JPH1160664A - Production on pressure/heat-sensitive self-curing spherical phenolic resin - Google Patents
Production on pressure/heat-sensitive self-curing spherical phenolic resinInfo
- Publication number
- JPH1160664A JPH1160664A JP23658897A JP23658897A JPH1160664A JP H1160664 A JPH1160664 A JP H1160664A JP 23658897 A JP23658897 A JP 23658897A JP 23658897 A JP23658897 A JP 23658897A JP H1160664 A JPH1160664 A JP H1160664A
- Authority
- JP
- Japan
- Prior art keywords
- phenol
- pressure
- phenolic resin
- producing
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Phenolic Resins Or Amino Resins (AREA)
Abstract
Description
【産業上の利用分野】本発明は粒状活性炭、カーボン電
極、砥石、フィラー、成型材料用等広範な用途に使用さ
れる新規な感圧熱自硬化性球状フェノール樹脂に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel pressure-sensitive and heat-curable spherical phenol resin used for a wide range of applications such as granular activated carbon, carbon electrodes, grinding wheels, fillers and molding materials.
【従来の技術】取り扱いやすく保存安定性の良い球状フ
ェノール樹脂の製造方法が今までに多数提示されてい
る。代表的な製造方法として水性媒体中でフェノール類
とアルデヒド類とを親水性保護コロイド剤の存在下反応
させる方法はヘキサミン触媒の存在下フェノール類とア
ルデヒド類とを反応させて得られた縮合物にポリビニル
アルコールを添加して更に長時間反応し球状樹脂を得る
二段階反応の方法(特公昭53ー42077号)、ある
いは水性媒体中フェノール類とアルデヒド類とをヘキサ
ミン触媒を使用しアラビアゴムの如き保護コロイド剤の
存在下反応させて球状フェノール樹脂を得る方法(特開
昭52−141893)、あるいは塩酸等酸性触媒中フ
ェノールに対して大過剰のホルマリンを使用して激しく
撹拌することにより微粒状のフェノール樹脂を得る方法
(特開昭57−177011号)などが開示されてい
る。2. Description of the Related Art Many methods for producing spherical phenolic resins which are easy to handle and have good storage stability have been proposed. As a typical production method, a method of reacting phenols and aldehydes in an aqueous medium in the presence of a hydrophilic protective colloid agent is carried out by reacting a phenol with an aldehyde in the presence of a hexamine catalyst to obtain a condensate. A two-step reaction method in which polyvinyl alcohol is added to react for a longer time to obtain a spherical resin (Japanese Patent Publication No. 53-42077), or phenols and aldehydes in an aqueous medium are protected using a hexamine catalyst, such as gum arabic. A method in which a spherical phenol resin is obtained by reacting in the presence of a colloidal agent (JP-A-52-141893), or a fine phenol is obtained by vigorously stirring using a large excess of formalin with respect to phenol in an acidic catalyst such as hydrochloric acid. A method for obtaining a resin (Japanese Patent Application Laid-Open No. 57-177011) and the like are disclosed.
【本発明が解決しようとする課題】保護コロイド剤を用
いる懸濁重合の一例である特公昭53−42077号の
方法は前述のように二段階反応であり長時間を要すると
いう欠点がある。特開昭52−141893号の親水性
高分子保護コロイド剤存在下ヘキサミン触媒による反応
では親水性高分子保護コロイド剤が樹脂中に残り、これ
を用いた成型物の強度低下、透明性不良や保存時のブロ
ッキング、経時変化などが起きやすくなるという欠点が
ある。しかしながら特開昭57−177011号の方法
では粒子径のコントロールが難しく、また一部葡萄房状
に凝集しこれの硬化物は耐衝撃性が劣るという欠点があ
る。また特開昭52−141893号の方法ではJIS
−K−6910に定めるゲル化時間(150℃)および
板流れ(125℃)の測定において有意の数値が得られ
ること、すなわち加熱により外力を加えないでも流動す
ることを特徴としており、とくにその製造方法において
反応温度は80〜85℃が最適であり90℃より高い温
度では反応の規模が大きくなった場合制御が困難になる
ことを指摘している。これは触媒として使用するアミン
の触媒効果が弱いために反応系は最初は透明で85℃に
達すると突然不透明になるとあり、この過程での発熱が
大きいことが原因である。またこの方法ではアンモニア
やヘキサミン以外のアミンは得られる樹脂に取り込まれ
るためか可塑剤として働きブロッキングの原因となると
記載されておりむしろアンモニアやヘキサミンに少量追
加して反応を行わせ樹脂の流動性向上の手段として使用
できるとしている。このようにして得られる加熱により
流動性をもつ球状樹脂は粒状活性炭、カーボン電極ある
いは球状樹脂のみの単独成形板等の用途には、加熱時樹
脂粒が融着してしまうため不適当であり、球状である特
徴を活かすことが出来ない。The method of JP-B-53-42077, which is an example of suspension polymerization using a protective colloid agent, has the disadvantage that it is a two-step reaction and takes a long time as described above. In the reaction using a hexamine catalyst in the presence of a hydrophilic polymer protective colloid agent disclosed in JP-A-52-141893, the hydrophilic polymer protective colloid agent remains in the resin, and the molded article using the same has a reduced strength, poor transparency and poor storage. There is a drawback that blocking at the time, a change with time, and the like are easily caused. However, the method disclosed in Japanese Patent Application Laid-Open No. 57-177011 has the disadvantages that it is difficult to control the particle size, and that a part of the product is agglomerated and the cured product thereof has poor impact resistance. Japanese Patent Application Laid-Open No. 52-141893 discloses a method described in JIS.
It is characterized in that significant values can be obtained in the measurement of gel time (150 ° C.) and plate flow (125 ° C.) specified in K-6910, that is, it flows even when no external force is applied by heating. It is pointed out that in the method, the reaction temperature is optimally from 80 to 85 ° C., and at a temperature higher than 90 ° C., it becomes difficult to control the reaction if the scale of the reaction becomes large. This is because the amine used as a catalyst has a weak catalytic effect, and the reaction system is initially transparent and suddenly becomes opaque when the temperature reaches 85 ° C., and the heat generated in this process is large. In this method, amines other than ammonia and hexamine are described as acting as a plasticizer and causing blocking because amines other than ammonia and hexamine are taken into the resin.Rather, a small amount of ammonia or hexamine is added to carry out the reaction to improve the fluidity of the resin. It can be used as a means. The spherical resin having fluidity by heating obtained in this way is not suitable for applications such as granular activated carbon, a carbon electrode or a single molded plate of only the spherical resin, because the resin particles are fused when heated, The spherical feature cannot be utilized.
【課題を解決するための手段】本発明者らはかかる問題
点に着目し優れた特性を持つ感圧熱自硬化性球状フェノ
ール樹脂の開発に鋭意努めた結果本発明に至ったもので
ある。本発明の目的は分子中にメチロール基を含有し硬
化剤の併用なしに熱だけで硬化し感圧熱自硬化性ではあ
るが外力を加えない場合の加熱では球状を保持したまま
硬化する特性を持ち、かつ、経時変化の無い耐ブロッキ
ング性に優れた保存安定性の良い感圧熱自硬化性球状フ
ェノール樹脂を得る製造方法を提供することにある。更
に本発明の他の目的は界面活性剤の種類および使用量、
アミンの種類および使用量、フェノール類に対するアル
デヒド類のモル比、撹拌速度など反応条件を選定するこ
とにより粒子径数μmから1mmまでの球状フェノール
樹脂を得ることができ、用途に応じて使い勝手の良い樹
脂を得る製造方法を提供することにある。フェノール類
とアルデヒド類とを乳化懸濁縮合する際に、グルコシド
結合を有する特定な高分子界面活性剤と限定された含窒
素化合物触媒の組み合わせを選択することによりによ
り、効率よく目的とする球状フェノール樹脂を得ること
ができる。このようにして得られた樹脂はJIS−K−
6910に定めるゲル化時間(150℃)および板流れ
(125℃)において有意の測定値を得ない。すなわち
加熱だけでは流動性を示さないが圧力を加えると熱融着
し硬化する。本発明の方法によれば高分子界面活性剤が
樹脂中に取り込まれることが無く、得られた樹脂が保存
時ブロッキングすることもない。すなわち、特定な高分
子界面活性剤としてヒドロキシエチルセルロース、ヒド
ロキシエチルセルロース−2−ハイドロキシプロピルト
リメチルアンモニウムクロライドエーテル、アルギン酸
ソーダ、ムコ多糖類骨格の天然ゴム金属塩よりなる群か
ら選ばれた少なくとも一種と、限定された含窒素化合物
触媒であるアミノ水素を少なくとも2個以上含有するア
ルキルアミン化合物触媒としてエチレンジアミン、ジエ
チレントリアミン、トリエチレンテトラミン、テトラエ
チレンペンタミン、ペンタエチレンヘキサミン、N−
(2−アミノエチル)エタノールアミン、N−(2−ア
ミノエチル)プロパノールアミンよりなる群から選ばれ
た少なくとも1種を組み合わせて用いることによるフェ
ノール類とアルデヒド類との水性媒体中常圧還流反応に
より目的とする感圧熱自硬化性球状フェノール樹脂を得
ることができる。以下本発明の方法の態様について説明
する。反応は系中に30%以上の水を含む水系媒体中で
行われる。すなわち、フェノール類、アルデヒド類、高
分子界面活性剤、アルキルアミン系触媒および水を反応
器中に、一度に仕込み、撹拌しながら昇温し常圧還流下
所定時間反応させる。反応系は最初から不透明である。
所定時間経過後、高分子界面活性剤洗浄用水を加え、系
を50℃以下にする。その後例えばヌッチェを用いて樹
脂を取り出す。得られた樹脂を洗浄水がアンスロン試薬
により呈色しなくなるまで数回水により洗浄する。乾燥
は暫時風乾後、熱乾燥する。工業的にはヌッチェフィル
ター、プレートドライヤーの使用が効率よい。本発明に
おいて用いられるフェノール類としては例えばフェノー
ル、o−、m−、p−クレゾール、ビスフェノールA、
スチレン化フェノール、炭素数2〜9のアルキル基で置
換されたアルキルフェノール、p−フェニルフェノー
ル、キシレノール、レゾルシノール、カテコール、ピロ
ガロール等公知のフェノール誘導体の1種又は2種以上
の混合物が上げられる。p−置換フェノール類を使用す
る場合はそれ以外のフェノール類と併用するのが好まし
い。本発明において用いられるアルデヒド類としてはホ
ルムアルデヒド、パラホルムアルデヒド、アセトアルデ
ヒド、ベンズアルデヒド、テレフタルアルデヒド、ヒド
ロキシベンズアルデヒド、フルフラール等の1種又は2
種以上の混合物が上げられるがとくにホルムアルデヒ
ド、パラホルムアルデヒドが好ましい。アルデヒド類の
フェノール類に対するモル比は0.6〜2.5、好まし
くは1.1〜1.8である。本発明において用いられる
アミノ水素を少なくとも2個以上含有するアルキルアミ
ン化合物触媒としては、エチレンジアミン、ジエチレン
トリアミン、トリエチレンテトラミン、テトラエチレン
ペンタミン、ペンタエチレンヘキサミン、N−(2−ア
ミノエチル)エタノールアミン、N−(2−アミノエチ
ル)プロパノールアミン、グアナミン、ジシアンジアミ
ドの1種又は2種以上の混合物が挙げられる。これらの
アルキルアミン化合物触媒のフェノール類に対する使用
量は3.0〜20.0wt%、好ましくは6.0〜1
5.0wt%である。本発明において用いられるグルコ
シド結合を有する高分子界面活性剤としては、グルコー
ス単位当たり酸化エチレン1.4〜3.5モル付加した
ヒドロキシエチルセルロース、ヒドロキシエチルセルロ
ース2−ハイドロキシプロピルトリメチルアンモニウム
クロライドエーテル、アルギン酸の金属塩、ムコ多糖類
骨格の天然ゴム金属塩の1種又は2種以上の混合物が挙
げられる。これらの界面活性剤は高分子化しているため
に水に膨潤はするが溶けにくいのであらかじめ2〜4%
濃度液を調整しておくことが望ましい。界面活性剤のフ
ェノール類に対する使用量は0.1〜10.0wt%、
好ましくは0.5〜7.0wt%である。Means for Solving the Problems The present inventors have paid attention to such problems and worked diligently to develop a pressure-sensitive heat-curable spherical phenol resin having excellent characteristics, and as a result, have reached the present invention. An object of the present invention is to have a property of containing a methylol group in the molecule and curing only by heat without using a curing agent, and being pressure-sensitive heat self-curing, but curing while maintaining a spherical shape by heating when no external force is applied. It is an object of the present invention to provide a method for producing a pressure-sensitive heat-curable spherical phenol resin having excellent blocking resistance, excellent in blocking resistance without change over time, and excellent in storage stability. Still another object of the present invention is the type and amount of surfactant used,
By selecting the reaction conditions such as the kind and amount of the amine, the molar ratio of the aldehyde to the phenol, and the stirring speed, it is possible to obtain a spherical phenol resin having a particle diameter of several μm to 1 mm, and it is easy to use depending on the application. An object of the present invention is to provide a production method for obtaining a resin. When emulsification suspension condensation of phenols and aldehydes, by selecting a combination of a specific polymer surfactant having a glucoside bond and a limited nitrogen-containing compound catalyst, the desired spherical phenol can be efficiently produced. A resin can be obtained. The resin thus obtained is JIS-K-
No significant measurements are obtained at the gel time (150 ° C.) and plate flow (125 ° C.) as defined in 6910. That is, it does not show fluidity by heating alone, but is thermally fused and hardened when pressure is applied. According to the method of the present invention, the polymer surfactant is not taken into the resin, and the obtained resin does not block during storage. That is, the specific polymer surfactant is limited to at least one selected from the group consisting of hydroxyethylcellulose, hydroxyethylcellulose-2-hydroxypropyltrimethylammonium chloride ether, sodium alginate, and natural rubber metal salts having a mucopolysaccharide skeleton. Examples of the alkylamine compound catalyst containing at least two amino hydrogens as nitrogen-containing compound catalysts include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and N-
By subjecting a phenol and an aldehyde to a normal-pressure reflux reaction in an aqueous medium by using at least one selected from the group consisting of (2-aminoethyl) ethanolamine and N- (2-aminoethyl) propanolamine in combination Pressure-sensitive heat-curable spherical phenolic resin can be obtained. Hereinafter, embodiments of the method of the present invention will be described. The reaction is performed in an aqueous medium containing 30% or more of water in the system. That is, a phenol, an aldehyde, a polymer surfactant, an alkylamine-based catalyst and water are charged into a reactor at a time, and the temperature is increased while stirring, and the mixture is reacted under a normal pressure reflux for a predetermined time. The reaction system is initially opaque.
After a lapse of a predetermined time, water for washing a polymer surfactant is added to lower the temperature of the system to 50 ° C or lower. Thereafter, the resin is taken out using, for example, Nutsche. The obtained resin is washed several times with water until the washing water no longer shows color with the anthrone reagent. After drying for a while, heat dry. Industrially, it is efficient to use a Nutsche filter or a plate dryer. Examples of phenols used in the present invention include phenol, o-, m-, p-cresol, bisphenol A,
One or a mixture of two or more known phenol derivatives such as styrenated phenol, alkylphenol substituted with an alkyl group having 2 to 9 carbon atoms, p-phenylphenol, xylenol, resorcinol, catechol, and pyrogallol can be used. When using a p-substituted phenol, it is preferable to use it together with other phenols. The aldehyde used in the present invention is one or two of formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde, terephthalaldehyde, hydroxybenzaldehyde, furfural and the like.
Mixtures of more than one species are mentioned, but formaldehyde and paraformaldehyde are particularly preferred. The molar ratio of aldehydes to phenols is 0.6 to 2.5, preferably 1.1 to 1.8. Examples of the alkylamine compound catalyst containing at least two amino hydrogens used in the present invention include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N- (2-aminoethyl) ethanolamine and N- (2-aminoethyl) ethanolamine. One or a mixture of two or more of-(2-aminoethyl) propanolamine, guanamine, and dicyandiamide is included. The use amount of these alkylamine compound catalysts with respect to phenols is 3.0 to 20.0 wt%, preferably 6.0 to 1%.
5.0 wt%. Examples of the polymeric surfactant having a glucoside bond used in the present invention include hydroxyethylcellulose, hydroxyethylcellulose 2-hydroxypropyltrimethylammonium chloride ether added with 1.4 to 3.5 mol of ethylene oxide per glucose unit, and metal salts of alginic acid. And one or more mixtures of natural rubber metal salts having a mucopolysaccharide skeleton. Since these surfactants are polymerized, they swell in water but hardly dissolve.
It is desirable to adjust the concentration solution. The amount of the surfactant used for the phenols is 0.1 to 10.0 wt%,
Preferably it is 0.5 to 7.0 wt%.
【実施例】本発明を実施例により更に詳しく述べる。 [実施例1]コンデンサー、温度計、撹拌機を装着した
5リットルフラスコにフェノール1100g、50%水
性ホルムアルデヒド793.1g、トリエチレンテトラ
ミン99g、予めヒドロキシエチルセルロース11gを
溶解した水溶液550g、水660gを仕込み、常圧還
流下3.0時間反応させた。50℃以下に冷却し、水1
150gを添加し、ヌッチェにて樹脂を濾別し界面活性
剤を水洗により除去した。更に水2500gによる水洗
を濾液がアンスロン試薬により呈色しなくなるまで5回
繰り返した。樹脂は風乾後熱風循環式オーブン中100
℃で1時間乾燥し平均粒径132μmの球状樹脂を得
た。平均粒径はマイクロトラック(日機装製9320X
−100)にて測定した。 [実施例2]コンデンサー、温度計、撹拌機を装着した
5リットルフラスコにフェノール1100g、50%水
性ホルムアルデヒド1262.5g、ペンタエチレンヘ
キサミン88g、予めアルギン酸ソーダ8gを溶解した
水溶液400g、水810g、を仕込み、常圧還流下
1.5時間反応させた。50℃以下に冷却し、実施例1
と同様の操作にて平均粒径215μmの球状樹脂を得
た。 [実施例3]コンデンサー、温度計、撹拌機を装着した
5リットルフラスコにフェノール1100g、50%水
性ホルムアルデヒド1262.5g、N−(2ーアミノ
エチル)エタノールアミン110g、予めヒドロキシエ
チルセルロース−2−ハイドロキシプロピルトリメチル
アンモニウムクロライドエーテル11gを溶解した水溶
液550g、水660gを仕込み、常圧還流下2.0時
間反応させた。50℃以下に冷却し、実施例1と同様の
操作にて平均粒径74μmの球状樹脂を得た。 [比較例1]特開昭53−42077号に記載された方
法に従って球状フェノール樹脂を合成した。すなわち、
コンデンサー、温度計、撹拌機を装着した3リットルフ
ラスコにフェノール500g、50%ホルムアルデヒド
318gを仕込み、撹拌しながらヘキサメチレンテトラ
ミン50gを添加、90℃に昇温し100分間反応させ
た。次いで5%ポリビニルアルコール100g(重合度
1800、ケン化度88%)を添加し温度を80℃に冷
却し240分間反応した。冷却静置後、上澄み液を除去
し下層の球状化した樹脂をとりだし、風乾後熱風循環式
オ−ブン中100℃で1時間乾燥し、粒子径約1mmの
樹脂を得た。 [比較例2]特開昭52−141893号に記載された
方法に従って球状フェノール樹脂を合成した。すなわ
ち、コンデンサー、温度計、撹拌機を装置した3リット
ルフラスコにフェノール700g、50%ホルムアルデ
ヒド504g、水1020g、ヘキサメチレンテトラミ
ン63g、アラビアゴム7gを仕込み、撹拌しながら4
5分間で85℃に昇温した。同温度で1時間反応した。
反応物は実施例1と同様の操作にて水洗、風乾後熱風循
環式オ−ブン中60℃で2時間乾燥して平均粒径252
μmの球状樹脂を得た。実施例1乃至3、比較例1、2
で得られた球状樹脂について、次の評価を行った。その
結果を表1に示す。 ・ゲル化時間:熱板法(150℃)JIS−K−6910 4.8 ・板流れ :硝子板(125℃)JIS−K−6910 4.7 ・凝集物 :ヌッチェ上肉眼判定 ・アンスロン反応: 試料調整:40ミリリットルの水に樹脂10gを採り還流下1時間抽 出し試料を調整した。 操作:ミクロ試験管に0.1%アンスロン濃硫酸溶液(約0.5 ミリリットル)をとり、その上に検体液(約1mg)をス ポイトで静かに加え両液を混合、緑青色を呈すれば陽性で ある。 ・ブロッキング試験 器具:(1)平板:150mm×150mm×5mm (2)円筒容器:71mmφ×120mm (3)分銅:70mmφ×160mm、全重量5kg (4)金網:10メッシュ (5)恒温恒湿器:25℃、65%に設定 操作:平板上に円筒容器を載せ、分銅とともに恒温恒湿器に入 れておく。試料500gを円筒容器にいれ分銅を載せ恒 温恒湿器に戻す。1時間後静かに円筒容器の試料を紙の 上に取り出し、10メッシュ金網を通してふるい分けブ ロック化した部分の重量をはかり元の重量に対する比率 (%)を算出した。 ・単独板作成:樹脂5gを金型(60mm×28mm×1.8mm)に仕 込み圧縮成型(180℃×5分×105kgf/cm2) して板を作成した。得られた板のロックウエル表面硬度及 び曲げ強度(JIS−K−6911)を測定した。The present invention will be described in more detail by way of examples. [Example 1] A 5-liter flask equipped with a condenser, a thermometer, and a stirrer was charged with 1100 g of phenol, 793.1 g of 50% aqueous formaldehyde, 99 g of triethylenetetramine, 550 g of an aqueous solution in which 11 g of hydroxyethylcellulose was previously dissolved, and 660 g of water. The reaction was carried out under normal pressure reflux for 3.0 hours. Cool to 50 ° C or less, and add water 1
150 g was added, the resin was filtered off with Nutsche, and the surfactant was removed by washing with water. Further, washing with 2500 g of water was repeated 5 times until the filtrate did not show any color with the anthrone reagent. Resin is air-dried and then heated in a hot-air circulation oven.
C. for 1 hour to obtain a spherical resin having an average particle size of 132 .mu.m. The average particle size is Microtrack (Nikkiso 9320X)
-100). Example 2 A 5-liter flask equipped with a condenser, a thermometer, and a stirrer was charged with 1100 g of phenol, 1262.5 g of 50% aqueous formaldehyde, 88 g of pentaethylenehexamine, 400 g of an aqueous solution in which 8 g of sodium alginate was previously dissolved, and 810 g of water. The reaction was carried out under normal pressure reflux for 1.5 hours. Example 1
A spherical resin having an average particle size of 215 μm was obtained in the same manner as in the above. Example 3 1100 g of phenol, 1262.5 g of 50% aqueous formaldehyde, 110 g of N- (2-aminoethyl) ethanolamine and 110 g of hydroxyethylcellulose-2-hydroxypropyltrimethylammonium were placed in a 5-liter flask equipped with a condenser, a thermometer and a stirrer. 550 g of an aqueous solution in which 11 g of chloride ether was dissolved, and 660 g of water were charged and reacted under normal pressure reflux for 2.0 hours. After cooling to 50 ° C. or lower, a spherical resin having an average particle diameter of 74 μm was obtained in the same manner as in Example 1. Comparative Example 1 A spherical phenol resin was synthesized according to the method described in JP-A-53-42077. That is,
500 g of phenol and 318 g of 50% formaldehyde were charged into a 3 liter flask equipped with a condenser, a thermometer and a stirrer, and 50 g of hexamethylenetetramine was added with stirring, and the mixture was heated to 90 ° C. and reacted for 100 minutes. Subsequently, 100 g of 5% polyvinyl alcohol (polymerization degree 1800, saponification degree 88%) was added, the temperature was cooled to 80 ° C., and the reaction was carried out for 240 minutes. After cooling and standing, the supernatant was removed and the spheroidized resin in the lower layer was taken out. The resin was air-dried and dried in a hot-air circulating oven at 100 ° C. for 1 hour to obtain a resin having a particle diameter of about 1 mm. Comparative Example 2 A spherical phenol resin was synthesized according to the method described in JP-A-52-141893. That is, 700 g of phenol, 504 g of 50% formaldehyde, 1020 g of water, 63 g of hexamethylenetetramine, and 7 g of gum arabic were charged into a 3 liter flask equipped with a condenser, a thermometer, and a stirrer, and stirred.
The temperature was raised to 85 ° C. in 5 minutes. The reaction was performed at the same temperature for 1 hour.
The reaction product was washed with water and air-dried in the same manner as in Example 1 and then dried in a hot-air circulating oven at 60 ° C. for 2 hours to obtain an average particle size of 252.
A μm spherical resin was obtained. Examples 1 to 3, Comparative Examples 1 and 2
The following evaluation was performed about the spherical resin obtained by. Table 1 shows the results. -Gel time: Hot plate method (150 ° C) JIS-K-6910 4.8-Plate flow: Glass plate (125 ° C) JIS-K-6910 4.7-Aggregate: Visual judgment on Nutsche-Anthrone reaction: Sample preparation: 10 g of the resin was taken in 40 ml of water and extracted for 1 hour under reflux to prepare a sample. Procedure: Take a 0.1% anthrone concentrated sulfuric acid solution (about 0.5 ml) in a micro test tube, gently add a sample solution (about 1 mg) with a dropper, mix the two solutions, and give a green-blue color. Is positive. -Blocking test Device: (1) Flat plate: 150 mm x 150 mm x 5 mm (2) Cylindrical container: 71 mm x 120 mm (3) Weight: 70 mm x 160 mm, total weight 5 kg (4) Wire mesh: 10 mesh (5) Constant temperature and humidity device : Set to 25 ° C, 65% Operation: Place the cylindrical container on a flat plate and put it in a thermo-hygrostat with a weight. Place 500 g of the sample in a cylindrical container, place a weight on it, and return to the thermo-hygrostat. One hour later, the sample in the cylindrical container was gently taken out on a piece of paper, sieved through a 10-mesh wire gauze and the weight of the sieved block was weighed to calculate the ratio (%) to the original weight. Preparation of a single plate: A plate was prepared by charging 5 g of resin into a mold (60 mm × 28 mm × 1.8 mm) and compression molding (180 ° C. × 5 minutes × 105 kgf / cm 2 ). Rockwell surface hardness and bending strength (JIS-K-6911) of the obtained plate were measured.
【表1】 表1からわかるように、実施例1乃至3により得られた
樹脂は、ゲル化時間(150℃)、板流れ(120℃)
が無く、熱時流動性を持たないもので、耐ブロッキング
性に優れ、ロックウエル表面硬度、曲げ強度の優れたも
のある。 [実施例4]実施例1において、高分子界面活性剤をヒ
ドロキヒエチルセルロース−2−ハイドロキシプロピル
トリメチルアンモニウムクロライドエーテルに変えた以
外は実施例1と同様にして平均粒径45μmの球状樹脂
を得た。 [実施例5]実施例1において、高分子界面活性剤をア
ルギン酸ソーダに変えた以外は実施例1と同様にして平
均粒径123μmの球状樹脂を得た。 [実施例6]実施例3においてN−(2−アミノエチ
ル)エタノールアミン110gをテトラエチレンペンタ
ミン99gに変えた以外は実施例3と同様にして平均粒
径15μmの球状樹脂を得た。 [実施例7]実施例6においてヒドロキヒエチルセルロ
ース−2−ハイドロキシプロピルトリメチルアンモニウ
ムクロライドエーテルを55gとした以外は実施例6と
同様にして平均粒径2μmの球状樹脂を得た。 [実施例8]実施例6においてヒドロキヒエチルセルロ
ース−2−ハイドロキシプロピルトリメチルアンモニウ
ムクロライドエーテルを77gとした以外は実施例6と
同様にして平均粒径2μmの球状樹脂を得た。 [実施例9]実施例6においてヒドロキヒエチルセルロ
ース−2−ハイドロキシプロピルトリメチルアンモニウ
ムクロライドエーテルを110gとした以外は実施例6
と同様にして平均粒径1μmの球状樹脂を得た。 [実施例10]実施例6において50%水性ホルムアル
デヒドを1492gとした以外は実施例6と同様にして
平均粒径42μmの球状樹脂を得た。 [実施例11]実施例10においてヒドロキヒエチルセ
ルロース−2−ハイドロキシプロピルトリメチルアンモ
ニウムクロライドエーテルを55gとした以外は実施例
10と同様にして平均粒径2μmの球状樹脂を得た。 [実施例12]実施例10においてヒドロキヒエチルセ
ルロース−2−ハイドロキシプロピルトリメチルアンモ
ニウムクロライドエーテルを77gとした以外は実施例
10と同様にして平均粒径2μmの球状樹脂を得た。 [実施例13]実施例10においてヒドロキヒエチルセ
ルロース−2−ハイドロキシプロピルトリメチルアンモ
ニウムクロライドエーテルを110gとした以外は実施
例10と同様にして平均粒径1μmの球状樹脂を得た。 [実施例14]実施例6において50%水性ホルムアル
デヒドを2061.8gとした以外は実施例6と同様に
して平均粒径45μmの球状樹脂を得た。 [実施例15]実施例14においてヒドロキヒエチルセ
ルロース−2−ハイドロキシプロピルトリメチルアンモ
ニウムクロライドエーテルを55gとした以外は実施例
14と同様にして平均粒径3μmの球状樹脂を得た。 [実施例16]実施例14においてヒドロキヒエチルセ
ルロース−2−ハイドロキシプロピルトリメチルアンモ
ニウムクロライドエーテルを77gとした以外は実施例
14と同様にして平均粒径6μmの球状樹脂を得た。 [実施例17]実施例14においてヒドロキヒエチルセ
ルロース−2−ハイドロキシプロピルトリメチルアンモ
ニウムクロライドエーテルを110gとした以外は実施
例14と同様にして平均粒径2μmの球状樹脂を得た。[Table 1] As can be seen from Table 1, the resins obtained in Examples 1 to 3 had a gel time (150 ° C.) and a plate flow (120 ° C.)
It does not have fluidity when heated, has excellent blocking resistance, and has excellent Rockwell surface hardness and bending strength. Example 4 A spherical resin having an average particle size of 45 μm was obtained in the same manner as in Example 1 except that the polymer surfactant was changed to hydroxyethyl cellulose-2-hydroxypropyltrimethylammonium chloride ether. . Example 5 A spherical resin having an average particle size of 123 μm was obtained in the same manner as in Example 1 except that the polymer surfactant was changed to sodium alginate. Example 6 A spherical resin having an average particle diameter of 15 μm was obtained in the same manner as in Example 3, except that 110 g of N- (2-aminoethyl) ethanolamine was changed to 99 g of tetraethylenepentamine. Example 7 A spherical resin having an average particle size of 2 μm was obtained in the same manner as in Example 6, except that 55 g of hydroxyethyl cellulose-2-hydroxypropyltrimethylammonium chloride ether was used. Example 8 A spherical resin having an average particle diameter of 2 μm was obtained in the same manner as in Example 6, except that 77 g of hydroxyethyl cellulose-2-hydroxypropyltrimethylammonium chloride ether was used. Example 9 Example 6 was the same as Example 6 except that the amount of hydroxyethyl cellulose-2-hydroxypropyltrimethylammonium chloride ether was changed to 110 g.
In the same manner as in the above, a spherical resin having an average particle size of 1 μm was obtained. Example 10 A spherical resin having an average particle size of 42 μm was obtained in the same manner as in Example 6, except that 1492 g of 50% aqueous formaldehyde was used. [Example 11] A spherical resin having an average particle size of 2 µm was obtained in the same manner as in Example 10, except that hydroxyethyl cellulose-2-hydroxypropyltrimethylammonium chloride ether was used in an amount of 55 g. [Example 12] A spherical resin having an average particle diameter of 2 µm was obtained in the same manner as in Example 10, except that 77 g of hydroxyethyl cellulose-2-hydroxypropyltrimethylammonium chloride ether was used. Example 13 A spherical resin having an average particle size of 1 μm was obtained in the same manner as in Example 10 except that hydroxygethyl cellulose-2-hydroxypropyltrimethylammonium chloride ether was changed to 110 g. Example 14 A spherical resin having an average particle size of 45 μm was obtained in the same manner as in Example 6, except that the amount of 50% aqueous formaldehyde was changed to 2061.8 g. [Example 15] A spherical resin having an average particle size of 3 µm was obtained in the same manner as in Example 14, except that hydroxyethyl cellulose-2-hydroxypropyltrimethylammonium chloride ether was used in an amount of 55 g. Example 16 A spherical resin having an average particle diameter of 6 μm was obtained in the same manner as in Example 14, except that 77 g of hydroxyethyl cellulose-2-hydroxypropyltrimethylammonium chloride ether was used. [Example 17] A spherical resin having an average particle size of 2 µm was obtained in the same manner as in Example 14, except that hydroxygethyl cellulose-2-hydroxypropyltrimethylammonium chloride ether was changed to 110 g.
【発明の効果】本発明の製造方法により得られた感圧熱
自硬化性球状フェノール樹脂は、ゲル化時間(150
℃)、板流れ(120℃)が無く、熱時流動性を持たな
いものであるにもかかわらず、加熱圧縮成型により溶融
硬化し成型物の作成が可能なことから、とくに粒状活性
炭、カーボン電極、耐火物バインダー、成形材等の応用
分野で特長を発揮できるものである。The pressure-sensitive heat-curable spherical phenolic resin obtained by the production method of the present invention has a gelation time (150).
℃), plate flow (120 ℃), and has no fluidity when heated, but it can be melt-hardened by heating and compression molding to form a molded product. It can exert its features in application fields such as refractory binders and molding materials.
Claims (7)
上含有するアルキルアミン化合物触媒を用い、乳化分散
剤としてグルコシド結合を有する高分子界面活性剤の存
在下フェノール類とアルデヒド類とを縮合反応させてな
ること特徴とする感圧熱自硬化性球状フェノール樹脂の
製造方法。A phenol and an aldehyde are subjected to a condensation reaction in an aqueous medium using an alkylamine compound catalyst containing at least two amino hydrogens in the presence of a polymeric surfactant having a glucoside bond as an emulsifying dispersant. A method for producing a pressure-sensitive heat-curable spherical phenolic resin, comprising:
反応は、フェノール類に対しアルデヒド類が0.6〜
2.5モルの範囲であることを特徴とする請求項1記載
の感圧熱自硬化性球状フェノール樹脂の製造方法。2. The condensation reaction between phenols and aldehydes, wherein the aldehydes are added to the phenols in an amount of 0.6 to 2.
2. The method for producing a pressure-sensitive heat-curable spherical phenolic resin according to claim 1, wherein the amount is in the range of 2.5 mol.
反応に際するアミノ水素を少なくとも2個以上含有する
アルキルアミン化合物触媒は、フェノール類に対し3.
0〜20.0wt%の範囲であることを特徴とする請求
項1又は2記載の感圧熱自硬化性球状フェノール樹脂の
製造方法。3. The alkylamine compound catalyst containing at least two amino hydrogens in the condensation reaction between the phenols and the aldehydes is used in an amount of 3.
The method for producing a pressure-sensitive heat-curable spherical phenolic resin according to claim 1 or 2, wherein the content is in the range of 0 to 20.0 wt%.
するアルキルアミン化合物は、エチレンジアミン、ジエ
チレントリアミン、トリエチレンテトラミン、テトラエ
チレンペンタミン、ペンタエチレンヘキサミン、N−
(2−アミノエチル)エタノールアミン、N−(2−ア
ミノエチル)プロパノールアミンよりなる群から選ばれ
た1種又は2種以上の混合物であることを特徴とする請
求項1乃至3のいずれか1項に記載の感圧熱自硬化性球
状フェノール樹脂の製造方法。4. The alkylamine compound containing at least two amino hydrogens includes ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-
4. One or a mixture of two or more selected from the group consisting of (2-aminoethyl) ethanolamine and N- (2-aminoethyl) propanolamine. The method for producing a pressure-sensitive heat-curable spherical phenolic resin described in the above item.
反応に際するグルコシド結合を有する高分子界面活性剤
は、フェノール類に対し0.1〜10.0wt%の範囲
であることを特徴とする請求項1乃至4のいずれか1項
に記載の感圧熱自硬化性球状フェノール樹脂の製造方
法。5. The high molecular surfactant having a glucosidic bond in the condensation reaction between the phenol and the aldehyde is in the range of 0.1 to 10.0 wt% based on the phenol. A method for producing the pressure-sensitive heat-curable spherical phenolic resin according to any one of claims 1 to 4.
反応に際するグルコシド結合を有する高分子界面活性剤
は、グルコース単位当たり酸化エチレン1.4〜3.5
モルを付加したヒドロキシエチルセルロース、ヒドロキ
シエチルセルロース−2−ハイドロキシプロピルトリメ
チルアンモニウムクロライドエーテル、アルギン酸の金
属塩、ムコ多糖類骨格の天然ゴム金属塩よりなる群から
選ばれた1種又は2種以上の混合物であることを特徴と
する請求項1乃至5のいずれか1項に記載の感圧熱自硬
化性球状フェノール樹脂の製造方法。6. The high molecular surfactant having a glucosidic bond in the condensation reaction between the phenols and the aldehydes comprises 1.4 to 3.5 ethylene oxide per glucose unit.
One or a mixture of two or more selected from the group consisting of hydroxyethylcellulose, hydroxyethylcellulose-2-hydroxypropyltrimethylammonium chloride ether, a metal salt of alginic acid, and a natural rubber metal salt of a mucopolysaccharide skeleton to which a mole has been added. The method for producing a pressure-sensitive heat-curable spherical phenol resin according to any one of claims 1 to 5, characterized in that:
反応は、常圧環流下にて行うものであることを特徴とす
る請求項1乃至6のいずれか1項に記載の感圧熱自硬化
性球状フェノール樹脂の製造方法。7. The pressure-sensitive thermosetting thermosetting composition according to claim 1, wherein the condensation reaction between the phenols and the aldehydes is carried out under normal pressure reflux. A method for producing a spherical phenolic resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23658897A JPH1160664A (en) | 1997-08-18 | 1997-08-18 | Production on pressure/heat-sensitive self-curing spherical phenolic resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23658897A JPH1160664A (en) | 1997-08-18 | 1997-08-18 | Production on pressure/heat-sensitive self-curing spherical phenolic resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1160664A true JPH1160664A (en) | 1999-03-02 |
Family
ID=17002873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23658897A Pending JPH1160664A (en) | 1997-08-18 | 1997-08-18 | Production on pressure/heat-sensitive self-curing spherical phenolic resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1160664A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000058400A1 (en) * | 1999-03-26 | 2000-10-05 | Dynea Chemicals Oy | Method for the preparation of polymers |
US6245882B1 (en) | 1999-03-26 | 2001-06-12 | Neste Chemicals Oy | Method for the preparation of polymers |
JP2007039263A (en) * | 2005-08-01 | 2007-02-15 | Univ Of Miyazaki | Spherical carbon obtained by using resorcinol-based polymer particle as precursor, and its production method |
JP2007197338A (en) * | 2006-01-24 | 2007-08-09 | Merck Seiyaku Kk | Medicinal adsorbent |
US7651974B2 (en) | 2002-11-01 | 2010-01-26 | Kureha Chemical Industry Co., Ltd. | Adsorbent for oral administration |
US7682442B2 (en) | 2003-01-22 | 2010-03-23 | Futamura Kagaku Kabushiki Kaisha | Medical adsorbent and process for production of the same |
JP2010070738A (en) * | 2008-09-22 | 2010-04-02 | Chan Sieh Enterprises Co Ltd | Method for producing cured spherical phenolic resin particle |
US8357366B2 (en) | 2004-04-02 | 2013-01-22 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8440228B2 (en) | 2004-04-02 | 2013-05-14 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8920796B2 (en) | 2003-10-22 | 2014-12-30 | Kureha Corporation | Adsorbent for oral administration, and agent for treating or preventing renal or liver disease |
US9162488B2 (en) | 2012-06-26 | 2015-10-20 | Hewlett-Packard Development Company, L.P. | Media guide |
-
1997
- 1997-08-18 JP JP23658897A patent/JPH1160664A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6245882B1 (en) | 1999-03-26 | 2001-06-12 | Neste Chemicals Oy | Method for the preparation of polymers |
WO2000058400A1 (en) * | 1999-03-26 | 2000-10-05 | Dynea Chemicals Oy | Method for the preparation of polymers |
US7651974B2 (en) | 2002-11-01 | 2010-01-26 | Kureha Chemical Industry Co., Ltd. | Adsorbent for oral administration |
US8309130B2 (en) | 2002-11-01 | 2012-11-13 | Kureha Corporation | Adsorbent for oral administration |
US7682442B2 (en) | 2003-01-22 | 2010-03-23 | Futamura Kagaku Kabushiki Kaisha | Medical adsorbent and process for production of the same |
US8920796B2 (en) | 2003-10-22 | 2014-12-30 | Kureha Corporation | Adsorbent for oral administration, and agent for treating or preventing renal or liver disease |
US8865161B2 (en) | 2004-04-02 | 2014-10-21 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8357366B2 (en) | 2004-04-02 | 2013-01-22 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8440228B2 (en) | 2004-04-02 | 2013-05-14 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8518447B2 (en) | 2004-04-02 | 2013-08-27 | Kureha Corporation | Method for treating or preventing renal or liver disease |
JP2007039263A (en) * | 2005-08-01 | 2007-02-15 | Univ Of Miyazaki | Spherical carbon obtained by using resorcinol-based polymer particle as precursor, and its production method |
JP2007197338A (en) * | 2006-01-24 | 2007-08-09 | Merck Seiyaku Kk | Medicinal adsorbent |
JP2010070738A (en) * | 2008-09-22 | 2010-04-02 | Chan Sieh Enterprises Co Ltd | Method for producing cured spherical phenolic resin particle |
US9162488B2 (en) | 2012-06-26 | 2015-10-20 | Hewlett-Packard Development Company, L.P. | Media guide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3576433B2 (en) | Method for producing spherical phenolic resin | |
JPH1160664A (en) | Production on pressure/heat-sensitive self-curing spherical phenolic resin | |
JPS63291945A (en) | Low shrinkage phenol resin forming material | |
US4182696A (en) | Process for producing particulate filler-containing resole molding compositions from aqueous dispersion | |
US4376854A (en) | Process for preparing resorcinol copolymers | |
EP0205259B1 (en) | Microspherical cured phenolic resin particles and process for production thereof | |
JPS58104916A (en) | Fine grain resol with improved hardening speed and sinter-resistance | |
EP0217587B1 (en) | Spherical thermosetting phenolic resin particles and process for producing the same | |
JPH11116648A (en) | Production of spherical phenol resin | |
JP4265023B2 (en) | Method for producing phenolic resin | |
JP3651837B2 (en) | Method for producing heat infusible spherical resin fine particles | |
JP3159443B2 (en) | Manufacturing method of spherical phenol resin | |
JP2002102999A (en) | Resin coated sand for shell mold | |
JPS6117847B2 (en) | ||
JPH06184405A (en) | Phenol resin composition | |
JPS63190779A (en) | Manufacture of silicon carbide porous body | |
JP2547494B2 (en) | Thermosetting resin composition | |
JPS62235312A (en) | Production of spherular cured phenolic resin particle | |
JPH0641502B2 (en) | Method for producing resol type phenolic resin | |
JPH0753786B2 (en) | Method for producing heat-resistant phenol resin | |
JP2001011145A (en) | Phenolic resin for molding, its production and phenolic resin molded article obtained from the same resin | |
JPH1180300A (en) | Production of microspherical cured phenolic resin particle | |
JP3062211B2 (en) | Method for producing self-curing phenolic resin | |
JP2005239949A (en) | Phenol resin composition and its cured product | |
JPH0689091B2 (en) | Thermosetting phenolic resin solution and method for producing the same |