JPH116002A - Production of thin plate-like sintered body and heat spreader - Google Patents

Production of thin plate-like sintered body and heat spreader

Info

Publication number
JPH116002A
JPH116002A JP17096897A JP17096897A JPH116002A JP H116002 A JPH116002 A JP H116002A JP 17096897 A JP17096897 A JP 17096897A JP 17096897 A JP17096897 A JP 17096897A JP H116002 A JPH116002 A JP H116002A
Authority
JP
Japan
Prior art keywords
sintered body
heat spreader
thin plate
pressing
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17096897A
Other languages
Japanese (ja)
Other versions
JP3506201B2 (en
Inventor
Osamu Motai
理 馬渡
Junichi Ichikawa
淳一 市川
Zenzo Ishijima
善三 石島
Hideo Yomo
英雄 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP17096897A priority Critical patent/JP3506201B2/en
Priority to PCT/JP1998/002591 priority patent/WO1998056526A1/en
Priority to US09/230,494 priority patent/US6139975A/en
Publication of JPH116002A publication Critical patent/JPH116002A/en
Priority to KR1019997000962A priority patent/KR100306365B1/en
Application granted granted Critical
Publication of JP3506201B2 publication Critical patent/JP3506201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep a plane precision high by restraining a strain quantity in a produced product, at the time of producing a thin plate formed product, such as a heat spreader constituting a semiconductor. SOLUTION: At the time of obtaining the heat spreader by recompacting a sintered body 1B after sintering a thin plate-like compact body 1b having a thick thickness part 4b and a thin thickness part 5b, the density difference of the thin thickness part 5b to the thick thickness part 4b after recompacting the sintered body 16 is adjusted to within the range of ±1.5% and further, a true density ratio after recompacting the sintered body 1B is adjusted to within the range of 95-99% by adjusting the compacting densities and different size of step between both of the thick thickness part 4b and the thin thickness part 5b at the step of forming the compact body. The plane precision is improved by satisfying these conditions, and since this product is the sintered body, the deformation caused by the inner strain is restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄肉部と厚肉部と
を有する薄板状の圧粉体を焼結して薄板状焼結体を得る
方法に係り、例えば、ICパッケージに装填されるヒー
トスプレッダ(放熱板)等を製造するにあたって好適な
製造方法に関し、さらに、歪量が少ないヒートスプレッ
ダに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of obtaining a thin plate-like sintered body by sintering a thin plate-like compact having a thin portion and a thick portion, and for example, is mounted in an IC package. The present invention relates to a manufacturing method suitable for manufacturing a heat spreader (radiator plate) and the like, and further relates to a heat spreader having a small amount of distortion.

【0002】[0002]

【従来の技術】近年の半導体においては、ICの高度
化、多様化が求められており、ICチップを搭載するI
Cパッケージも、小型化、高容量化、薄型化、多ピン化
などの高機能化がめざましい勢いで進展している。この
ような高機能化に伴い、ICパッケージの発熱量も増加
の一途をたどる傾向にあり、発熱量の大きい場合には、
放熱を目的としたヒートスプレッダを装填させたICパ
ッケージが増加している。
2. Description of the Related Art In recent years, semiconductors are required to be sophisticated and diversified.
In the C package, high functionality such as miniaturization, increase in capacity, reduction in thickness, increase in the number of pins, etc. has been remarkably progressing. With such advanced functions, the heat generation of the IC package also tends to increase steadily.
The number of IC packages loaded with a heat spreader for heat dissipation is increasing.

【0003】このヒートスプレッダは放熱板であり、例
えば、一辺25〜45mm、厚さ0.5〜1.0mm程
度の正方形状の薄板であって、片その面の中央部にIC
を組み込ませるための凹所が形成されているものが一般
的である。このようなヒートスプレッダは、従来では、
熱伝導性すなわち放熱性の高い銅やアルミ等の金属板を
打ち抜き、絞り、圧延等の塑性加工によって成形してい
た。
This heat spreader is a heat radiating plate, for example, a square thin plate having a side of 25 to 45 mm and a thickness of about 0.5 to 1.0 mm.
Is generally formed with a concave portion for incorporating the same. Conventionally, such a heat spreader is
A metal plate made of copper, aluminum, or the like having high thermal conductivity, that is, heat radiation, is formed by punching, drawing, rolling, or other plastic working.

【0004】[0004]

【発明が解決しようとする課題】このように塑性加工を
施してヒートスプレッダを製造すると、塑性加工時の歪
みが残留応力として製品にどうしても残る。この残留応
力が残ったままであると、ヒートスプレッダを装填した
基板に対してはんだボンディング等で回路を作製する際
に、発熱によって残留応力が解放されるため、ヒートス
プレッダに反りやたわみ等が生じる。このような変形
は、基板装着面の平面精度を低下させて基板との密着度
を劣化させるとともに、ICパッケージ全体としては、
接続ワイヤの断裂、ICチップの剥離、はんだボールの
形成不良等、さまざまな不具合を招くことになる。
When a heat spreader is manufactured by performing plastic working in this way, distortion during plastic working is inevitably left as residual stress in a product. If the residual stress remains, the residual stress is released by heat generation when a circuit is manufactured by solder bonding or the like on the substrate on which the heat spreader is mounted, so that the heat spreader is warped or bent. Such deformation reduces the planar accuracy of the substrate mounting surface, deteriorating the degree of adhesion with the substrate, and as a whole IC package,
Various inconveniences such as tearing of the connection wire, peeling of the IC chip, and defective formation of the solder ball are caused.

【0005】このような不具合を回避するため、ヒート
スプレッダの中央部に打ち抜きによって孔の空いた薄板
を接着剤で貼り付けて製造する方法も提案されている。
ところがこの製造方法では、部材が2つになることか
ら、工程の増加や接着剤と板材との熱膨張の差による加
熱時の剥離、あるいは、薄板の貼り付けによる剛性不足
等の問題が生じていた。したがって、本発明は、ヒート
スプレッダのような薄板成形品を、歪量が抑制されて平
面精度が高く保持することができる薄板状焼結体の製造
方法を提供するとともに、歪量が少ないヒートスプレッ
ダを提供することを目的としている。
In order to avoid such a problem, a method has been proposed in which a thin plate having a hole formed by punching is attached to the center of a heat spreader with an adhesive to manufacture the heat spreader.
However, in this manufacturing method, since there are two members, problems such as an increase in the number of steps, separation during heating due to a difference in thermal expansion between the adhesive and the plate material, or insufficient rigidity due to sticking of a thin plate have occurred. Was. Therefore, the present invention provides a method of manufacturing a thin plate-like sintered body capable of holding a thin plate-shaped product such as a heat spreader with a small amount of distortion and high planar accuracy, and provides a heat spreader with a small amount of distortion. It is intended to be.

【0006】[0006]

【課題を解決するための手段】本発明の薄板状焼結体の
製造方法は、薄肉部と厚肉部とを有する薄板状の圧粉体
を焼結した後、この焼結体を再圧して薄板状焼結体を得
るにあたり、焼結体の再圧後における薄肉部と前記厚肉
部との密度差を±1.5%の範囲内とし、なおかつ焼結
体の再圧後の真密度比を95〜99%の範囲内とするこ
とを特徴としている。
SUMMARY OF THE INVENTION According to a method of manufacturing a thin plate-like sintered body of the present invention, after a thin plate-like compact having a thin portion and a thick portion is sintered, the sintered body is pressed again. In obtaining a thin plate-like sintered body, the density difference between the thin part and the thick part after the re-pressing of the sintered body is set within a range of ± 1.5%, and the true value of the sintered body after the re-pressing is obtained. It is characterized in that the density ratio is in the range of 95 to 99%.

【0007】本発明者の検討によれば、薄板状焼結体を
ヒートスプレッダとしての使用に供するためには、半導
体に装着する前で平面度が0.05mm未満である必要
があることが判った。そこで、このような薄板状焼結体
を得るために検討を重ねた結果、平面度と、焼結して再
圧した後の薄肉部と厚肉部との密度差および真密度比と
の間の相関関係を見い出した。すなわち、薄肉部と厚肉
部との密度差は、圧粉密度と再圧時の圧力(加工度)の
差が発現されたものであるが、これらの差が少ない方が
再圧後の平面度は向上する。そして、本発明者の実験に
よれば、再圧後の平面度を0.05未満にするには、圧
粉体を成形する段階あるいは再圧時の圧力分布を調整す
ることにより、焼結して再圧した後の薄肉部と厚肉部と
の密度差を±1.5%の範囲内にする必要があることが
判った。
According to the study of the present inventor, it has been found that in order to use the thin plate-shaped sintered body as a heat spreader, it is necessary that the flatness is less than 0.05 mm before being mounted on a semiconductor. . Therefore, as a result of repeated studies to obtain such a thin plate-shaped sintered body, the flatness and the density difference between the thin portion and the thick portion after sintering and re-pressing and the true density ratio were compared. Was found. That is, the density difference between the thin portion and the thick portion expresses the difference between the powder density and the pressure (working degree) at the time of recompression. The degree improves. According to the experiment of the present inventor, in order to reduce the flatness after re-pressing to less than 0.05, sintering is performed by adjusting the pressure distribution at the stage of compacting or at the time of re-pressing. It was found that the density difference between the thin portion and the thick portion after re-pressing had to be within ± 1.5%.

【0008】また、再圧後の真密度比も圧粉密度と再圧
時の圧力が発現されたものであるが、圧粉密度について
は、薄板状焼結体の圧粉体をハンドリングするために8
7%以上必要であり、成形金型のかじりを防止するため
に93%以下にする必要がある。そして、このような密
度比を有する圧粉体が焼結された焼結体を再圧縮するに
際しては、再圧後の真密度比が小さいときは寸法矯正が
不充分で平面度が低下するとともに、再圧後の真密度比
が大きいときはスプリングバックが大きいために平面度
が低下する。本発明者の実験によれば、再圧後の平面度
を0.05未満にするには、圧粉体を成形する段階ある
いは再圧時の圧力を調整することにより、焼結して再圧
した後の真密度比が95〜99%の範囲内にする必要が
あることが判った。そして、これら条件を満足して得ら
れた薄板状焼結体においては、平面精度が格段に向上す
るとともに、焼結によって成形されたことも相まって内
部に残存する歪み量が低減することから、熱の影響によ
る変形が大幅に抑制され、ヒートスプレッダとして充分
に使用に供し得ることが判った。
[0008] The true density ratio after re-pressing also expresses the powder density and the pressure at the time of re-pressing. To 8
It must be 7% or more, and must be 93% or less in order to prevent galling of the molding die. When re-compressing a sintered body obtained by sintering a green compact having such a density ratio, when the true density ratio after re-pressing is small, dimensional correction is insufficient and flatness is reduced, and On the other hand, when the true density ratio after re-pressing is large, the flatness is reduced due to large springback. According to the experiment of the present inventor, in order to reduce the flatness after re-pressing to less than 0.05, sintering and re-pressing are performed by adjusting the pressure at the stage of compacting or at the time of re-pressing. It has been found that the true density ratio after the process needs to be in the range of 95 to 99%. In the thin plate-like sintered body obtained by satisfying these conditions, the planar accuracy is remarkably improved, and the amount of distortion remaining inside is reduced due to the fact that the sintered body is formed by sintering. It has been found that the deformation due to the influence of the above is greatly suppressed, and the heat spreader can be sufficiently used.

【0009】なお、上記製造方法において、圧粉体の少
なくとも一方の面にリブを形成し、再圧の工程後もこの
リブを残しておくと、剛性が向上し、かつ再圧後に歪み
が残っていたとしても変形が抑制されるので好ましい。
In the above-mentioned manufacturing method, if a rib is formed on at least one surface of the green compact and the rib is left after the re-pressing step, the rigidity is improved and distortion remains after the re-pressing. This is preferable because the deformation is suppressed.

【0010】また、薄板状焼結体が略矩形状とされた場
合、再圧後、場合によっては焼結体の辺部が外側に膨出
する傾向にあって形状精度が低下することがある。この
ため、上記方法において、圧粉体を成形する際に、この
圧粉体の辺部に内側に湾曲する凹部を形成する。こうす
ると、再圧後に凹部が膨出して各辺部が直線状となり、
形状精度が向上するとともに残留応力が抑制される。さ
らに、半導体にヒートスプレッダを組み込んで樹脂でモ
ールドする際に、樹脂の熱で半導体の周辺からガスが発
生するが、再圧の際に、焼結体の厚さ方向へ貫通する孔
を形成すれば、ガス抜きの孔を機械加工を行わずに成形
できて好適である。
Further, when the thin plate-like sintered body is made to have a substantially rectangular shape, after re-pressing, in some cases, the sides of the sintered body tend to bulge outward, so that the shape accuracy may be reduced. . For this reason, in the above-mentioned method, when the green compact is formed, a concave portion that curves inward is formed on the side of the green compact. In this case, after re-pressing, the concave portion swells and each side becomes linear,
Shape accuracy is improved and residual stress is suppressed. Furthermore, when incorporating a heat spreader into a semiconductor and molding it with resin, gas is generated from the periphery of the semiconductor due to the heat of the resin, but when re-pressing, if a hole that penetrates in the thickness direction of the sintered body is formed, It is preferable that the gas vent hole can be formed without performing machining.

【0011】また、本発明のヒートスプレッダは、焼結
体を再圧して得られた薄肉部と厚肉部とを有し、焼結体
の再圧後における薄肉部と厚肉部との密度差が±1.5
%の範囲内であり、なおかつ焼結体の再圧後の真密度比
が95〜99%の範囲内であることを特徴としている。
このようなヒートスプレッダにあっては、昇温による歪
み量が低減されるため、発熱を伴う半導体チップの製造
工程を経ても何ら問題が生じない。
Further, the heat spreader of the present invention has a thin portion and a thick portion obtained by repressing the sintered body, and has a density difference between the thin portion and the thick portion after repressing the sintered body. Is ± 1.5
%, And the true density ratio of the sintered body after re-pressing is within the range of 95 to 99%.
In such a heat spreader, since the amount of distortion due to a rise in temperature is reduced, there is no problem even after a semiconductor chip producing process that generates heat.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して、本発明を
前述のヒートスプレッダを製造する方法に適用した一実
施形態について説明する。図1(a),(b)において
符号1は、製造すべきヒートスプレッダを示している。
このヒートスプレッダ1は、正方形状の薄板状焼結体で
ある。その寸法は、一辺L:20〜45mm、厚さT:
0.3〜1.0mm、片面中央には、ICを組み込ませ
るための正方形状の凹所2を有し、この凹所2の寸法
は、一辺l:10〜25mm、厚さt:0.2〜0.6
mmである。すなわち、凹所2の部分が薄肉部5で、そ
の周囲に厚肉部4を有している。厚肉部4から薄肉部5
への移行部は斜面であり、その角度θは30゜程度であ
る。また、凹所2の四隅には、φ0.8mm程度のガス
抜き孔6が形成される。このガス抜き孔6は、ヒートス
プレッダ1が組み込まれた半導体を樹脂でモールドする
際に、樹脂の熱で発生するガスを外部へ放出するための
ものである。まず、ヒートスプレッダ1を製造するにあ
たり素材となる圧粉体を製造する第1の工程を説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to the above-described method for manufacturing a heat spreader will be described below with reference to the drawings. In FIGS. 1A and 1B, reference numeral 1 denotes a heat spreader to be manufactured.
This heat spreader 1 is a square thin plate-like sintered body. The dimensions are as follows: one side L: 20 to 45 mm, thickness T:
0.3 to 1.0 mm, and has a square recess 2 for incorporating an IC in the center of one side thereof. The dimensions of the recess 2 are 1:10 to 25 mm on a side 1 and a thickness t: 0. 2-0.6
mm. That is, the recess 2 has a thin portion 5 and a thick portion 4 around the thin portion 5. Thick part 4 to thin part 5
Is a slope, and the angle θ is about 30 °. Further, gas vent holes 6 having a diameter of about 0.8 mm are formed at the four corners of the recess 2. The gas vent hole 6 is for releasing gas generated by heat of the resin to the outside when the semiconductor in which the heat spreader 1 is incorporated is molded with the resin. First, a first step of manufacturing a green compact as a material in manufacturing the heat spreader 1 will be described.

【0013】(1)第1の工程:圧粉体の成形 原料粉末としては、Al−Mg−Si合金粉末あるいは
Cu粉末を用い、図2(a),(b)に示す圧粉体1A
を成形する。この圧粉体1Aは、形状および寸法がヒー
トスプレッダ1にほぼ準じたもので、片面中央には凹所
2に対応する凹所2aおよび厚肉部4aと薄肉部5aと
が形成される。そのためには、図3に示すように、ダイ
ス10の内側に充填した原料粉末を、上パンチ11と、
アウター下パンチ12aおよびインナー下パンチ12b
により圧縮して成形する。この成形金型のアウターおよ
びインナー下パンチ12a,12bは、厚肉部4aと薄
肉部5aとをそれぞれ成形するもので、厚肉部4aはア
ウター下パンチ12a、薄肉部はインナー下パンチ12
bでそれぞれ成形される。したがって、厚肉部4aと薄
肉部5aの圧粉密度および両者の段差寸法は、アウター
およびインナー下パンチ12a,12bの突き出し量に
より調整される。圧縮条件としては、例えば10〜70
Mpa程度が適当である。
(1) First step: molding of green compact Al-Mg-Si alloy powder or Cu powder is used as a raw material powder, and a green compact 1A shown in FIGS. 2 (a) and 2 (b) is used.
Is molded. The green compact 1A has a shape and dimensions substantially similar to those of the heat spreader 1, and a recess 2a corresponding to the recess 2 and a thick portion 4a and a thin portion 5a are formed in the center of one surface. To this end, as shown in FIG. 3, the raw material powder filled inside the die 10 is
Outer lower punch 12a and inner lower punch 12b
And molded. The outer and inner lower punches 12a, 12b of this molding die are for forming the thick portion 4a and the thin portion 5a, respectively. The thick portion 4a is the outer lower punch 12a, and the thin portion is the inner lower punch 12a.
b. Therefore, the powder density of the thick portion 4a and the thin portion 5a and the step size between them are adjusted by the protrusion amounts of the outer and inner lower punches 12a and 12b. As compression conditions, for example, 10 to 70
Mpa is appropriate.

【0014】なお、圧粉体1Aの密度は、87〜93%
が適当である。これは、前述のように、87%未満では
圧粉体1Aを取り出したり移動させたりといったハンド
リングの際に形くずれが生じるおそれがあって不適当で
あり、また、93%を超えると原料粉末の圧縮成形に際
し、オーバーロードとなって成形金型にかじりが生じる
おそれがあるためである。
The density of the green compact 1A is 87 to 93%.
Is appropriate. As described above, if the content is less than 87%, there is a possibility that the shape may be lost at the time of handling such as taking out and moving the green compact 1A, and if it exceeds 93%, it is inappropriate. This is because, at the time of compression molding, there is a possibility that the molding die may be seized due to overload.

【0015】(2)第2の工程:圧粉体の焼結 上記の成形金型により成形された圧粉体1Aを、図示し
ない焼結炉で所定の条件に基づき焼結し、図4の符号1
Bで示す焼結体を得る。焼結体1Bは、ヒートスプレッ
ダ1にほぼ準じた形状および寸法を有し、片面中央には
凹所2に対応する凹所2bおよび厚肉部4bと薄肉部5
bとが残存する。焼結条件における焼結温度は、例え
ば、Al−Mg−Si合金粉末の場合は非酸化雰囲気で
500〜600℃、Cu粉末の場合は還元雰囲気で80
0〜1000℃程度が適当である。
(2) Second Step: Sintering of Green Compact The green compact 1A formed by the above-mentioned molding die is sintered in a sintering furnace (not shown) under predetermined conditions. Sign 1
A sintered body indicated by B is obtained. The sintered body 1B has a shape and dimensions substantially similar to those of the heat spreader 1, and a concave portion 2b corresponding to the concave portion 2 and a thick portion 4b and a thin portion 5
b remain. The sintering temperature under the sintering conditions is, for example, 500 to 600 ° C. in a non-oxidizing atmosphere for Al—Mg—Si alloy powder, and 80 in a reducing atmosphere for Cu powder.
About 0 to 1000 ° C. is appropriate.

【0016】(3)第3の工程:焼結体の再圧 上記第2の工程で得られた焼結体1Bを、再び圧縮して
最終製品への成形すなわちサイジング(寸法矯正)を行
う。そのためには、図4に示すような再圧金型を用い
る。この再圧金型は、上下方向へ移動可能なダイス20
の上下に、上パンチ21と下パンチ22とがそれぞれ配
設されたものである。上パンチ21は、プレスのラムL
に固定されれたガイド24に、バネ23を介して上下方
向へ摺動自在に支持されており、ラムLとともに全体が
昇降するようになっている。上パンチ21の圧縮面であ
る下面は平坦であり、また、上パンチ21には、前記ガ
ス抜き孔6を形成するための穴明けパンチ25が上下方
向に摺動自在に挿入されている。穴明けパンチ25の上
端部はラムLに当接している。次に、下パンチ22は、
プレスのベッドBに固定されており、その圧縮面である
上面には、製造すべきヒートスプレッダ1の凹所2に対
応して薄く突出した凸部22aが形成されている。ま
た、下パンチ22には、穴明けポンチ25が挿通する穴
明けダイス22bが形成されている。
(3) Third Step: Recompression of the Sintered Body The sintered body 1B obtained in the second step is compressed again to form a final product, ie, sizing (dimension correction). For this purpose, a re-pressing die as shown in FIG. 4 is used. The re-pressing die is provided with a die 20 which can be moved in the vertical direction.
The upper punch 21 and the lower punch 22 are respectively disposed above and below. The upper punch 21 is a press ram L
Is slidably supported in the up and down direction via a spring 23 by a guide 24 fixed to the guide 24, and the whole ascends and descends together with the ram L. A lower surface which is a compression surface of the upper punch 21 is flat, and a punch 25 for forming the gas vent hole 6 is slidably inserted in the upper punch 21 in a vertical direction. The upper end of the punch 25 is in contact with the ram L. Next, the lower punch 22
It is fixed to the bed B of the press, and on the upper surface, which is the compression surface, is formed a convex portion 22a which protrudes thinly corresponding to the concave portion 2 of the heat spreader 1 to be manufactured. A punching die 22b through which the punching punch 25 is inserted is formed in the lower punch 22.

【0017】焼結体1Bを再圧するには、まず、図4
(a)に示すように、ダイス20と下パンチ22とで形
成されるキャビティに、凹所2bを凸部22aに合わせ
て圧粉体1Aをセットする。次いで、ラムLを下降さ
せ、図4(b)に示すように、上パンチ21をガイド2
4ごと下降させて焼結体1Bを押圧する。そして、さら
にラムLを下降させ、穴明けパンチ25を焼結体1Bへ
貫通させてガス抜き孔6を形成するとともに、上パンチ
21の上端面をラムLで加圧して再圧を行う(図4
(C))。この再圧の圧力は、原料粉末がAl−Mg−
Si合金粉末の場合は30〜50Mpa程度、Cu粉末
の場合は30〜70Mpa程度が適当である。次いで、
ラムLを上方へ移動させるとともにダイス20を下方へ
移動させ、下パンチ22の上面に載置された焼結体1B
を取り出して最終製品である図1に示したヒートスプレ
ッダ1として得る。
To repress the sintered body 1B, first, FIG.
As shown in (a), the green compact 1A is set in a cavity formed by the die 20 and the lower punch 22 so that the concave portion 2b is aligned with the convex portion 22a. Next, the ram L is lowered, and as shown in FIG.
Then, the sintered body 1B is pressed down by four. Then, the ram L is further lowered to form the gas vent hole 6 by penetrating the punch 25 into the sintered body 1B, and press the upper end surface of the upper punch 21 with the ram L to perform re-pressing (FIG. 4
(C)). The pressure of this re-pressing is that the raw material powder is
About 30 to 50 Mpa is suitable for Si alloy powder, and about 30 to 70 Mpa is appropriate for Cu powder. Then
By moving the ram L upward and the die 20 downward, the sintered body 1B mounted on the upper surface of the lower punch 22
To obtain a heat spreader 1 shown in FIG. 1 as a final product.

【0018】なお、上記再圧工程において、薄肉部5b
がガス抜き孔6を空けにくい厚さである場合には、図5
に示すように、圧粉体1Aの成形の際に、穿孔位置に予
め窪み30を形成しておくと穴明けパンチ25を貫通さ
せやすくなって好ましい。また、再圧後、場合によって
は焼結体1Bの各辺部が外側に膨出する傾向にあって形
状精度が低下することがある。これを回避するために、
圧粉体1Aを成形する際に、図6に示すように、予め各
辺部31の中央部に、内側に湾曲する凹部32を形成す
る。これを再圧すると凹部32が膨出し、各辺部31は
直線状になって形状精度が向上するとともに残留応力が
低減される。
In the re-pressing step, the thin portion 5b
5 has a thickness that makes it difficult to open the gas vent hole 6, FIG.
As shown in (1), it is preferable to form the depression 30 in advance at the perforation position during the molding of the green compact 1A because the punch 25 can be easily penetrated. Further, after re-pressing, in some cases, each side of the sintered body 1B tends to bulge outward, and the shape accuracy may be reduced. To avoid this,
When the green compact 1A is formed, a concave portion 32 that curves inward is formed in the center of each side portion 31 in advance as shown in FIG. When the pressure is repressed, the concave portion 32 bulges, and each side portion 31 becomes linear, improving the shape accuracy and reducing the residual stress.

【0019】ここで、本実施形態においては、再圧によ
って得られるヒートスプレッダ1の厚肉部4と薄肉部5
との密度差を±1.5%の範囲内とし、なおかつ全体の
真密度比を95〜99%の範囲内とすることを特徴とし
ており、これらの条件を満たすことでヒートスプレッダ
1の平面度が確保される。ここで言う真密度比とは、再
圧後のヒートスプレッダ1中に気孔がどれだけの割合で
残っているかに係り、その気孔が少ないほど真密度比が
高いということになる。したがって、このような再圧後
の条件を満足させるために、上記第1の工程で圧粉体1
Aを成形する際に、厚肉部4aと薄肉部5aの密度比を
アウターおよびインナー下パンチ12a,12bの上下
方向位置により予め調整し、かつ、圧粉体1Aの圧縮代
を上パンチ11の下死点位置により予め調整することが
必要となる。
Here, in this embodiment, the thick portion 4 and the thin portion 5 of the heat spreader 1 obtained by re-pressing are used.
And the true density ratio of the whole is within a range of 95 to 99%, and by satisfying these conditions, the flatness of the heat spreader 1 is reduced. Secured. The true density ratio here refers to the ratio of pores remaining in the heat spreader 1 after re-pressing, and the smaller the number of pores, the higher the true density ratio. Therefore, in order to satisfy such conditions after the re-compaction, the compact 1
When forming A, the density ratio between the thick portion 4a and the thin portion 5a is adjusted in advance by the vertical position of the outer and inner lower punches 12a, 12b, and the compression allowance of the green compact 1A is adjusted by the upper punch 11. It is necessary to adjust in advance depending on the position of the bottom dead center.

【0020】さて、上記条件に基づく平面度確保を実証
するために、圧粉体1Aを成形する際に、図3に示した
インナー下パンチ12bの突き出し量と上パンチ11の
下死点位置を調整することで、圧粉体1Aにおける厚肉
部4aと薄肉部5aの密度を変化させた試料を複数種類
製造した。これらの再圧後における厚肉部4aに対する
薄肉部5aの密度差およびヒートスプレッダ1の全体の
真密度比と平面度との関係を、次の表1、表2に示し、
さらに、これらを線図としたものを図7に示す。
In order to verify the flatness based on the above conditions, the amount of protrusion of the inner lower punch 12b and the position of the lower dead center of the upper punch 11 shown in FIG. By adjusting, a plurality of types of samples were manufactured in which the densities of the thick portion 4a and the thin portion 5a in the green compact 1A were changed. The following Tables 1 and 2 show the density difference between the thin portion 5a and the thick portion 4a after the re-pressing, and the relationship between the true density ratio of the entire heat spreader 1 and the flatness.
FIG. 7 shows a diagram of these.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】図7に示すように、高精度な平面度として
要求される0.05mm未満を確保するためには、再圧
後において厚肉部4に対する薄肉部5の密度差が±1.
5%の範囲内であること、および全体の真密度比が95
〜99%の範囲内であることが必要である。すなわち、
再圧後において厚肉部4に対する薄肉部5の密度差を±
1.5%の範囲内に、また、全体の真密度比を95〜9
9%の範囲内とすることにより、平面度が0.05mm
未満となって高い平面精度が得られる。
As shown in FIG. 7, in order to ensure less than 0.05 mm required as a high-precision flatness, the density difference between the thick portion 4 and the thin portion 5 after re-pressing is ± 1.
5%, and the overall true density ratio is 95%.
It must be in the range of ~ 99%. That is,
After the recompression, the density difference of the thin portion 5 with respect to the thick portion 4 is ±
Within 1.5% and the overall true density ratio is 95-9.
By setting it within the range of 9%, the flatness is 0.05 mm.
And a high plane accuracy can be obtained.

【0024】このように高い平面精度が確保される他
に、焼結により製造するので、従来の塑性加工で製造す
る方法と比較すると、内部に残存する応力が低減され
る。したがって、ICパッケージを作るにあたりヒート
スプレッダ1を装填した基板に対してはんだボンディン
グ等で回路を作製する際の発熱、あるいは半導体として
稼働した時の発熱が生じても、残留応力の解放によるヒ
ートスプレッダ1の変形が起こにくい。したがって、前
述の高い平面精度が保持され、かつ基板との密着度が長
期にわたって維持されるから、半導体として組み込まれ
た際、その半導体の性能が高いレベルで維持される。
In addition to securing such high plane accuracy, since it is manufactured by sintering, the stress remaining inside is reduced as compared with the conventional method of manufacturing by plastic working. Therefore, even if heat is generated when a circuit is manufactured by solder bonding or the like on a substrate on which the heat spreader 1 is mounted in manufacturing an IC package, or heat is generated when the heat spreader 1 is operated as a semiconductor, the heat spreader 1 is deformed due to release of residual stress. Is unlikely to occur. Therefore, the above-described high planar accuracy is maintained and the degree of adhesion to the substrate is maintained for a long period of time. When incorporated as a semiconductor, the performance of the semiconductor is maintained at a high level.

【0025】次に、図8(a)〜(h)は、上記ヒート
スプレッダ1の凹所2が形成されていない平坦側の表面
にリブ3を形成したものである。このようなリブ3を圧
粉成形時に予め形成し、再圧後も残すことによって剛性
が向上するとともに、再圧後に歪みが残っていたとして
も変形が抑制される。
FIGS. 8A to 8H show the heat spreader 1 in which the ribs 3 are formed on the flat surface of the heat spreader 1 where the recess 2 is not formed. By forming such ribs 3 in advance during powder compaction and leaving them after re-pressing, rigidity is improved, and deformation is suppressed even if distortion remains after re-pressing.

【0026】リブ3の各種形状を詳述すると、(a)は
中央部の山部から各角部に向かい断面三角形状で下り斜
面の放射部40が延びる十字状の星形、(b)は(a)
の変形で放射部41の高さがほぼ一定の十字状の星形、
(c)は(b)の変形で放射部42が各辺部に直交した
形態である。また、(d)は中央部の正方形状の山部4
3から各角部に向かい断面三角形状で下り斜面の短い放
射部44が延びた形態である。また、(e)は中心の周
囲に円状に形成されており、(f)は(e)の変形で円
状のリブ部45から各角部に向かって下り斜面の放射部
46が延びた形態である。さらに、(g)は平行な一対
の辺部間にわたり表面の中心を挟んで互いに平行に形成
されており、(h)は井桁状の形態である。
The various shapes of the ribs 3 will be described in detail. (A) is a cross-shaped star having a triangular cross-section extending from the central peak to each corner and extending downward with a radiating portion 40, and (b) is a cross-shaped star. (A)
, The height of the radiating part 41 is almost constant,
(C) is a modification of (b) in which the radiation section 42 is orthogonal to each side. (D) is a square-shaped peak 4 at the center.
In this embodiment, a radiating portion 44 having a triangular cross section and a short slope is extended from 3 toward each corner. Further, (e) is formed in a circular shape around the center, and (f) is a deformation of (e) in which the radiating portion 46 of the inclined surface extends downward from the circular rib portion 45 toward each corner. It is a form. Further, (g) is formed parallel to each other across the center of the surface across a pair of parallel sides, and (h) is in a cross-girder form.

【0027】なお、上記実施の形態では、粉末成形の下
パンチをアウターおよびインナー下パンチ12a,12
bで構成しているが、量産の際には両者を一体化した下
パンチを用いる。また、薄肉部と厚肉部とで再圧の圧力
差を設けることによっても密度比を設定することも可能
である。また、本発明は上記ヒートスプレッダ以外にも
各種薄板状焼結体を製造するにあたって適用できるもの
であり、特に高い平面精度が求められたり、変形を抑制
させたい製品を製造するための方法として好適である。
In the above embodiment, the lower punch for powder molding is replaced with the outer and inner lower punches 12a and 12a.
The lower punch is used for mass production. The density ratio can also be set by providing a pressure difference of re-pressure between the thin portion and the thick portion. Further, the present invention can be applied to the production of various thin plate-shaped sintered bodies other than the above heat spreader, and is particularly required as a method for producing a product that requires high planar accuracy or suppresses deformation. is there.

【0028】[0028]

【発明の効果】以上説明したように、本発明の薄板状焼
結体の製造方法では、再圧後の薄肉部と厚肉部との密度
差を±1.5%の範囲内とし、なおかつ再圧後の真密度
比を95〜99%の範囲内とすることから、平面精度が
格段に向上するとともに、内部歪み量が低減して変形が
大幅に抑制されるといった効果を奏する(請求項1)。
また、圧粉体の少なくとも一方の面にリブを形成し、再
圧の工程後もこのリブを残しておくので、剛性が向上
し、かつ再圧後に歪みが残っていたとしても変形を抑制
することができる(請求項2)。さらに、薄板状焼結体
が略矩形状とされた場合、圧粉体を成形する際に、この
圧粉体の辺部に内側に湾曲する凹部を形成することによ
り、再圧後に凹部が膨出して各辺部が直線状となり、形
状精度が向上するとともに残留応力が抑制される(請求
項3)。
As described above, in the method for producing a thin plate-like sintered body according to the present invention, the density difference between the thin portion and the thick portion after the re-pressing is set within a range of ± 1.5%, and Since the true density ratio after the re-pressing is in the range of 95 to 99%, there is an effect that the planar accuracy is remarkably improved, and the amount of internal strain is reduced and deformation is largely suppressed. 1).
In addition, a rib is formed on at least one surface of the green compact, and the rib is left after the re-pressing step, so that the rigidity is improved and deformation is suppressed even if distortion remains after the re-pressing. (Claim 2). Further, when the thin plate-shaped sintered body is formed in a substantially rectangular shape, a concave portion that curves inward is formed in a side portion of the green compact when the green compact is formed, so that the concave portion expands after re-pressing. As a result, each side becomes linear, thereby improving the shape accuracy and suppressing the residual stress (claim 3).

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態の方法によって製造すべ
き薄板状焼結体であるヒートスプレッダの(a)平面
図、(b)断面図である。
FIG. 1A is a plan view and FIG. 1B is a cross-sectional view of a heat spreader that is a thin plate-shaped sintered body to be manufactured by a method according to an embodiment of the present invention.

【図2】 本発明の一実施形態の方法の第1の工程で製
造される圧粉体の(a)平面図、(b)断面図である。
FIG. 2A is a plan view and FIG. 2B is a cross-sectional view of a green compact manufactured in a first step of the method according to the embodiment of the present invention.

【図3】 同第1の工程で圧粉体を圧粉成形している状
態の断面図である。
FIG. 3 is a cross-sectional view showing a state in which the green compact is compacted in the first step.

【図4】 本発明の一実施形態の方法の第3の工程で焼
結体を再圧する順序を示し、(a)セット状態の断面
図、(b)加圧初期状態の断面図、(c)加圧後期状態
の断面図である。
FIG. 4 shows the order of repressing the sintered body in the third step of the method according to one embodiment of the present invention, (a) a cross-sectional view in a set state, (b) a cross-sectional view in an initial pressurized state, and (c). It is sectional drawing of a state after a pressurization.

【図5】 焼結体にガス抜き孔を容易に形成する方法を
示す断面図である。
FIG. 5 is a sectional view showing a method of easily forming a gas vent hole in a sintered body.

【図6】 圧粉体の他の形態を示す平面図である。FIG. 6 is a plan view showing another form of the green compact.

【図7】 再圧後の焼結体における厚肉部に対する薄肉
部の密度差および真密度比と、平面度との関係を示す線
図である。
FIG. 7 is a diagram showing a relationship between a flatness and a density difference and a true density ratio of a thin portion to a thick portion in a sintered body after re-pressing.

【図8】 (a)〜(h)はヒートスプレッダに形成す
るリブの様々な形態を示す斜視図である。
FIGS. 8A to 8H are perspective views showing various forms of ribs formed on the heat spreader.

【符号の説明】[Explanation of symbols]

1…ヒートスプレッダ(薄板状焼結体)、1A…圧粉
体、1B…焼結体、3…リブ、4…厚肉部、5…薄肉
部、31…辺部、32…凸部。
DESCRIPTION OF SYMBOLS 1 ... Heat spreader (thin-plate sintered body), 1A ... Green compact, 1B ... Sintered body, 3 ... Rib, 4 ... Thick part, 5 ... Thin part, 31 ... Side part, 32 ... Convex part.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 薄肉部と厚肉部とを有する薄板状の圧粉
体を焼結した後、この焼結体を再圧して薄板状焼結体を
得るにあたり、 上記焼結体の再圧後における上記薄肉部と上記厚肉部と
の密度差を±1.5%の範囲内とし、なおかつ上記焼結
体の再圧後の真密度比を95〜99%の範囲内とするこ
とを特徴とする薄板状焼結体の製造方法。
1. After sintering a thin plate-shaped compact having a thin portion and a thick portion, re-pressing the sintered body to obtain a thin plate-shaped sintered body The difference between the density of the thin portion and the thickness of the thick portion afterward is set within a range of ± 1.5%, and the true density ratio of the sintered body after re-pressing is set within a range of 95 to 99%. A method for producing a thin plate-shaped sintered body.
【請求項2】 前記圧粉体の少なくとも一方の面にリブ
を形成し、前記再圧の工程後もこのリブを残しておくこ
とを特徴とする請求項1に記載の薄板状焼結体の製造方
法。
2. The thin plate-shaped sintered body according to claim 1, wherein a rib is formed on at least one surface of the green compact, and the rib is left after the re-pressing step. Production method.
【請求項3】 前記薄板状焼結体は略矩形状とされ、前
記圧粉体を成形する際に、この圧粉体の辺部に内側に湾
曲する凹部を形成することを特徴とする請求項1または
2に記載の薄板状焼結体の製造方法。
3. The compact as set forth in claim 3, wherein the thin plate-shaped sintered body has a substantially rectangular shape, and when the compact is formed, a concave portion that curves inward is formed in a side portion of the compact. Item 3. The method for producing a thin plate-shaped sintered body according to Item 1 or 2.
【請求項4】 前記再圧の際に、前記焼結体の厚さ方向
へ貫通する孔を形成することを特徴とする請求項1〜3
のいずれかに記載の薄板状焼結体の製造方法。
4. The method according to claim 1, wherein a hole penetrating in the thickness direction of the sintered body is formed during the re-pressing.
The method for producing a thin plate-shaped sintered body according to any one of the above.
【請求項5】 焼結体を再圧して得られた薄肉部と厚肉
部とを有するヒートスプレッダであって、上記焼結体の
再圧後における上記薄肉部と上記厚肉部との密度差が±
1.5%の範囲内であり、なおかつ上記焼結体の再圧後
の真密度比が95〜99%の範囲内であることを特徴と
するヒートスプレッダ。
5. A heat spreader having a thin portion and a thick portion obtained by repressing a sintered body, wherein a density difference between the thin portion and the thick portion after repressing the sintered body. Is ±
A heat spreader characterized by being within a range of 1.5% and a true density ratio after re-pressing of the sintered body is within a range of 95 to 99%.
JP17096897A 1997-06-12 1997-06-12 Method for manufacturing thin plate-shaped sintered body and heat spreader Expired - Fee Related JP3506201B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17096897A JP3506201B2 (en) 1997-06-12 1997-06-12 Method for manufacturing thin plate-shaped sintered body and heat spreader
PCT/JP1998/002591 WO1998056526A1 (en) 1997-06-12 1998-06-12 Sheet metal member, method of manufacturing same, and heat radiation plate
US09/230,494 US6139975A (en) 1997-06-12 1998-06-12 Sheet metal member, method of manufacturing same, and heat radiation plate
KR1019997000962A KR100306365B1 (en) 1997-06-12 1999-02-04 Sheet metal member, method of manufacturing same and heat radiation plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17096897A JP3506201B2 (en) 1997-06-12 1997-06-12 Method for manufacturing thin plate-shaped sintered body and heat spreader

Publications (2)

Publication Number Publication Date
JPH116002A true JPH116002A (en) 1999-01-12
JP3506201B2 JP3506201B2 (en) 2004-03-15

Family

ID=15914711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17096897A Expired - Fee Related JP3506201B2 (en) 1997-06-12 1997-06-12 Method for manufacturing thin plate-shaped sintered body and heat spreader

Country Status (1)

Country Link
JP (1) JP3506201B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032599A1 (en) * 2000-10-16 2002-04-25 Jinwoong Tech. Co. Metal plate having mesh-type bead for duct and apparatus of producing the same
JPWO2016016985A1 (en) * 2014-07-31 2017-04-27 三菱電機株式会社 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032599A1 (en) * 2000-10-16 2002-04-25 Jinwoong Tech. Co. Metal plate having mesh-type bead for duct and apparatus of producing the same
JPWO2016016985A1 (en) * 2014-07-31 2017-04-27 三菱電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP3506201B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
US11147156B2 (en) Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member
JPWO2006114974A1 (en) Method for manufacturing ceramic substrate and ceramic substrate
KR100306365B1 (en) Sheet metal member, method of manufacturing same and heat radiation plate
KR100319786B1 (en) Thin plate member for semiconductor package and manufacturing method therefor
US6442990B1 (en) Method of manufacturing a plate-shaped member having a recess and press die for forming recesses
US6693353B1 (en) Semiconductor package and method for producing heat-radiating substrate for it
JP3506201B2 (en) Method for manufacturing thin plate-shaped sintered body and heat spreader
US20050277244A1 (en) Method for fastening microtool components to objects
JP3548991B2 (en) Heat dissipating substrate and manufacturing method thereof
JP3160696B2 (en) Metal composite material, method of manufacturing the same, and package having the same
JP5656163B2 (en) Embossed metal plate and manufacturing method thereof
JP3531854B2 (en) Method of manufacturing thin plate member having fins
JPH0878578A (en) Material for heat dissipating substrate and manufacturing method thereof
JPH0240439B2 (en) FUNMATSUSEIKEISOCHI
JP3557697B2 (en) Press working method and press device
JP2815656B2 (en) High-strength heat-radiating structural member for packaged semiconductor devices
JP3949456B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0520915B2 (en)
JP3242544B2 (en) Mold for forging thin web rib members
JP2657616B2 (en) Cu-Mo sintered body, heat radiation member using the same, and semiconductor device provided with heat radiation member
JP2019210536A (en) Method of manufacturing thin plate member having fin
JPH0336304B2 (en)
JP2793269B2 (en) Manufacturing method of aluminum nitride substrate
JP2022068701A (en) Press processing method, press die and press processed product
JP2547288Y2 (en) Powder press molding equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031210

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20081226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20101226

LAPS Cancellation because of no payment of annual fees