JPH1161316A - Cutting tool made of cemented carbide, excellent in breaking resistance - Google Patents
Cutting tool made of cemented carbide, excellent in breaking resistanceInfo
- Publication number
- JPH1161316A JPH1161316A JP22139797A JP22139797A JPH1161316A JP H1161316 A JPH1161316 A JP H1161316A JP 22139797 A JP22139797 A JP 22139797A JP 22139797 A JP22139797 A JP 22139797A JP H1161316 A JPH1161316 A JP H1161316A
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- cutting
- dispersed phase
- carbide
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、すぐれた耐欠損
性を有し、したがって特に鋼などの断続切削を高切り込
みや高送り条件で行っても切刃に欠けやチッピング(微
小欠け)などの発生なく、すぐれた切削性能を長期に亘
って発揮する超硬合金製切削工具(以下、超硬工具と云
う)に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent chipping resistance, and therefore has a problem such as chipping or chipping (small chipping) of a cutting edge even when intermittent cutting of steel or the like is performed under high cutting or high feed conditions. The present invention relates to a cemented carbide cutting tool (hereinafter, referred to as a cemented carbide tool) that exhibits excellent cutting performance for a long time without generation.
【0002】[0002]
【従来の技術】従来、一般に超硬工具が、重量%で(以
下、%は重量%を示す)、Coを主成分とする結合相:
5〜16%、NaCl型結晶構造化合物からなる第1分
散相:5〜40%、を含有し、残りが実質的に炭化タン
グステン(以下、WCで示す)からなる第2分散相と不
可避不純物からなる組成を有するWC基超硬合金で構成
され、かつ上記NaCl型結晶構造化合物が、周期律表
の4a、5a、および6a族金属の炭化物、窒化物、お
よび炭窒化物、並びにこれらの2種以上の固溶体のうち
の1種または2種以上からなることも良く知られるとこ
ろであり、さらにこれらの超硬工具が、鋼や鋳鉄などの
連続切削や断続切削に用いられていることも知られてい
る。2. Description of the Related Art Conventionally, in general, a cemented carbide tool has a binder phase containing Co as a main component in% by weight (hereinafter,% means% by weight):
5 to 16%, a first dispersed phase composed of a NaCl-type crystal structure compound: 5 to 40%, the remainder being substantially composed of a second dispersed phase composed of tungsten carbide (hereinafter referred to as WC) and unavoidable impurities. Wherein the NaCl-type crystal structure compound is composed of a carbide, nitride, and carbonitride of a metal of Groups 4a, 5a, and 6a of the periodic table, and two kinds thereof. It is also well-known that the solid solution is composed of one or more of the above solid solutions. Further, it is also known that these carbide tools are used for continuous cutting and interrupted cutting of steel, cast iron, and the like. I have.
【0003】[0003]
【発明が解決しようとする課題】一方、近年の切削機械
の高性能化はめざましく、かつ切削加工の省力化に対す
る要求も強く、これに伴い切削加工は高速化、並びに切
削条件である切り込みや送りを大きくする重切削化の傾
向にあるが、上記の従来超硬工具を、特に切り込みや送
りを大きくした断続切削に用いると、切刃に欠けやチッ
ピングなどの欠損が発生し易く、これが原因で比較的短
時間で使用寿命に至るのが現状である。On the other hand, in recent years, the performance of cutting machines has been remarkably improved, and there has been a strong demand for labor saving in cutting. Accordingly, cutting has been speeded up, and cutting conditions such as cutting and feeding have been required. However, when the above-mentioned conventional carbide tools are used for intermittent cutting, especially when cutting and feeding are increased, the cutting edge is liable to be chipped or chipped. At present, the service life is reached in a relatively short time.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来超硬工具に着目し、
これの耐欠損性向上を図るべく研究を行った結果、従来
超硬工具の製造に際して、原料粉末として使用されてい
るWC粉末およびCo粉末に代って、基本的に、所定割
合に配合した酸化タングステン(以下、WO3 で示す)
粉末と炭素粉末に、例えばCo源としての硝酸コバルト
を溶解させた蒸留水を溶媒として加えて混合し、乾燥し
た後、これに、例えば窒素雰囲気中、1050℃に30
分間保持の条件での還元処理と、同じく例えば水素雰囲
気中、1000℃に60分間保持の条件での炭化処理を
施すことにより製造したWCとCoからなる複合粉末を
原料粉末として用いると、製造された超硬工具を構成す
る超硬合金の分散相のうちの第2分散相が、WCの素地
中に100nm以下の粒径をもったCoを主成分とした
合金(以下、Co系合金と云う)からなる超微粒子が分
散分布した組織をもつようになり、この結果の第2分散
相が、WCの素地中に100nm以下の粒径をもったC
o系合金の超微粒子が分散分布した組織をもった超硬切
削工具においては、超硬合金の結合相含有量が同じ従来
超硬工具に比して、超硬合金の結合相は分散相間に存在
する大部分の結合相も含めて一段と微細均等化するよう
になることと相まって、高切り込みや高送りなどの重切
削化条件で断続切削を行っても切刃に欠けやチッピング
などの欠損の発生なく、すぐれた切削性能を発揮するよ
うになるという研究結果を得たのである。Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoint, paying attention to the above-mentioned conventional carbide tools,
As a result of conducting research to improve the fracture resistance, in the production of conventional carbide tools, WC powder and Co powder, which have been used as raw material powders, are basically replaced by oxidized powders mixed at a predetermined ratio. Tungsten (hereinafter referred to as WO 3 )
Distilled water in which, for example, cobalt nitrate as a Co source is dissolved is added as a solvent to the powder and the carbon powder, mixed and dried.
When a composite powder composed of WC and Co is produced as a raw material powder by performing a reduction treatment under the condition of holding for a minute and performing a carbonization process at a temperature of 1000 ° C. for 60 minutes in a hydrogen atmosphere, for example, as a raw material powder. The second dispersed phase of the dispersed phase of the cemented carbide constituting the cemented carbide tool is an alloy containing Co as a main component and having a particle size of 100 nm or less in a WC base material (hereinafter referred to as a Co-based alloy). ) Has a structure in which the ultrafine particles are dispersed and distributed, and as a result, the second dispersed phase has a particle size of 100 nm or less in the WC matrix.
In a cemented carbide cutting tool having a structure in which ultrafine particles of an o-based alloy are dispersed and distributed, compared to a conventional cemented carbide tool in which the cemented carbide has the same binder phase content, the cemented carbide has a binder phase between the dispersed phases. In addition to the fact that it becomes even finer including most of the existing binder phase, even when performing intermittent cutting under heavy cutting conditions such as high cutting and high feed, chipping and chipping etc. The research results showed that excellent cutting performance would be exhibited without any occurrence.
【0005】この発明は、上記の研究結果に基づいてな
されたものであって、Coを主成分とする結合相:5〜
16%、NaCl型結晶構造化合物からなる第1分散
相:5〜40%、を含有し、残りがWCを主成分とする
第2分散相と不可避不純物からなる組成を有し、かつ前
記第2分散相が、WCの素地に100nm以下の粒径を
有するCo系合金の超微粒子が分散分布した組織を有す
る超硬合金で構成してなる、耐欠損性にすぐれた超硬工
具に特徴を有するものである。The present invention has been made based on the results of the above research, and has a binder phase containing Co as a main component:
16%, a first dispersed phase composed of a NaCl-type crystal structure compound: 5 to 40%, the remainder having a composition composed of a second dispersed phase mainly composed of WC and unavoidable impurities, and The disperse phase is characterized by a cemented carbide tool having excellent fracture resistance, comprising a cemented carbide having a structure in which ultrafine particles of a Co-based alloy having a particle size of 100 nm or less are dispersed and distributed on a WC substrate. Things.
【0006】なお、この発明の超硬工具において、これ
を構成する超硬合金の結合相含有量を5〜16%とした
のは、その含有量が5%未満では、超硬工具に要求され
る所望の強度および靭性を確保することができず、一方
その含有量が16%を越えると、耐摩耗性が急激に低下
するようになるという理由によるものであり、望ましく
は8〜12%の含有がよく、また、NaCl型結晶構造
化合物からなる第1分散相は耐熱性および耐摩耗性の向
上を目的として含有するものであり、したがって、その
含有量が5%未満では、所望の耐熱性および耐摩耗性の
向上効果が得られず、一方その含有量が40%を越える
と、強度、耐衝撃性、および耐熱衝撃性のいずれにも明
確な低下傾向が現れるようになることから、その含有量
を5〜40%、望ましくは10〜25%と定めたもので
ある。さらに、同じくWCを主成分とする第2分散相中
に分散分布する超微粒子の粒径および分布密度は、上記
のWCとCoからなる複合粉末の製造に際して、これに
用いられる酸化タングステン粉末および炭素粉末の平均
粒径、並びに還元処理および炭化処理条件を調整するこ
とにより制御されるが、いずれの場合でも粒径が100
nmを越えた超微粒子が存在するようになると、硬さが
低下し、耐摩耗性低下が避けられなくなることから、超
微粒子の粒径を100nm以下とした。In the cemented carbide tool of the present invention, the cemented carbide constituting the cemented carbide is set to have a binder phase content of 5 to 16%. If the content is less than 5%, the cemented carbide is required for a cemented carbide tool. The desired strength and toughness cannot be ensured, while if the content exceeds 16%, the abrasion resistance rapidly decreases, preferably from 8 to 12%. The first dispersed phase composed of a NaCl-type crystal structure compound is contained for the purpose of improving heat resistance and abrasion resistance. Therefore, if the content is less than 5%, the desired heat resistance can be obtained. On the other hand, if the content exceeds 40%, the strength, impact resistance, and thermal shock resistance all show a clear tendency to decrease. 5-40% content, desired Is properly are as defined and 10% to 25%. Further, the particle size and distribution density of the ultrafine particles dispersed and distributed in the second dispersed phase also containing WC as the main component are determined by the tungsten oxide powder and carbon It is controlled by adjusting the average particle size of the powder, and the conditions of the reduction treatment and the carbonization treatment.
When ultrafine particles exceeding nm are present, the hardness is reduced and abrasion resistance is inevitably reduced. Therefore, the particle size of the ultrafine particles is set to 100 nm or less.
【0007】[0007]
【発明の実施の形態】つぎに、この発明の超硬工具を実
施例により具体的に説明する。まず、平均粒径:3.0
μmのWO3 粉末と同0.4μmの炭素粉末、さらに溶
媒として所定量の硝酸コバルト[Co(NO3 )2 ・6
H2 O]を溶解した蒸留水を用意し、これらWO3 粉末
と炭素粉末、さらに溶媒を所定の配合割合でボールミル
中に装入し、72時間湿式混合し、乾燥した後、窒素雰
囲気中、1050℃に30分間保持の条件での還元処理
と、引続いての水素雰囲気中、1000℃に60分間保
持の条件での炭化処理を施すことにより表1に示される
組成および平均粒径を有するWCとCoからなる複合粉
末A〜Fを原料粉末としてそれぞれ製造した。Next, the cemented carbide tool of the present invention will be specifically described with reference to examples. First, average particle size: 3.0
μm WO 3 powder, 0.4 μm carbon powder, and a predetermined amount of cobalt nitrate [Co (NO 3 ) 2 .6] as a solvent.
H 2 O] is dissolved in distilled water, and the WO 3 powder, the carbon powder, and the solvent are charged into a ball mill at a predetermined mixing ratio, wet-mixed for 72 hours, dried, and then dried in a nitrogen atmosphere. The composition and the average particle size shown in Table 1 are obtained by performing a reduction treatment under the condition of holding at 1050 ° C. for 30 minutes and a subsequent carbonization treatment under the condition of holding at 1000 ° C. for 60 minutes in a hydrogen atmosphere. Composite powders A to F composed of WC and Co were produced as raw material powders.
【0008】さらに、原料粉末として、いずれも1.0
〜4.0μmの範囲内の所定の平均粒径を有するTiC
粉末、TaC粉末、NbC粉末、ZrC粉末、(Ti,
W)C粉末、(Ta,Nb)C粉末、TiCN粉末、
(Ti,W)CN粉末、(Ti,W,Ta)CN粉末、
およびTiN粉末を用意し、これらの原料粉末を、上記
の複合粉末A〜Fのそれぞれに、表2に示される割合で
配合し、ボールミルで72時間湿式混合粉砕し、乾燥し
た後、1ton/cm2 の圧力で圧粉体にプレス成形
し、この圧粉体を真空中、1380〜1480℃の範囲
内の所定の温度に1時間保持の条件で焼結することによ
り、ISO規格SPGN120308のスローアウエイ
チップ形状をもった本発明超硬工具1〜15をそれぞれ
製造した。また、比較の目的で、原料粉末として、上記
の複合粉末A〜Fのの代わりに、平均粒径:3.0μm
のWC粉末および同1.2μmのCo粉末を用い、これ
ら原料粉末を表3に示される配合組成に配合する以外
は、同一の条件で従来超硬工具1〜15をそれぞれ製造
した。Further, as raw material powders,
TiC having a predetermined average particle size in the range of ~ 4.0 µm
Powder, TaC powder, NbC powder, ZrC powder, (Ti,
W) C powder, (Ta, Nb) C powder, TiCN powder,
(Ti, W) CN powder, (Ti, W, Ta) CN powder,
And TiN powder were prepared, and these raw material powders were blended with each of the above composite powders A to F at a ratio shown in Table 2, wet-mixed and pulverized with a ball mill for 72 hours, dried, and then dried at 1 ton / cm. The compact is pressed into a green compact at a pressure of 2 and the compact is sintered in vacuum at a predetermined temperature in the range of 1380 to 1480 ° C. for one hour to obtain a throwaway alloy of ISO standard SPGN120308. Carbide tools 1 to 15 of the present invention each having a chip shape were manufactured. Further, for the purpose of comparison, as the raw material powder, instead of the above composite powders A to F, an average particle diameter: 3.0 μm
Conventional WC tools 1 to 15 were respectively manufactured under the same conditions except that WC powder and Co powder of 1.2 μm were used, and these raw material powders were blended in the blending composition shown in Table 3.
【0009】この結果得られた各種の超硬工具につい
て、ロックウエル硬さ(Aスケール)を測定し、また、
その任意断面をX線マイクロアナライザー(EPMA)
にて分析して、Coを主成分とする結合相、NaCl型
結晶構造化合物からなる第1分散相、およびWCを主成
分とする第2分散相の割合(成分組成)を測定し、さら
に透過型電子顕微鏡(TEM)を用い、35万倍の倍率
にて前記第2分散相中の超微粒子の有無を観察し、超微
粒子が存在する場合は最大粒径を測定すると共に、これ
を構成する主体成分をエネルギー分散型X線分光装置
(EDS)を用いて判定した。The Rockwell hardness (A scale) of each of the resulting carbide tools was measured.
X-ray micro analyzer (EPMA)
The ratio (component composition) of the binder phase containing Co as the main component, the first dispersed phase composed of the NaCl-type crystal structure compound, and the second dispersed phase containing WC as the main component is measured, and the transmission is further performed. Using a scanning electron microscope (TEM), the presence or absence of ultrafine particles in the second dispersed phase is observed at a magnification of 350,000 times, and if ultrafine particles are present, the maximum particle size is measured and constituted. The main component was determined using an energy dispersive X-ray spectrometer (EDS).
【0010】また、上記の各種超硬工具について、 被削材:SCM440(硬さ:HB 220)、 切削速度:120m/min、 送り:0.3mm/刃、 切込み:2.5mm、 切削時間:30分、 の条件で鋼の湿式高切込みフライス切削試験、並びに、 被削材:SNCM439(硬さ:HB 270)の角材、 切削速度:100m/min、 送り:0.425mm/rev、 切込み:3.0mm、 切削時間:10分、 の条件で鋼の乾式高切込み断続切削試験を行い、切刃の
逃げ面摩耗幅を測定した。これらの測定結果を表4、5
に示した。[0010] Further, regarding the above-mentioned various carbide tools, work material: SCM440 (hardness: HB220), cutting speed: 120 m / min, feed: 0.3 mm / tooth, cutting depth: 2.5 mm, cutting time: 30 min., Wet wet high depth milling test of steel under the following conditions: Work material: square material of SNCM439 (hardness: HB270), cutting speed: 100 m / min, feed: 0.425 mm / rev, depth of cut: 3 0.0 mm, cutting time: 10 minutes, a dry high-cut intermittent cutting test of steel was performed, and the flank wear width of the cutting edge was measured. Tables 4 and 5 show the results of these measurements.
It was shown to.
【0011】[0011]
【表1】 [Table 1]
【0012】[0012]
【表2】 [Table 2]
【0013】[0013]
【表3】 [Table 3]
【0014】[0014]
【表4】 [Table 4]
【0015】[0015]
【表5】 [Table 5]
【0016】[0016]
【発明の効果】表4、5に示される結果から、本発明超
硬工具1〜15は、いずれも従来超硬工具1〜15と硬
さおよび結合相含有量ともほぼ同じ値を示すが、WCを
主成分とする第2分散相中に分散分布する粒径:100
nm以下のCo系合金からなる超微粒子の存在によっ
て、いずれの断続切削においても、高切込み切削条件に
もかかわらず、すぐれた耐欠損性を示すのに対して、前
記従来超硬切削工具1〜15はいずれも耐欠損性不足が
原因で、切刃に欠けやチッピングが発生し、比較的短時
間で使用寿命に至ることが明らかである。上述のよう
に、この発明の超硬工具は、すぐれた耐欠損性を有し、
連続切削は勿論のこと、断続切削を高送りや高切込みな
どの重切削条件で行っても、切刃に欠けやチッピングな
どの発生なく、すぐれた切削性能を長期に亘って発揮す
るものであり、切削加工の省力化および省エネ化に十分
満足に対応することができるものである。From the results shown in Tables 4 and 5, the carbide tools 1 to 15 of the present invention show almost the same values in hardness and binder phase content as the conventional carbide tools 1 to 15, Particle size dispersed and distributed in the second dispersed phase mainly composed of WC: 100
The presence of ultra-fine particles made of a Co-based alloy having a diameter of 10 nm or less shows excellent fracture resistance despite high cutting depth in any interrupted cutting. It is clear that No. 15 causes chipping and chipping of the cutting edge due to lack of chipping resistance, resulting in a relatively short service life. As described above, the cemented carbide tool of the present invention has excellent fracture resistance,
Even when performing intermittent cutting under heavy cutting conditions such as high feed and high depth of cut as well as continuous cutting, the cutting edge will exhibit excellent cutting performance for a long time without chipping or chipping. Thus, it is possible to sufficiently and satisfactorily cope with labor saving and energy saving of cutting.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 29/02 C22C 29/02 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 29/02 C22C 29/02 A
Claims (1)
0%、を含有し、残りが炭化タングステンを主成分とす
る第2分散相と不可避不純物からなる組成を有し、かつ
前記第2分散相が、炭化タングステンの素地に100n
m以下の粒径を有するCo系合金の超微粒子が分散分布
した組織を有する炭化タングステン基超硬合金で構成し
たことを特徴とする耐欠損性にすぐれた超硬合金製切削
工具。A binder phase containing Co as a main component: 5 to 16%, and a first dispersed phase comprising a NaCl-type crystal structure compound: 5 to 4% by weight.
0%, the balance being composed of a second dispersed phase mainly composed of tungsten carbide and unavoidable impurities, and the second dispersed phase is formed on a base of tungsten carbide by 100n.
A cemented carbide cutting tool having excellent fracture resistance, comprising a tungsten carbide-based cemented carbide having a structure in which ultrafine particles of a Co-based alloy having a particle size of not more than m are dispersed and distributed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22139797A JPH1161316A (en) | 1997-08-18 | 1997-08-18 | Cutting tool made of cemented carbide, excellent in breaking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22139797A JPH1161316A (en) | 1997-08-18 | 1997-08-18 | Cutting tool made of cemented carbide, excellent in breaking resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1161316A true JPH1161316A (en) | 1999-03-05 |
Family
ID=16766126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22139797A Withdrawn JPH1161316A (en) | 1997-08-18 | 1997-08-18 | Cutting tool made of cemented carbide, excellent in breaking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1161316A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009031348A1 (en) | 2007-09-06 | 2009-03-12 | Jtekt Corporation | Cutting tool, method of forming cutting tool, and method of manufacturing cutting tool |
-
1997
- 1997-08-18 JP JP22139797A patent/JPH1161316A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009031348A1 (en) | 2007-09-06 | 2009-03-12 | Jtekt Corporation | Cutting tool, method of forming cutting tool, and method of manufacturing cutting tool |
US8678719B2 (en) | 2007-09-06 | 2014-03-25 | Jtekt Corporation | Cutting tip, method of forming cutting tip, and method of manufacturing cutting tip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6254658B1 (en) | Cemented carbide cutting tool | |
JPH10219385A (en) | Cutting tool made of composite cermet, excellent in wear resistance | |
US4857108A (en) | Cemented carbonitride alloy with improved plastic deformation resistance | |
JPS6112847A (en) | Sintered hard alloy containing fine tungsten carbide particles | |
JP3214362B2 (en) | Tungsten carbide based cemented carbide cutting tool with excellent chipping resistance | |
JPH0681072A (en) | Tungsten carbide base sintered hard alloy | |
JP3612966B2 (en) | Cemented carbide, method for producing the same and cemented carbide tool | |
JPS6256943B2 (en) | ||
JPH0346538B2 (en) | ||
JP3318887B2 (en) | Fine-grained cemented carbide and method for producing the same | |
JPH1161316A (en) | Cutting tool made of cemented carbide, excellent in breaking resistance | |
JPS6176645A (en) | Tungsten carbide-base sintered hard alloy | |
JP2668962B2 (en) | End mill made of tungsten carbide based cemented carbide with excellent fracture resistance | |
JP3257255B2 (en) | Cutting tools made of cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance | |
JP3950229B2 (en) | Cemented carbide, method for producing the same and cemented carbide tool | |
JP2757469B2 (en) | Tungsten carbide based cemented carbide end mill | |
JP2000237903A (en) | Cutting tool made of ti base carbon nitride cermet excellent in abration resistance | |
JP3214385B2 (en) | Cemented carbide cutting tools with excellent chipping resistance | |
JP3312333B2 (en) | Molybdenum carbonitride and method for producing the same | |
JP2668977B2 (en) | Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance | |
JPH10324942A (en) | Ultra-fine cemented carbide, and its manufacture | |
JPS636618B2 (en) | ||
JP4244108B2 (en) | CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance | |
JPH05171337A (en) | Cutting tool made of ti type carbonitroborate-base cermet excellent in oxidation resistance | |
JPH11229068A (en) | Cutting tool made of titanium carbonitride cermet excellent in wear resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20041102 |