に測定し、被覆の均一性に及
ぼす結晶子径の影響を調査した。本実施例では、電気抵
抗が3桁変化した場合を特に被覆状態が優れているもの
(◎)と判定した。図6の調査結果にみられるように、
結晶子径を100nm以下にするとき良好な被覆状態が
得られ、なかでも30nm以下の結晶子径で優れた被覆
状態になることが判る。
Example 4: Insulating ceramic powder Al 2
In O 3 , the film thickness obtained from the above equation (1) is 1 × 10 −2 μm.
m was coated by reactive sputtering with a weakly conductive ceramic TiN. At this time, the peripheral speed of the barrel was set to a constant value of 0.1 m / min, and the partial pressure ratio of the reactive gas was set to a constant value of 50%.
, And the sputtering output and the substrate temperature were changed so as to obtain various crystal particle diameters. The electrical resistance of the obtained coating powder was measured in the same manner as in Example 1, and the effect of the crystallite diameter on the coating uniformity was investigated. In this example, the case where the electrical resistance changed by three digits was determined to be particularly excellent in the coating state (◎). As can be seen from the survey results in FIG.
It can be seen that when the crystallite diameter is set to 100 nm or less, a good coating state is obtained, and in particular, an excellent coating state is obtained when the crystallite diameter is 30 nm or less.

【0023】実施例5:絶縁性セラミックス粉末Al2
3 に、前掲の式(1)から求めた膜厚を変化させて弱
導電性セラミックスTiN,TiCを反応性スパッタリ
ングで被覆した。また、同様にして導電性粒子Agに絶
縁性セラミックスAl23 を被覆した。このとき、バ
レル周速を一定値0.1m/分に、反応性ガスの分圧比
を一定値50%に、被覆層の結晶子径を100nm以下
に維持した。得られた被覆粉末の電気抵抗を実施例1と
同様に測定し、被覆の均一性に及ぼす膜厚の影響を調査
した。本実施例では、電気抵抗が3桁変化した場合を特
に被覆状態が優れているもの(◎)と判定した。図7の
調査結果にみられるように、膜厚を1×10-3〜1×1
-1μmにするとき良好な被覆状態が得られ、なかでも
5×10-3〜5×10-2μmの範囲で優れた被覆状態に
なることが判る。
Example 5: Insulating ceramic powder Al 2
O 3 was coated with weakly conductive ceramics TiN and TiC by reactive sputtering while changing the film thickness obtained from the above-mentioned formula (1). Similarly, conductive particles Ag were coated with insulating ceramics Al 2 O 3 . At this time, the barrel peripheral speed was kept at a constant value of 0.1 m / min, the reactive gas partial pressure ratio was kept at a constant value of 50%, and the crystallite diameter of the coating layer was kept at 100 nm or less. The electrical resistance of the obtained coating powder was measured in the same manner as in Example 1, and the effect of the film thickness on the uniformity of the coating was investigated. In this example, the case where the electrical resistance changed by three digits was determined to be particularly excellent in the coating state (◎). As can be seen from the investigation results in FIG. 7, the film thickness was 1 × 10 −3 to 1 × 1.
It can be seen that when the thickness is 0 -1 μm, a good coating state is obtained, and in particular, an excellent coating state is obtained in the range of 5 × 10 −3 to 5 × 10 −2 μm.

【0024】実施例6:立方晶BN粉末に、前掲の式
(1)から求めた膜厚が1×10-2μmとなるようにT
iN,TiC,TiCNを反応性スパッタリングで被覆
した。このとき、バレル周速を一定値0.1m/分に、
反応性ガスの分圧比を一定値50%に維持し、結晶粒子
径が10〜30nmとなるようにスパッタリング出力及
び基材温度を調整した。反応性スパッタリングで被覆さ
れたBN粉末を2000℃,10,000気圧,1時間
で熱間静水圧焼結した。得られた焼結体を強度試験し、
抗折力を測定した。測定結果を図8に示す。なお、本実
施例では、被覆粉末と同じ重量割合で未被覆の立方晶B
N粉末にTiN,TiC,TiCNを混合し、同じ条件
下で焼結したものを比較例とした。図8の調査結果にみ
られるように、本発明に従って得られた被覆粉末を焼結
原料としたものでは、単純にTiN,TiC,TiCN
を混合した立方晶BN粉末を焼結したものに比較して、
抗折力が格段に向上していることが判る。これは、立方
晶BN粉末に均一被覆されているTiN,TiC,Ti
CN等が粉末粒子相互をつなぐバインダーとしての作用
を十分に発揮した結果であると考えられる。
Example 6: The cubic BN powder was mixed with T so that the film thickness obtained from the above equation (1) was 1 × 10 -2 μm.
iN, TiC, TiCN were coated by reactive sputtering. At this time, the barrel peripheral speed was set to a constant value of 0.1 m / min,
The sputtering output and the substrate temperature were adjusted so that the partial pressure ratio of the reactive gas was maintained at a constant value of 50% and the crystal particle diameter was 10 to 30 nm. The BN powder coated by reactive sputtering was hot isostatically sintered at 2000 ° C., 10,000 atmospheres and 1 hour. The obtained sintered body is subjected to a strength test,
The transverse rupture force was measured. FIG. 8 shows the measurement results. In this example, the uncoated cubic B
A comparative example was prepared by mixing TiN, TiC, and TiCN with N powder and sintering them under the same conditions. As can be seen from the investigation results in FIG. 8, when the coated powder obtained according to the present invention was used as a sintering material, TiN, TiC, TiCN were simply used.
Compared to the sintered cubic BN powder mixed with
It can be seen that the transverse rupture strength has been significantly improved. This is because TiN, TiC, Ti uniformly coated on cubic BN powder
This is considered to be the result of CN sufficiently exerting the action as a binder for connecting the powder particles.

【0025】[0025]

【発明の効果】以上に説明したように、本発明において
は、反応ガスの分圧比を10〜70%に調整した雰囲気
下で結晶子径及び被覆率が特定された条件下でスパッタ
リングすることにより、各種粉末粒子の表面に均一なセ
ラミックス被覆層を形成することができる。このように
して得られたセラミックス被覆粉末は、表面を完全にセ
ラミックスが被覆し、且つセラミックス層と基材との間
の優れた密着性等の特性を活用し、また広範囲な被覆
種,組成が選択されることから、焼結時の添加剤,焼結
材料の前処理剤,塗料や樹脂成形物への顔料,優れた触
媒活性を示す分散剤等として広範な分野で使用される。
As described above, in the present invention, sputtering is performed under the conditions where the crystallite diameter and the coverage are specified in an atmosphere in which the partial pressure ratio of the reaction gas is adjusted to 10 to 70%. In addition, a uniform ceramic coating layer can be formed on the surfaces of various powder particles. The ceramic coating powder obtained in this way completely coats the surface of the ceramic, utilizes the properties such as excellent adhesion between the ceramic layer and the substrate, and has a wide range of coating types and compositions. Since they are selected, they are used in a wide range of fields as additives for sintering, pretreatment agents for sintering materials, pigments for paints and resin moldings, dispersants having excellent catalytic activity, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 粉末スパッタリングに使用する装置の一例FIG. 1 shows an example of an apparatus used for powder sputtering.

【図2】 TiNが均一被覆された立方晶BN粉末粒子
の構造を示す写真
FIG. 2 is a photograph showing the structure of cubic BN powder particles uniformly coated with TiN.

【図3】 TiNが不均一被覆された立方晶BN粉末粒
子の構造を示す写真
FIG. 3 is a photograph showing the structure of cubic BN powder particles coated with TiN unevenly.

【図4】 バレル周速が皮膜の均一性に及ぼす影響を表
したグラフ
FIG. 4 is a graph showing the effect of barrel peripheral speed on film uniformity.

【図5】 反応性ガスの分圧比が皮膜の均一性に及ぼす
影響を表したグラフ
FIG. 5 is a graph showing the effect of a reactive gas partial pressure ratio on film uniformity.

【図6】 結晶子径が皮膜の均一性に及ぼす影響を表し
たグラフ
FIG. 6 is a graph showing the effect of crystallite diameter on film uniformity.

【図7】 膜厚が皮膜の均一性に及ぼす影響を表したグ
ラフ
FIG. 7 is a graph showing the effect of film thickness on film uniformity.

【図8】 本発明に従って均一被覆された粉末を焼結し
て得られた焼結体が抗折力に優れていることを表したグ
ラフ
FIG. 8 is a graph showing that a sintered body obtained by sintering a powder uniformly coated according to the present invention has excellent transverse rupture strength.

【符号の説明】[Explanation of symbols]

1:回転バレル 2:ロール 3:モーター
4:スパッタリング源 5:粉末原料 6:加熱コイル 7:減圧処理室
8:バルブ 9:供給管 10:ガス導入管 11:分岐管
12:流体ジェットミル 13:循環管 14:バルブ 15:バルブ 1
6:固気分離装置
1: rotating barrel 2: roll 3: motor
4: sputtering source 5: powder raw material 6: heating coil 7: decompression processing chamber
8: Valve 9: Supply pipe 10: Gas introduction pipe 11: Branch pipe
12: Fluid jet mill 13: Circulation pipe 14: Valve 15: Valve 1
6: Solid-gas separation device

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年8月11日[Submission date] August 11, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹島 鋭機 千葉県市川市高谷新町7番1号 日新製鋼 株式会社技術研究所内 (72)発明者 白井 安 千葉県市川市高谷新町7番1号 日新製鋼 株式会社技術研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Aki Takeshima 7-1 Takaya Shinmachi, Ichikawa-shi, Chiba Inside Nisshin Steel R & D Co., Ltd. (72) Inventor Yasushi Shirai 7-1 Takaya Shinmachi, Ichikawa-shi, Chiba Nisshin Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粉末粒子を装入した回転バレルを周速
0.1m/分以上で回転させながら反応性スパッタリン
グ法で粉末粒子をセラミックスで被覆する際、スパッタ
リングガス中の反応性ガスの分圧比を10〜70%と
し、被覆層のX線回折ピーク半価幅から計算される結晶
子径が100nm以下であり、被覆される微粒子の比表
面積をS(m2 /g),被覆するセラミックスの密度を
m(g/m 3 )とするとき、式(1)で定義される理想
的に粉末粒子1粒ずつに均一に被覆されたと仮定した膜
厚t(μm)が1×10-3〜1×10-1の範囲になるよ
うに被覆量X(質量%)でセラミックス被覆層を形成す
ることを特徴とするセラミックス被覆粉末の製造方法。 t={X/(100×m×S)}×106 ・・・・(1)
1. A rotating barrel loaded with powder particles is rotated at a peripheral speed.
Reactive sputtering while rotating at 0.1m / min or more
When coating powder particles with ceramics by the
The partial pressure ratio of the reactive gas in the ring gas is set to 10 to 70%.
And a crystal calculated from the X-ray diffraction peak half width of the coating layer.
Ratio table of fine particles having a diameter of 100 nm or less and being coated
The area is S (mTwo / G), the density of the ceramic to be coated
m (g / m Three ), The ideal defined by equation (1)
Assuming that the powder particles are uniformly coated uniformly
The thickness t (μm) is 1 × 10-3~ 1 × 10-1It will be in the range of
To form a ceramic coating layer with the coating amount X (mass%)
A method for producing a ceramic coated powder. t = {X / (100 × mx × S)} × 106 ... (1)
【請求項2】 N2 ,O2 ,炭化水素の1種又は2種以
上を反応性ガス源として使用する請求項1記載のセラミ
ックス被覆粉末の製造方法。
2. The method according to claim 1, wherein one or more of N 2 , O 2 , and hydrocarbons are used as a reactive gas source.
【請求項3】 Ti,Al,Cr,Zr又はそれらを主
成分とする合金又は混合物をターゲット金属として使用
する請求項1記載のセラミックス被覆粉末の製造方法。
3. The method for producing a ceramic-coated powder according to claim 1, wherein Ti, Al, Cr, Zr or an alloy or mixture containing these as a main component is used as a target metal.
JP9214702A 1997-08-08 1997-08-08 Production of ceramic coated powder Withdrawn JPH1161399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9214702A JPH1161399A (en) 1997-08-08 1997-08-08 Production of ceramic coated powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9214702A JPH1161399A (en) 1997-08-08 1997-08-08 Production of ceramic coated powder

Publications (1)

Publication Number Publication Date
JPH1161399A true JPH1161399A (en) 1999-03-05

Family

ID=16660199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9214702A Withdrawn JPH1161399A (en) 1997-08-08 1997-08-08 Production of ceramic coated powder

Country Status (1)

Country Link
JP (1) JPH1161399A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045197A (en) * 2006-08-21 2008-02-28 Sony Corp Production method for composite powder, and production device for composite powder
JP2009233560A (en) * 2008-03-27 2009-10-15 Toshiba Corp Fine particle support device and fine particle support method
JP2014184992A (en) * 2013-03-22 2014-10-02 Nippon Paper Industries Co Ltd Method for repairing screw type conveyor
WO2016140326A1 (en) * 2015-03-04 2016-09-09 デクセリアルズ株式会社 Method for manufacturing conductive particles, anisotropically conductive adhesive, and method for mounting component
WO2017014304A1 (en) * 2015-07-22 2017-01-26 株式会社フルヤ金属 Powder coating apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045197A (en) * 2006-08-21 2008-02-28 Sony Corp Production method for composite powder, and production device for composite powder
JP2009233560A (en) * 2008-03-27 2009-10-15 Toshiba Corp Fine particle support device and fine particle support method
JP2014184992A (en) * 2013-03-22 2014-10-02 Nippon Paper Industries Co Ltd Method for repairing screw type conveyor
WO2016140326A1 (en) * 2015-03-04 2016-09-09 デクセリアルズ株式会社 Method for manufacturing conductive particles, anisotropically conductive adhesive, and method for mounting component
WO2017014304A1 (en) * 2015-07-22 2017-01-26 株式会社フルヤ金属 Powder coating apparatus
JPWO2017014304A1 (en) * 2015-07-22 2018-05-10 株式会社フルヤ金属 Powder coating equipment
US10793945B2 (en) 2015-07-22 2020-10-06 Furuya Metal Co., Ltd. Powder coating apparatus
JP2020186473A (en) * 2015-07-22 2020-11-19 株式会社フルヤ金属 Powder coating apparatus

Similar Documents

Publication Publication Date Title
US4239819A (en) Deposition method and products
CN102686772B (en) Coated bodies made of metal, hard metal, cermet, or ceramic, and method(s) for coating of such bodies
TW539750B (en) Process for coating superabrasive with metal
JPS60103170A (en) Abrasion resistant coating and manufacture
US5966585A (en) Titanium carbide/tungsten boride coatings
EP0958394A1 (en) Sintering tray
JP2002543993A5 (en)
US5141613A (en) Silicon carbide coatings
JPS6245305B2 (en)
JPH07315989A (en) Production of diamond coated member
CN112639155B (en) Method for forming thermal spray coating
JPH1161399A (en) Production of ceramic coated powder
JPH0711051B2 (en) Cemented carbide and coated cemented carbide formed by forming a coating on the surface of the alloy
JPH08199372A (en) Production of functionally gradient material and device therefor
JPH0645863B2 (en) Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article
JP3469310B2 (en) Ceramic base material for diamond coating and method for producing coating material
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JPH06220608A (en) Surface-coated hard member and its production
JPH06184750A (en) Composite body and its production
JP2001020056A (en) Titanium carbide/tungsten boride coating
JPS60255366A (en) Preparation of diamond grinding paper
JP2970016B2 (en) Hard layer coated cemented carbide cutting tool
JP4047940B2 (en) Ceramic substrate for diamond coating
JPH02228474A (en) Coated sintered alloy
JPH06191993A (en) Method for production diamond-coated member

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102