JPH1161361A - Heat resistant and wear resistant material - Google Patents

Heat resistant and wear resistant material

Info

Publication number
JPH1161361A
JPH1161361A JP21843397A JP21843397A JPH1161361A JP H1161361 A JPH1161361 A JP H1161361A JP 21843397 A JP21843397 A JP 21843397A JP 21843397 A JP21843397 A JP 21843397A JP H1161361 A JPH1161361 A JP H1161361A
Authority
JP
Japan
Prior art keywords
alloy
carbide
less
powder
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21843397A
Other languages
Japanese (ja)
Inventor
Setsuo Takagi
節雄 高木
Masatomo Kamata
政智 鎌田
Hiroshi Notomi
啓 納富
Toshimitsu Tetsui
利光 鉄井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21843397A priority Critical patent/JPH1161361A/en
Publication of JPH1161361A publication Critical patent/JPH1161361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a material excellent in heat and wear resistance and thermal shock resistance by dispersing Cr carbides having a specified grain size into an Fe-Cr metallic matrix of an alloy having a specified compsn. composed of C, Cr, Nb and Fe. SOLUTION: In an alloy composed of, by weight, 2 to 6.5%, preferably about 3.5 to 6%, more preferably about 4.5 to 5.5% C, 25 to 60%, preferably about 40 to 55%, more preferably 47 to 53% Cr, 0.1 to 10%, preferably about 1 to 5%, more preferably about 1.5 to 3% Nb, and the balance Fe with inevitable impurities, Cr carbides having <=10 μm average grain size are dispersed into Fe-Cr base metallic matrix phases to obtain a heat resistant and wear resistant material. In this alloy components, a part of Fe may be substituted with one or more kinds among 0.1 to 5% V, 0.1 to 5% Mo and 0.1 to 6% W. Furthermore, a part of C can be substituted with one or more kinds of 0.05 to 15 N and 0.05 to 1.5% B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電プラントをは
じめとする高温耐摩耗性が要求される部位の構成材料と
して使用するのに適した耐熱耐摩耗材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant and abrasion-resistant material suitable for use as a constituent material of a site requiring high-temperature abrasion resistance such as a power plant.

【0002】[0002]

【従来の技術】石炭焚き火力発電プラントでは、配管プ
ロテクタや粉体輸送管をはじめとして、耐熱性と耐摩耗
性を同時に要求される部位が多い。これらの部位には、
低合金鋼やSUS310等が用いられているが、使用環
境によっては摩耗が著しく、定期点検毎の交換を余儀な
くされるものもある。また、原子力発電プラントにおい
て、バルブシートをはじめとする耐摩耗性、摺動性が要
求される部位にステライト系の合金が使用されている
が、使用中に、その主成分であるCoが放射性を帯びて
しまうため、人体や環境に及ぼす悪影響が問題となって
いる。そこで、Coを含まず、かつステライト合金並の
特性を有する合金が熱望されている。このほか、内燃機
関や航空宇宙機器業等でも、装置の高性能化の要求に伴
い、使用環境がより苛酷になる傾向にあり、従来からの
耐摩耗材料、耐熱材料ではこれに対応することが難しく
なってきている。
2. Description of the Related Art In a coal-fired thermal power plant, there are many parts requiring both heat resistance and abrasion resistance simultaneously, such as a pipe protector and a powder transport pipe. In these parts,
Low alloy steel, SUS310 or the like is used, but depending on the use environment, wear is remarkable, and there is a case where replacement is required at every periodic inspection. In nuclear power plants, stellite-based alloys are used in parts where wear resistance and slidability are required, such as valve seats. Because of this, the adverse effect on the human body and the environment is a problem. Therefore, an alloy that does not contain Co and has properties equivalent to that of a stellite alloy has been eagerly desired. In addition, in the internal combustion engine and aerospace equipment industries, the use environment tends to be harsher with the demand for higher performance of equipment, and conventional wear-resistant materials and heat-resistant materials cannot cope with this. It's getting harder.

【0003】[0003]

【発明が解決しようとする課題】そこで、本発明は、耐
熱性と耐摩耗性を兼ね備えた新しい合金を提供すること
で、装置の高性能化、部品交換頻度の低減あるいは原子
力発電プラントにおけるCo含有合金の代替をすすめる
ものである。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a new alloy having both heat resistance and wear resistance to improve the performance of an apparatus, reduce the frequency of replacing parts, or reduce the content of Co in a nuclear power plant. It is an alternative to alloys.

【0004】[0004]

【課題を解決するための手段】本発明者らは、Fe−C
r−C−Nbの合金系について成分の厳選を行い、優れ
た高温硬さと熱衝撃性を有する新しい耐熱耐摩耗材料を
発明した。すなわち、本発明は下記の(1)〜(3)の
構成を有する。 (1)重量比で、C:2〜6.5%、Cr:25〜60
%、Nb:0.1〜10%及び残部が不可避的不純物及
びFeからなる合金で、Fe−Cr系金属基地相に平均
粒径:10μm以下のCr炭化物が分散されていること
を特徴とする耐熱耐摩耗材料(以下、これを第1発明材
という)。 (2)上記(1)の合金成分において、Feの一部を重
量比で:V:0.1〜5%、Mo:0.1〜5%及び
W:0.1〜6%のいずれか1種以上の元素で置換した
合金で、Fe−Cr系金属基地相中に平均粒径:10μ
m以下のCr炭化物が分散されていることを特徴とする
耐熱耐摩耗材料(以下、これを第2発明材という)。 (3)上記(1)及び(2)の合金成分において、Cの
一部を重量比で、N:0.05〜1%、B:0.05〜
1.5%のいずれか1種以上の元素で置換した合金で、
Fe−Cr系金属基地相中に平均粒径:10μm以下の
Cr炭化物が分散されていることを特徴とする耐熱耐摩
耗材料(以下、これを第3発明材という)。
Means for Solving the Problems The present inventors have proposed Fe-C
We carefully selected the components of the r-C-Nb alloy system and invented a new heat- and wear-resistant material having excellent high-temperature hardness and thermal shock resistance. That is, the present invention has the following configurations (1) to (3). (1) By weight ratio, C: 2 to 6.5%, Cr: 25 to 60
%, Nb: 0.1 to 10%, and the balance is an alloy consisting of unavoidable impurities and Fe, characterized in that Cr carbide having an average particle size of 10 μm or less is dispersed in the Fe—Cr based metal base phase. A heat and wear resistant material (hereinafter, referred to as a first invention material). (2) In the alloy component of the above (1), a part of Fe is any one of: V: 0.1 to 5%, Mo: 0.1 to 5%, and W: 0.1 to 6% by weight ratio. An alloy substituted with one or more elements and having an average particle size of 10 μm in the Fe—Cr based metal base phase.
A heat-resistant and abrasion-resistant material wherein m or less Cr carbides are dispersed (hereinafter referred to as a second invention material). (3) In the alloy components of the above (1) and (2), a part of C is N: 0.05 to 1%, B: 0.05 to
1.5% of an alloy substituted with one or more elements,
A heat and wear resistant material (hereinafter referred to as a third invention material), characterized in that a Cr carbide having an average particle size of 10 μm or less is dispersed in an Fe—Cr based metal base phase.

【0005】[0005]

【発明の実施の形態】先ず、本発明の第1発明材におけ
る成分限定理由について説明する。以下の説明中、パー
セントは重量%を意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the reasons for limiting the components in the first invention material of the present invention will be described. In the following description, percent means percent by weight.

【0006】C:Cは炭化物を形成し合金の硬さを確保
する。また、一部は金属基地相にも固溶し基地の強化に
寄与する。Cの量によって合金中の炭化物の量を制御す
ることが可能であるため、使用条件に応じてその量を変
化させる必要がある。その量が2%未満では炭化物の量
が少なく十分な硬さ得られず、また6.5%を越えると
合金の大部分が炭化物となって熱衝撃性が低下したり、
脆すぎて製品形状への加工が困難になるといった問題が
生じる。従ってCの適性範囲としては、2%以上6.5
%以下とする。特に高温硬さを重視する場合、望ましい
成分範囲は3.5%以上6%以下、より望ましい成分範
囲は4.5%以上5.5%以下である。
C: C forms carbides and secures the hardness of the alloy. In addition, a part thereof is dissolved in the metal base phase and contributes to strengthening of the base. Since the amount of carbide in the alloy can be controlled by the amount of C, it is necessary to change the amount according to the use conditions. If the amount is less than 2%, the amount of carbide is small and sufficient hardness cannot be obtained. If the amount exceeds 6.5%, most of the alloy becomes carbide and the thermal shock resistance decreases,
There is a problem that it is too brittle to make processing into a product shape difficult. Therefore, the suitable range of C is 2% or more and 6.5.
% Or less. Particularly when high-temperature hardness is emphasized, a desirable component range is 3.5% or more and 6% or less, and a more desirable component range is 4.5% or more and 5.5% or less.

【0007】Cr:CrはCと結合してCr系炭化物を
形成し合金の硬さを確保する。特にCr系の炭化物は耐
酸化性に優れるため、本発明合金の主要炭化物としてこ
れを選定している。また、一部は金属基地相にも固溶し
基地の耐酸化性や高温強度も向上させる。炭化物として
多量のCrが消費された場合、基地への固溶量が減って
基地の耐酸化性や高温強度が低下するので、Crの添加
量はC量やNb量とバランスを取る必要がある。一般に
Cr量が25%未満の場合、基地金属中に固溶するCr
量が低下して十分な耐酸化性が得られないため、添加の
下限値を25%とする。また、60%を越える添加は金
属基地の脆化、熱衝撃性の低下を招くため、添加の上限
値を60%とする。特に高温硬さを重視する場合、望ま
しい成分範囲は40%以上55%以下、より望ましい成
分範囲は47%以上53%以下である。
Cr: Cr combines with C to form a Cr-based carbide and secures the hardness of the alloy. In particular, Cr-based carbides have excellent oxidation resistance, and are therefore selected as the main carbides of the alloy of the present invention. In addition, a part of the matrix dissolves in the metal base phase to improve the oxidation resistance and high temperature strength of the base. When a large amount of Cr is consumed as a carbide, the amount of solid solution in the matrix is reduced and the oxidation resistance and high-temperature strength of the matrix are reduced. Therefore, it is necessary to balance the amount of added Cr with the amount of C and the amount of Nb. . Generally, when the Cr content is less than 25%,
Since the amount decreases and sufficient oxidation resistance cannot be obtained, the lower limit of addition is set to 25%. Further, if the addition exceeds 60%, the metal matrix becomes brittle and the thermal shock resistance is reduced. Therefore, the upper limit of the addition is set to 60%. Particularly when high-temperature hardness is emphasized, a desirable component range is 40% to 55%, and a more desirable component range is 47% to 53%.

【0008】Nb:NbはCと結合してNb炭化物を形
成し合金の硬さを高める。発明合金の主要炭化物はCr
系炭化物であるが、Nb炭化物はこれより高温安定性が
高いため、合金製造時の高温加熱の際や長時間使用時に
Cr系炭化物が凝集・粗大化するのを抑制して、熱衝撃
性の向上に寄与する。添加量が0.1%未満では実質的
な効果がなく、また10%を越えるとNb炭化物自体が
粗大化して熱衝撃性に悪影響を及ぼすため、添加の範囲
を0.1%以上10%以下とする。材料特性と経済性を
考慮して、望ましい添加量は1%以上5%以下、より望
ましい添加量は1.5%以上3%以下である。
Nb: Nb combines with C to form Nb carbide and increases the hardness of the alloy. The main carbide of the invention alloy is Cr
Nb carbide is more stable at high temperatures than Nb carbide, so it suppresses the agglomeration and coarsening of Cr-based carbides during high-temperature heating during alloy production or during long-term use, and reduces thermal shock resistance. Contribute to improvement. If the addition amount is less than 0.1%, there is no substantial effect, and if it exceeds 10%, the Nb carbide itself becomes coarse and adversely affects the thermal shock resistance. Therefore, the addition range is 0.1% or more and 10% or less. And In consideration of material properties and economy, a desirable addition amount is 1% or more and 5% or less, and a more desirable addition amount is 1.5% or more and 3% or less.

【0009】次に、本発明の第2発明材における成分限
定理由を述べるが、第1発明材の説明と重複するところ
は省略し、ここでは新たに限定したV,Mo,Wの限定
理由のみの説明を行う。
Next, the reasons for limiting the components of the second invention material of the present invention will be described, but the description overlapping with the description of the first invention material will be omitted, and only the newly limited reasons for V, Mo, W will be described here. Will be described.

【0010】V:VはCと結合してV炭化物を形成し合
金の硬さを高める。発明合金の主要炭化物はCr系炭化
物であるが、V炭化物はこれとは別に微細分散するた
め、より一層高温硬さを高める効果がある。添加量が
0.1%未満では実質的な効果がなく、また5%を越え
るとV炭化物自体が粗大化して熱衝撃性に悪影響を及ぼ
すため、添加の範囲を0.1%以上5%以下とする。材
料特性と経済性を考慮して、望ましい添加量は1%以上
3%以下である。
V: V combines with C to form V carbide and increase the hardness of the alloy. The main carbide of the invention alloy is a Cr-based carbide, but the V-carbide is finely dispersed separately therefrom, and thus has the effect of further increasing the high-temperature hardness. If the addition amount is less than 0.1%, there is no substantial effect, and if it exceeds 5%, the V carbide itself becomes coarse and adversely affects the thermal shock resistance. Therefore, the addition range is 0.1% or more and 5% or less. And In consideration of material properties and economy, a desirable addition amount is 1% or more and 3% or less.

【0011】Mo:MoはCと結合してMo炭化物を形
成し合金の硬さを高める。発明合金の主要炭化物はCr
系炭化物であるが、Mo炭化物はこれとは別に微細分散
するため、より一層高温硬さを高める効果がある。ま
た、一部は金属基地相やCr系炭化物にも固溶し、合金
の高温熱安定性も向上させる。添加量が0.1%未満で
は実質的な効果がなく、また5%を越えるとMo炭化物
自体が粗大化して熱衝撃性に悪影響を及ぼすため、添加
の範囲を0.1%以上5%以下とする。材料特性と経済
性を考慮して、望ましい添加量は1%以上3%以下であ
る。
Mo: Mo combines with C to form Mo carbides and increases the hardness of the alloy. The main carbide of the invention alloy is Cr
Although Mo carbides are finely dispersed separately from Mo-based carbides, they have the effect of further increasing the high-temperature hardness. In addition, a part of the alloy also forms a solid solution with the metal base phase and the Cr-based carbide, thereby improving the high-temperature thermal stability of the alloy. If the addition amount is less than 0.1%, there is no substantial effect, and if it exceeds 5%, the Mo carbide itself becomes coarse and adversely affects the thermal shock resistance. Therefore, the addition range is 0.1% or more and 5% or less. And In consideration of material properties and economy, a desirable addition amount is 1% or more and 3% or less.

【0012】W:WはCと結合してW炭化物を形成し合
金の硬さを高める。発明合金の主要炭化物はCr系炭化
物であるが、W炭化物はこれとは別に微細分散するた
め、より一層高温硬さを高める効果がある。また、一部
は金属基地相やCr系炭化物にも固溶し、合金の高温熱
安定性も向上させる。添加量が0.1%未満では実質的
な効果がなく、また6%を越えるとW炭化物自体が粗大
化して熱衝撃性に悪影響を及ぼすとともに耐酸化性も低
下するため、添加の範囲を0.1%以上6%以下とす
る。材料特性と経済性を考慮して、望ましい添加量は2
%以上4%以下である。
W: W combines with C to form W carbides and increases the hardness of the alloy. The main carbide of the invention alloy is a Cr-based carbide, but the W carbide is finely dispersed separately therefrom, and thus has the effect of further increasing the high-temperature hardness. In addition, a part of the alloy also forms a solid solution with the metal base phase and the Cr-based carbide to improve the high-temperature thermal stability of the alloy. If the addition amount is less than 0.1%, there is no substantial effect, and if it exceeds 6%, the W carbide itself becomes coarse and adversely affects the thermal shock resistance and the oxidation resistance is lowered. .1% or more and 6% or less. Considering the material properties and economy, the desirable addition amount is 2
% Or more and 4% or less.

【0013】さらに、本発明の第3発明材における成分
限定理由を述べるが、第1発明材及び第2発明材の説明
と重複するところは省略し、ここでは新たに限定した
N,Bの限定理由のみの説明を行う。
Further, the reasons for limiting the components in the third invention material of the present invention will be described, but the description overlapping with the description of the first invention material and the second invention material will be omitted, and the limitation of N and B newly limited here will be omitted. Only the reason will be explained.

【0014】N:Nは炭窒化物を形成し合金の硬さを確
保する。炭化物に比べて炭窒化物は構造が複雑なため、
一般に硬さが高く熱安定性も良好である。また、一部は
金属基地相にも固溶し基地の強化に寄与する。その量が
0.05%未満では炭化物の量が少なく十分な硬さ得ら
れず、また1%を越えると基地金属を脆くするため適性
範囲としては、0.05%以上1%以下とする。
N: N forms carbonitrides and secures the hardness of the alloy. Carbonitrides have a more complex structure than carbides,
Generally, it has high hardness and good thermal stability. In addition, a part thereof is dissolved in the metal base phase and contributes to strengthening of the base. If the amount is less than 0.05%, the amount of carbide is small and sufficient hardness cannot be obtained, and if it exceeds 1%, the base metal becomes brittle, so the suitable range is 0.05% or more and 1% or less.

【0015】B:Bはほう化物を形成し合金の硬さを確
保する。発明合金の主要炭化物はCr系炭化物である
が、ほう化物はこれとは別に微細分散し、炭化物に比べ
てほう化物は硬いため、より一層高温硬さを高める効果
がある。添加量が0.05%未満では実質的な効果がな
く、また1.5%を越えると熱衝撃性の低下を招いてし
まうため適性範囲としては、0.05%以上1.5%以
下とする。
B: B forms a boride to secure the hardness of the alloy. The main carbide of the invention alloy is a Cr-based carbide, but the boride is finely dispersed separately therefrom, and since the boride is harder than the carbide, it has the effect of further increasing the high-temperature hardness. If the addition amount is less than 0.05%, there is no substantial effect, and if it exceeds 1.5%, the thermal shock resistance is reduced. Therefore, the suitable range is from 0.05% to 1.5%. I do.

【0016】[0016]

【実施例】以下、本発明の耐熱耐摩耗材料の具体的な実
施例をあげ、本発明の効果を明らかにする。
EXAMPLES The effects of the present invention will be clarified by giving specific examples of the heat and wear resistant material of the present invention.

【0017】(実施例1)以下、第1発明材に関する具
体的な実験例について説明する。表1には試験に供した
材料の化学成分をまとめて示す。第1発明材の製造に関
しては、とくにその手法を限定するものではないが、構
成元素の素粉末、あるいは構成元素の合金粉末を出発材
料とて、メカニカルアロイング法を用いて、これらを強
混合した粉末に製造したのち、これをホットプレスやH
IP、熱間押出し等を用いて加熱、固化成形してバルク
材とするとともに、炭化物を析出させて耐熱耐摩耗性の
高い組織を得る手法が最も一般的である。試験合金の作
製手順を以下に示す。まず、工業用のFe粉、Cr粉、
Nb粉および黒鉛粉を所定量秤量後、振動型ボールミル
装置を用いて150時間のミリングを施した。ミリング
にあたっては、粉砕用媒体に鋼球を用い、鋼球と粉末の
重量比が10:1となるようにした。得られた粉末はホ
ットプレスにより1000℃にて加圧し、緻密な成形体
とした。
(Example 1) Hereinafter, specific experimental examples relating to the first invention material will be described. Table 1 summarizes the chemical components of the materials subjected to the test. The method for producing the first invention material is not particularly limited, but the raw powder of the constituent element or the alloy powder of the constituent element is used as a starting material, and these are strongly mixed using a mechanical alloying method. After the powder is manufactured, it is hot pressed or H
The most common method is to obtain a structure having high heat resistance and abrasion resistance by heating and solidifying and forming into a bulk material by using IP, hot extrusion, or the like, and by precipitating carbide. The procedure for producing the test alloy is shown below. First, industrial Fe powder, Cr powder,
After weighing a predetermined amount of Nb powder and graphite powder, milling was performed for 150 hours using a vibration type ball mill. In milling, steel balls were used as a grinding medium, and the weight ratio between the steel balls and the powder was set to 10: 1. The obtained powder was pressed at 1000 ° C. by a hot press to form a dense compact.

【0018】上記の手順にて作製した試験合金につい
て、室温、500℃、900℃のビッカース硬さ測定を
行った。また、熱衝撃性を簡易的に評価するため、20
×20×20mmの立方体試験片を1000℃に設定し
た炉中に投入加熱後、1時間保持したのち炉外に引き出
して室温まで強制空冷したのち、割れの有無を観察し
た。各試験合金ごとに4個の試験片を準備し、割れの発
生率で熱衝撃性の評価とした。このほか、Cr炭化物の
平均粒径を測定した。表2に試験結果を示す。本発明合
金は900℃においても600HV以上の高い硬さを示
し、かつ、急速加熱急速冷却によっても割れが発生しな
い良好な特性を有していることが明らかである。
The test alloy prepared according to the above procedure was measured for Vickers hardness at room temperature, 500 ° C. and 900 ° C. Further, in order to easily evaluate the thermal shock resistance, 20
A × 20 × 20 mm cubic test specimen was placed in a furnace set at 1000 ° C., heated, held for one hour, pulled out of the furnace, forced-cooled to room temperature, and observed for cracks. Four test pieces were prepared for each test alloy, and the thermal shock resistance was evaluated based on the crack occurrence rate. In addition, the average particle size of Cr carbide was measured. Table 2 shows the test results. It is apparent that the alloy of the present invention has a high hardness of 600 HV or more even at 900 ° C. and has good characteristics in which no crack is generated even by rapid heating and rapid cooling.

【0019】次に、合金番号2の成分を用いて、Cr炭
化物の大きさを変化させた場合の特性を調査した。な
お、Cr炭化物の大きさは、メカニカルアロイング時間
やホットプレス時の加熱温度を変化させることで調整し
た。結果を表3に示す。Cr炭化物の粗大化とともに硬
さが低下する傾向にあり、Cr炭化物平均粒径が19.
3μmのものでは900℃の硬さが600HVを下回っ
ている。とくに問題となるのは、Cr炭化物平均粒径が
10μmを越えると、急速加熱急速冷却によって割れが
生じるようになり、熱衝撃特性が低下する点にある。熱
衝撃特性を確保するためには、Cr炭化物平均粒径を1
0μm以下に制御する必要があることがわかる。
Next, the characteristics when the size of Cr carbide was changed using the component of alloy number 2 were investigated. The size of the Cr carbide was adjusted by changing the mechanical alloying time and the heating temperature during hot pressing. Table 3 shows the results. The hardness tends to decrease as the Cr carbide coarsens, and the average Cr carbide particle size is 19.
In the case of 3 μm, the hardness at 900 ° C. is lower than 600 HV. A particular problem is that if the average particle size of the Cr carbide exceeds 10 μm, cracking occurs due to rapid heating and rapid cooling, and the thermal shock characteristics deteriorate. In order to secure thermal shock characteristics, the average particle size of Cr carbide should be 1
It can be seen that it is necessary to control the thickness to 0 μm or less.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】上述のように、本発明の第1発明材は優れ
た耐熱耐摩耗性、熱衝撃性を兼ね備えており、これを用
いることで、火力発電プラントを中心とする装置の高性
能化、部品交換頻度の低減、あるいは電子力発電プラン
トにおけるCo含有合金の代替をすすめることが可能で
ある。
As described above, the first invention material of the present invention has both excellent heat resistance and abrasion resistance and thermal shock resistance, and by using this, it is possible to improve the performance of a device mainly for a thermal power plant, It is possible to reduce the frequency of replacing parts or to replace the Co-containing alloy in the electronic power plant.

【0024】(実施例2)以下、第2発明材に関する具
体的な実験例について説明する。表4には試験に供した
材料の化学成分をまとめて示す。この表に比較材として
示す合金番号4は実施例1の発明材料であり、表1の材
料番号のものと同じものである。本実施例における第2
発明材は合金番号4をベースにV,Mo,Wの添加を行
ったものである。本試験においても実施例1と同じよう
に試験材を準備して各試験に供した。すなわち、まず、
工業用のFe粉、Cr粉、Nb粉、黒鉛粉およびV粉、
Mo粉、W粉を所定量秤量後、振動型ボールミル装置を
用いて150時間のミリングを施した。ミリングにあた
っては、粉砕用媒体に鋼球を用い、鋼球と粉末の重量比
が10:1となるようにした。得られた粉末はホットプ
レスにより1000℃にて加圧し、緻密な成形体とし
た。
(Example 2) Hereinafter, a specific experimental example regarding the second invention material will be described. Table 4 summarizes the chemical components of the materials subjected to the test. Alloy No. 4 shown as a comparative material in this table is the invention material of Example 1, and is the same as the material number of Table 1. Second example in the present embodiment
The invention material is obtained by adding V, Mo, and W based on alloy number 4. Also in this test, test materials were prepared and subjected to each test in the same manner as in Example 1. That is, first,
Industrial Fe powder, Cr powder, Nb powder, graphite powder and V powder,
After a predetermined amount of Mo powder and W powder were weighed, milling was performed for 150 hours using a vibration type ball mill. In milling, steel balls were used as a grinding medium, and the weight ratio between the steel balls and the powder was set to 10: 1. The obtained powder was pressed at 1000 ° C. by a hot press to form a dense compact.

【0025】上記の手順にて作製した試験合金につい
て、室温、500℃、900℃のビッカース硬さ測定を
行った。また、熱衝撃性を簡易的に評価するため、20
×20×20mmの立方体試験片を1000℃に設定し
た炉中に投入加熱後、1時間保持したのち炉外に引き出
して室温まで強制空冷したのち、割れの有無を観察し
た。各試験合金ごとに4個の試験片を準備し、割れの発
生率で熱衝撃性の評価とした。このほか、Cr炭化物の
平均粒径を測定した。この試験結果を表5に示す。第2
発明材は比較材である第1発明材に比べていずれも硬さ
が向上しており、かつ、急速加熱急速冷却によっても割
れが発生しない良好な特性を有していることが明らかで
ある。
The test alloys prepared according to the above procedure were measured for Vickers hardness at room temperature, 500 ° C. and 900 ° C. Further, in order to easily evaluate the thermal shock resistance, 20
A × 20 × 20 mm cubic test specimen was placed in a furnace set at 1000 ° C., heated, held for one hour, pulled out of the furnace, forced-cooled to room temperature, and observed for cracks. Four test pieces were prepared for each test alloy, and the thermal shock resistance was evaluated based on the crack occurrence rate. In addition, the average particle size of Cr carbide was measured. Table 5 shows the test results. Second
It is clear that the inventive material has improved hardness as compared with the first inventive material which is a comparative material, and has good characteristics in which cracks do not occur even by rapid heating and rapid cooling.

【0026】次に、合金番号15の成分を用いて、Cr
炭化物の大きさを変化させた場合の特性を調査した。な
お、Cr炭化物の大きさは、メカニカルアロイング時間
やホットプレス時の加熱温度を変化させることで調整し
た。結果を表6に示す。Cr炭化物の粗大化とともに硬
さが低下する傾向にある。ただ、ここで特に問題となる
のは、Cr炭化物平均粒径が10μmを越えると、急速
加熱急速冷却によって割れが生じるようになる点であ
る。熱衝撃特性を確保するためには、Cr炭化物平均粒
径を10μm以下に制御する必要があることがよくわか
る。
Next, using the component of alloy number 15, Cr
The characteristics when the size of the carbide was changed were investigated. The size of the Cr carbide was adjusted by changing the mechanical alloying time and the heating temperature during hot pressing. Table 6 shows the results. The hardness tends to decrease with the coarsening of the Cr carbide. However, what is particularly problematic here is that, when the average particle size of Cr carbide exceeds 10 μm, cracking is caused by rapid heating and rapid cooling. It can be clearly understood that it is necessary to control the average particle size of Cr carbide to 10 μm or less in order to secure the thermal shock characteristics.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】上述のように、本発明の第2発明材は、優
れた耐熱耐摩耗性と熱衝撃性を兼ね備えており、これを
用いることで、火力発電プラントを中心とする装置の高
性能化、部品交換頻度の低減、あるいは原子力発電プラ
ントにおけるCo含有合金の代替をすすめることが可能
である。
As described above, the material of the second invention of the present invention has both excellent heat and abrasion resistance and thermal shock resistance, and by using this, it is possible to improve the performance of a device mainly for a thermal power plant. In addition, it is possible to reduce the frequency of replacing parts or to replace a Co-containing alloy in a nuclear power plant.

【0031】(実施例3)以下に第3発明材に関する具
体的な実験例について説明する。表7には試験に供した
材料の化学成分をまとめて示す。この表に比較材として
示す合金番号4は実施例1の第1発明材、合金番号1
3,14は実施例2の第2発明材であり、表1および表
4の材料番号のものと同じである。本実施例における第
3発明材16,17は合金番号4をベースにN,Bの添
加を行ったもの、第3発明材18,19は合金番号13
をベースにN,Bの添加を行ったもの、第3発明材2C
は合金番号14をベースにBの添加を行ったものであ
る。本試験においても実施例1,2と同じように試験材
を準備して各試験に供した。すなわち、まず、工業用の
Fe粉、Cr粉、Nb粉、黒鉛粉、V粉、Mo粉、W
粉、Fe−N粉、Fe−B粉を所定量秤量後、振動型ボ
ールミル装置を用いて150時間のミリングを施した。
ミリングにあたっては、粉砕用媒体に鋼球を用い、鋼球
と粉末の重量比が10:1となるようにした。得られた
粉末はホットプレスにより1000℃にて加圧し、緻密
な成形体とした。
(Example 3) A specific experimental example relating to the third invention material will be described below. Table 7 summarizes the chemical components of the materials subjected to the test. The alloy number 4 shown as a comparative material in this table is the first invention material of Example 1, alloy number 1
Reference numerals 3 and 14 denote second invention materials of Example 2, which are the same as those of the material numbers in Tables 1 and 4. The third invention materials 16 and 17 in this embodiment are obtained by adding N and B based on alloy number 4, and the third invention materials 18 and 19 are alloy number 13
With addition of N and B on the basis of the third invention material 2C
Is obtained by adding B based on alloy number 14. Also in this test, test materials were prepared and subjected to each test in the same manner as in Examples 1 and 2. That is, first, industrial Fe powder, Cr powder, Nb powder, graphite powder, V powder, Mo powder, W powder
After weighing a predetermined amount of the powder, Fe-N powder, and Fe-B powder, milling was performed for 150 hours using a vibration-type ball mill.
In milling, steel balls were used as a grinding medium, and the weight ratio between the steel balls and the powder was set to 10: 1. The obtained powder was pressed at 1000 ° C. by a hot press to form a dense compact.

【0032】上記の手順にて作製した試験合金につい
て、室温、500℃、900℃のビッカース硬さ測定を
行った。また、熱衝撃性を簡易的に評価するため、20
×20×20mmの立方体試験片を1000℃に設定し
た炉中に投入加熱後、1時間保持したのち炉外に引き出
して室温まで強制空冷したのち、割れの有無を観察し
た。各試験合金ごとに4個の試験片を準備し、割れの発
生率で熱衝撃性の評価とした。このほか、Cr炭化物の
平均粒径を測定した。この試験結果を表8に示す。第3
発明材は比較材である第1及び第2発明材に比べていず
れも硬さが向上しており、かつ、急速加熱急速冷却によ
っても割れが発生しない良好な特性を有していることが
明らかである。
With respect to the test alloy prepared by the above procedure, Vickers hardness was measured at room temperature, 500 ° C. and 900 ° C. Further, in order to easily evaluate the thermal shock resistance, 20
A × 20 × 20 mm cubic test specimen was placed in a furnace set at 1000 ° C., heated, held for one hour, pulled out of the furnace, forced-cooled to room temperature, and observed for cracks. Four test pieces were prepared for each test alloy, and the thermal shock resistance was evaluated based on the crack occurrence rate. In addition, the average particle size of Cr carbide was measured. Table 8 shows the test results. Third
It is clear that the invented material has improved hardness as compared with the first and second invented materials, which are comparative materials, and has good characteristics in which cracks do not occur even by rapid heating and rapid cooling. It is.

【0033】次に、合金番号19の成分を用いて、Cr
炭化物の大きさを変化させた場合の特性を調査した。な
お、Cr炭化物の大きさは、メカニカルアロイング時間
やホットプレス時の加熱温度を変化させることで調整し
た。結果を表9に示す。Cr炭化物の粗大化とともに硬
さが低下する傾向にある。ただ、ここで特に問題となる
のは、Cr炭化物平均粒径が10μmを越えると、急速
加熱急速冷却によって割れが生じるようになる点であ
る。熱衝撃特性を確保するためには、Cr炭化物平均粒
径を10μm以下に制御する必要があることがわかる。
Next, using the component of alloy number 19,
The characteristics when the size of the carbide was changed were investigated. The size of the Cr carbide was adjusted by changing the mechanical alloying time and the heating temperature during hot pressing. Table 9 shows the results. The hardness tends to decrease with the coarsening of the Cr carbide. However, what is particularly problematic here is that, when the average particle size of Cr carbide exceeds 10 μm, cracking is caused by rapid heating and rapid cooling. It can be seen that it is necessary to control the Cr carbide average particle size to 10 μm or less in order to secure the thermal shock characteristics.

【0034】[0034]

【表7】 [Table 7]

【0035】[0035]

【表8】 [Table 8]

【0036】[0036]

【表9】 [Table 9]

【0037】上述のように、本発明の第3発明材は、優
れた耐熱耐摩耗性、熱衝撃性を兼ね備えており、これを
用いることで、火力発電プラントを中心とする装置の高
性能化、部品交換頻度の低減、あるいは原子力発電プラ
ントにおけるCo含有合金の代替をすすめることが可能
である。
As described above, the third invention material of the present invention has excellent heat resistance, abrasion resistance, and thermal shock resistance, and by using this, the performance of a device mainly for a thermal power plant can be improved. In addition, it is possible to reduce the frequency of replacing parts or to replace a Co-containing alloy in a nuclear power plant.

【0038】[0038]

【発明の効果】以上、詳述したように、本発明の耐熱耐
摩耗材料は優れた耐熱耐摩耗性、熱衝撃性を兼ね備えて
おり、これを用いることで、火力発電プラントを中品と
する装置の高性能化、部品交換頻度の低減、あるいは原
子力発電プラントにおけるCo含有合金の代替をすすめ
ることが可能である。
As described in detail above, the heat and wear resistant material of the present invention has both excellent heat and wear resistance and thermal shock resistance. By using this material, a thermal power plant can be made a medium product. It is possible to improve the performance of the apparatus, reduce the frequency of replacing parts, or replace a Co-containing alloy in a nuclear power plant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鉄井 利光 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Toshimitsu Tetsui 5-717-1 Fukahori-cho, Nagasaki City, Nagasaki Pref.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、C:2〜6.5%、Cr:2
5〜60%、Nb:0.1〜10%及び残部が不可避的
不純物及びFeからなる合金で、Fe−Cr系金属基地
相に平均粒径:10μm以下のCr炭化物が分散されて
いることを特徴とする耐熱耐摩耗材料。
1. C: 2 to 6.5% by weight, Cr: 2 by weight
5 to 60%, Nb: 0.1 to 10%, and the balance is an alloy consisting of unavoidable impurities and Fe, and Cr carbide having an average particle size of 10 μm or less is dispersed in the Fe—Cr based metal base phase. Characterized heat and wear resistant material.
【請求項2】 請求項1の合金成分において、Feの一
部を重量比で:V:0.1〜5%、Mo:0.1〜5%
及びW:0.1〜6%のいずれか1種以上の元素で置換
した合金で、Fe−Cr系金属基地相中に平均粒径:1
0μm以下のCr炭化物が分散されていることを特徴と
する耐熱耐摩耗材料。
2. The alloy composition according to claim 1, wherein a part of Fe is expressed by weight ratio: V: 0.1 to 5%, Mo: 0.1 to 5%.
And W: an alloy substituted with any one or more elements of 0.1 to 6%, and an average particle size in the Fe-Cr-based metal base phase: 1
A heat- and wear-resistant material, characterized in that Cr carbide of 0 μm or less is dispersed.
【請求項3】 請求項1及び2の合金成分において、C
の一部を重量比で、N:0.05〜1%、B:0.05
〜1.5%のいずれか1種以上の元素で置換した合金
で、Fe−Cr系金属基地相中に平均粒径:10μm以
下のCr炭化物が分散されていることを特徴とする耐熱
耐摩耗材料。
3. The alloy according to claim 1, wherein
Are partly by weight: N: 0.05 to 1%, B: 0.05
An alloy substituted with at least one element of at least 1.5%, wherein a Cr carbide having an average particle size of 10 μm or less is dispersed in an Fe—Cr based metal base phase. material.
JP21843397A 1997-08-13 1997-08-13 Heat resistant and wear resistant material Pending JPH1161361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21843397A JPH1161361A (en) 1997-08-13 1997-08-13 Heat resistant and wear resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21843397A JPH1161361A (en) 1997-08-13 1997-08-13 Heat resistant and wear resistant material

Publications (1)

Publication Number Publication Date
JPH1161361A true JPH1161361A (en) 1999-03-05

Family

ID=16719843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21843397A Pending JPH1161361A (en) 1997-08-13 1997-08-13 Heat resistant and wear resistant material

Country Status (1)

Country Link
JP (1) JPH1161361A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085148A (en) * 2014-07-12 2014-10-08 吉林大学 Iron-carbon-chromium-niobium-tungsten-boron alloy system wear-resistant coating and preparation method thereof
US10213996B2 (en) 2013-12-12 2019-02-26 Mitsubishi Heavy Industries, Ltd. Anti-wear sheet, production method for the same, and anti-wear-sheet application method
JP2021021115A (en) * 2019-07-29 2021-02-18 東洋刃物株式会社 Iron-based alloy member
USD937409S1 (en) 2019-06-14 2021-11-30 Canon Medical Systems Corporation Holder for an X-ray tomography diagnosis apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10213996B2 (en) 2013-12-12 2019-02-26 Mitsubishi Heavy Industries, Ltd. Anti-wear sheet, production method for the same, and anti-wear-sheet application method
CN104085148A (en) * 2014-07-12 2014-10-08 吉林大学 Iron-carbon-chromium-niobium-tungsten-boron alloy system wear-resistant coating and preparation method thereof
USD937409S1 (en) 2019-06-14 2021-11-30 Canon Medical Systems Corporation Holder for an X-ray tomography diagnosis apparatus
JP2021021115A (en) * 2019-07-29 2021-02-18 東洋刃物株式会社 Iron-based alloy member

Similar Documents

Publication Publication Date Title
KR100409260B1 (en) Iron-base alloys containing useful aluminum as electrical resistance heating element
EP0480495B1 (en) Sintered ferrous-based material
EP0882806B1 (en) Hard molybdenum alloy, wear resistant alloy and method for manufacturing the same
EP3208354B1 (en) Ni-based superalloy for hot forging
CN102216479B (en) Aluminium oxide forming nickel based alloy
WO2005111249A2 (en) Novel high-stregth, magnetic, nonostructured alloys
JPH055152A (en) Hard heat resisting sintered alloy
WO1999039015A1 (en) Nickel based alloys for internal combustion engine valve seat inserts, and the like
EP2775004A1 (en) HIGHLY HEAT-RESISTANT AND HIGH-STRENGTH Rh-BASED ALLOY AND METHOD FOR PRODUCING SAME
US20170260609A1 (en) Precipitate strengthened nanostructured ferritic alloy and method of forming
EP3208355B1 (en) Ni-based superalloy for hot forging
Makena et al. A review on sintered nickel based alloys
JP2607157B2 (en) Heat-resistant alloy for supporting steel material to be heated in heating furnace
JP7380547B2 (en) Cr-Ni alloy, rapidly solidified compact made of Cr-Ni alloy, alloy powder, powder metallurgy compact, cast compact, method for producing Cr-Ni alloy, and mechanical equipment using Cr-Ni alloy, piping parts
US5298052A (en) High temperature bearing alloy and method of producing the same
JPH1161361A (en) Heat resistant and wear resistant material
WO2020050211A1 (en) Heat-resistant sintered alloy material
JPH01287252A (en) Sintered dispersion strengthened ferritic heat-resistant steel
CN114457271A (en) Multi-principal-element wear-resistant corrosion-resistant alloy based on Laves phase strengthening and preparation method thereof
JPS60100646A (en) High toughness sintered body of ceramic
CN112680624A (en) Copper alloy for laser cladding valve plate
JP2000256784A (en) Thick steel plate for high toughness and wear resistant member
JPH02247356A (en) Cast member consisting of alloy based on fe-mn-al-cr-si-c
JPH02277746A (en) Wear-resistant low thermal expansion sintered alloy and its manufacture
JP2000239809A (en) Fe BASE SINTERED ALLOY FOR VALVE SEAT OR THE LIKE

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122