JP3160696B2 - Metal composite material, method of manufacturing the same, and package having the same - Google Patents

Metal composite material, method of manufacturing the same, and package having the same

Info

Publication number
JP3160696B2
JP3160696B2 JP26714094A JP26714094A JP3160696B2 JP 3160696 B2 JP3160696 B2 JP 3160696B2 JP 26714094 A JP26714094 A JP 26714094A JP 26714094 A JP26714094 A JP 26714094A JP 3160696 B2 JP3160696 B2 JP 3160696B2
Authority
JP
Japan
Prior art keywords
copper
sintered body
mass
powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26714094A
Other languages
Japanese (ja)
Other versions
JPH08153836A (en
Inventor
正 有川
晃 市田
泰 吉田
良彦 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp filed Critical ALMT Corp
Priority to JP26714094A priority Critical patent/JP3160696B2/en
Publication of JPH08153836A publication Critical patent/JPH08153836A/en
Application granted granted Critical
Publication of JP3160696B2 publication Critical patent/JP3160696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,半導体素子支持用の電
極材料あるいは半導体素子搭載用基板等に用いる金属複
合材料もしくは,半導体素子の周囲に配置されるか又は
半導体素子に接触して用いられる金属異形部品とそれら
の製造方法に関し,詳しくは,セラミックパッケージま
たはプラスチックパッケージに収容されるヒートシンク
等の半導体チップの放熱に用いられる高放熱性を有する
放熱用基板,もしくは金属異形部品とそれらの製造方法
及びそれらを用いたパッケージに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material for supporting a semiconductor element, a metal composite material used for a substrate for mounting a semiconductor element, or the like, which is disposed around a semiconductor element or used in contact with a semiconductor element. More specifically, the present invention relates to a metal heat-dissipating substrate having high heat dissipation used for heat radiation of a semiconductor chip such as a heat sink housed in a ceramic package or a plastic package, or a metal heat-dissipating component, and a method for producing them. And packages using them.

【0002】[0002]

【従来の技術】一般に,半導体チップをパッケージして
形成されるセラミックパッケージあるいはプラスチック
パッケージにおいて,その半導体素子から生じる熱を放
散させる為,所謂ヒートシンク(放熱基板)が用いられ
ている。このような半導体チップの外周囲に配置される
ヒートシンク等の材料は,半導体素子及びパッケージ本
体に用いられるセラミックあるいはプラスチックとの熱
膨張及び熱伝導等の特性のバランスが必要とされてい
る。また,このようなパッケージに用いられる半導体素
子支持用の電極材料あるいは半導体素子搭載用基板もま
た,そのため放熱効果が高く,半導体素子やその周辺材
料との熱膨張係数が近似した放熱基板が求められてい
る。そして,さらには,安価で安定した品質のものが得
られるプロセス及び材料の選択が要求されている。例え
ば凹凸形状した材料は,一般に,板材を切削加工または
打ち抜き加工,あるいは両者を組み合わせて作製するた
め量産性に劣る。さらに板材は,通常圧延加工して作製
するため,その加工費をも合わせると非常に高価なもの
になってしまう。
2. Description of the Related Art Generally, in a ceramic package or a plastic package formed by packaging a semiconductor chip, a so-called heat sink (radiation substrate) is used to dissipate heat generated from the semiconductor element. A material such as a heat sink disposed around the outer periphery of such a semiconductor chip needs to balance properties such as thermal expansion and heat conduction with ceramic or plastic used for the semiconductor element and the package body. Also, the electrode material for supporting the semiconductor element or the substrate for mounting the semiconductor element used in such a package also has a high heat dissipation effect, and a heat dissipation board having a similar thermal expansion coefficient to the semiconductor element and its surrounding materials is required. ing. Further, it is required to select a process and a material capable of obtaining a cheap and stable quality. For example, a material having an uneven shape is generally inferior in mass productivity because it is manufactured by cutting or punching a plate material or by combining both. Further, since the sheet material is usually manufactured by rolling, the cost becomes extremely expensive when the processing cost is taken into account.

【0003】また,このヒートシンクは,通常は平板形
状(矩形状)を有するものが用いられているが,収容さ
れるパッケージに応じて,矩形以外の形状を有するもの
(以下,異形形状と呼ぶ)を有するものも要求されてき
ている。
The heat sink usually has a flat plate shape (rectangular shape). However, a heat sink having a shape other than rectangular shape (hereinafter, referred to as an irregular shape) is used depending on a package to be accommodated. Are also required.

【0004】これらを考慮すると,粉末をプレス成形し
た後,焼結により,または必要に応じてサイジングある
いは熱間等方加圧(以下,HIP)により,緻密化し,
所望する熱特性を有した放熱基板を,安価に製造するこ
とが必要である。
[0004] In view of the above, after the powder is pressed, it is densified by sintering or, if necessary, by sizing or hot isostatic pressing (HIP).
It is necessary to inexpensively manufacture a heat dissipation board having desired thermal characteristics.

【0005】ところで,半導体素子をパッケージするパ
ッケージには,セラミックパッケージやプラスチックパ
ッケージ等があるが,プラスチックパッケージは,その
汎用性から産業上生産又は消費される量が極めて多量で
ある。このような放熱基板及び半導体チップの外周囲材
料として,質,量共に安定した銅が検討されることが多
く,大半は銅が利用されるがこの銅は剛性に劣るため銅
を熱処理等の諸々の方法で剛性を持たせたものが検討さ
れている。
[0005] By the way, packages for packaging semiconductor elements include ceramic packages and plastic packages. However, plastic packages are industrially produced or consumed in an extremely large amount due to their versatility. As a material for the outer periphery of such a heat dissipation substrate and a semiconductor chip, a stable copper in both quality and quantity is often considered. Most of the copper is used, but the copper is inferior in rigidity. A method in which rigidity is provided by the method described above is being studied.

【0006】[0006]

【発明が解決しようとする課題】しかし,銅を異形部品
として用いる場合,その密度から軽量化することが困難
で,価格の点からも不利であり,大量生産には適さない
という欠点がある。
However, when copper is used as a deformed part, it is difficult to reduce the weight due to its density, disadvantageous in terms of price, and not suitable for mass production.

【0007】また,セラミックパッケージの優れた特性
でもあるパワーや高信頼性は当然ながら,プラスチック
パッケージにも求められてきており,プラスチックパッ
ケージでもセラミックパッケージ並みのパワーや高信頼
性を有し,しかも安価であることも兼ね備えている必要
がある。
The power and high reliability, which are also excellent characteristics of the ceramic package, are naturally required for the plastic package. The plastic package has the same power and high reliability as the ceramic package, and is inexpensive. It is necessary to also have

【0008】今後,次第に上述した傾向は強くなると予
想されるが,種々設計上考慮されている部品形状の内,
特に段付きを有する等の異形形状の製品については,性
能及びコストを共に十分満足するものは見出だされては
いない。
[0008] In the future, the above tendency is expected to become stronger.
In particular, with regard to products having irregular shapes such as those having a step, no satisfactory products have been found that satisfy both performance and cost.

【0009】また,製品自体が安価であるためには,一
般に,平板状のもので有れば,圧延,打ち抜き加工等を
用いるのが優位であると言えるが,パッケージの設計
上,段付きや取り付け穴が必要な場合,切削,剪断,及
び穿孔等の困難な加工を用いずにプレスにより容易に加
工できることも要求される。
In general, in order for the product itself to be inexpensive, it can be said that it is advantageous to use rolling, punching, or the like if it is a flat plate. When a mounting hole is required, it is also required that the hole can be easily processed by a press without using difficult processing such as cutting, shearing, and drilling.

【0010】銅−モリブデン複合材の作製法の一つとし
て,銅粉末およびモリブデン粉末を混合した粉末をプレ
ス成形した後,焼結体を作製し,圧延加工する。この時
の焼結体の相対密度は95〜96%であるが,この後の
圧延加工により十分緻密化した複合板材ができる。この
複合板材は,モリブデン粒子の周辺に銅がマトリックス
となって構成されているため,機械加工は容易であり,
切削加工あるいは打ち抜き加工により,矩形状をはじ
め,凹凸形状も容易に加工できる。
As one method of producing a copper-molybdenum composite material, after a powder obtained by mixing a copper powder and a molybdenum powder is press-molded, a sintered body is produced and rolled. Although the relative density of the sintered body at this time is 95 to 96%, a sufficiently densified composite plate can be obtained by the subsequent rolling. This composite plate is composed of a matrix of copper around the molybdenum particles, so machining is easy,
By cutting or punching, irregular shapes including rectangular shapes can be easily machined.

【0011】しかし,機械加工費が高価であり,総合的
には安価にはならず,また量産性にも劣ることが難点で
ある。
However, the machining cost is expensive, the overall cost is not low, and the mass productivity is poor.

【0012】もう一つの作製法は,既に市販されている
住友電気工業株式会社製CMSH(登録商標)(M系;
溶浸法によるMo基焼結複合材)があるが,これは,ま
ず,モリブデンの骨格(スケルトン)を作り,そこに銅
を溶融含浸させているため,圧延加工性が悪く,また切
削加工性,打ち抜き加工性も前者に比べ格段に劣る。従
って,矩形や凹凸形状に機械加工しても非常に高価にな
ってしまう。
[0012] Another manufacturing method is a CMSH (registered trademark) (M series; manufactured by Sumitomo Electric Industries, Ltd.) which is already commercially available.
Mo-based sintered composites by the infiltration method), but first, a molybdenum skeleton (skeleton) is created and melted and impregnated with copper, resulting in poor rollability and machinability. Also, the punching workability is remarkably inferior to the former. Therefore, even if it is machined into a rectangular or irregular shape, it becomes very expensive.

【0013】また,平板状の部品を製造するのに,粉末
冶金を用いた焼結法では容易には,緻密化できない。そ
のため,圧延等低廉なプロセスを用いて素材を用意でき
ても,先に述べたように,切削等により段付きや穴等の
切断,切削等の加工を付加することにより,製造工程数
が増えてしまい,結局高価な部品になってしまうのが実
態である。
[0013] Further, in manufacturing a flat plate-shaped part, the sintering method using powder metallurgy cannot be easily densified. Therefore, even if the raw material can be prepared by using a low-cost process such as rolling, as described above, the number of manufacturing steps increases by adding steps such as cutting steps and holes and cutting. In fact, it is actually an expensive part.

【0014】そこで,本発明の第1の技術的課題は,理
論密度の99%以上を有するとともに全体の平均熱膨張
係数が7〜16×10-6/℃の範囲にある金属複合材料
とその製造方法とを提供することにある。
Accordingly, a first technical object of the present invention is to provide a metal composite material having 99% or more of the theoretical density and having an overall average thermal expansion coefficient in the range of 7 to 16 × 10 −6 / ° C. Manufacturing method.

【0015】また,本発明の第2の技術的課題は,前記
金属複合材料を用いた放熱基板材料とその製造方法とそ
れを用いたパッケージを提供することにある。
A second technical object of the present invention is to provide a heat dissipation board material using the metal composite material, a method of manufacturing the same, and a package using the same.

【0016】さらに,本発明の第3の技術的課題は,高
放熱性(熱伝導率190W/m・K以上)を有し,銅と
同等あるいはそれ以上の剛性を持ち,段付き部を有する
軽量な金属材料よりなる大量生産に適する金属異形部品
及びその製造方法とそれを備えたパッケージを提供する
ことにある。
Further, a third technical problem of the present invention is that it has high heat dissipation (heat conductivity of 190 W / m · K or more), has a rigidity equal to or higher than that of copper, and has a stepped portion. An object of the present invention is to provide a metal deformed part made of a lightweight metal material and suitable for mass production, a method of manufacturing the same, and a package having the same.

【0017】[0017]

【課題を解決するための手段】本発明によれば、質量で
30以上のと、前記銅に対して0.1〜1.0質量%
の焼結助剤と、残部としてモリブデンとを含む原料粉末
の焼結体であって、前記焼結助剤は、鉄、ニッケル、コ
バルト、マンガンのうちの少くとも一種からなり、前記
焼結体は、相対密度99%以上を有し、密度10g/c
以下、全体の平均熱膨張係数が7〜16×10−6
/℃の範囲にあり、熱伝導率150W/m・K以上の
特性を有する異形状を備えた放熱基板材料からなるヒー
トシンクを有することを特徴とするパッケージが得られ
る。
According to the present invention, in terms of mass,
30 or more copper and 0.1 to 1.0% by mass based on the copper
And a balance of molybdenum as a balance , wherein the sintering aid comprises iron, nickel,
The sintered body has at least a relative density of 99% or more and a density of 10 g / c.
m 3 or less, an average thermal expansion coefficient of overall 7 to 16 × 10 -6
/ ℃ in the range of, the package thermal conductivity and having a heat sink made of a heat radiating substrate material with a different shape having a 150 W / m · K or more properties.

【0018】また、本発明によれば、質量で30%以上
の銅と、残部としてモリブデンとを含む原料粉末の焼結
体であって、前記焼結体は、相対密度99%以上を有す
るとともに、前記銅に対して0.1〜1.0質量%の焼
結助剤を含み、前記焼結助剤は、鉄、ニッケル、コバル
ト、マンガンのうちの少くとも一種からなり、異形状を
備えていることを特徴とする放熱基板材料が得られる。
According to the present invention, more than 30% by mass
, And a sintered body of a raw material powder containing molybdenum as a balance , wherein the sintered body has a relative density of 99% or more and 0.1 to 1.0 mass% with respect to the copper. A sintering aid comprising at least one of iron, nickel, cobalt and manganese ,
The heat radiation board material characterized by having the above is obtained.

【0019】また、本発明によれば、質量で30%以上
の銅と、残部としてモリブデンとを含む原料粉末の焼結
体であって、前記焼結体は相対密度99%以上を有する
とともに前記銅に対して0.1〜1.0質量%の焼結助
剤を含み、前記焼結助剤は、鉄、ニッケル、コバルト、
マンガンのうちの少くとも一種からなり、少くとも19
0W/m・Kの熱伝導率を有し、パッケージに用いられ
半導体チップに接触するか又は半導体チップの周囲に配
置されることを特徴とする金属異形部品が得られる。
According to the present invention, more than 30% by mass
And copper, a sintered body of material powder containing a molybdenum balance, the sintered body to have a relative density of 99% or more
With sintering of 0.1 to 1.0% by mass with respect to the copper
Agent, wherein the sintering aid comprises iron, nickel, cobalt,
Consist of at least one of the manganese, at least 19
A metal deformed part having a thermal conductivity of 0 W / m · K, which is used for a package and is in contact with or arranged around a semiconductor chip, is obtained.

【0020】[0020]

【0021】また,本発明によれば,前記したいずれか
の金属異形部品において,少くとも段付き部分を有する
ことを特徴とする金属異形部品が得られる。
According to the present invention, there is provided a metal deformed part characterized by having at least a stepped portion in any of the above-mentioned metal deformed parts.

【0022】また,本発明によれば,前記した内のいず
れかの金属異形部品を用いたことを特徴とするパッケー
ジが得られる。
Further, according to the present invention, there is provided a package using any one of the above-mentioned metal deformed parts.

【0023】ここで,本発明の金属異形部品が用いられ
るパッケージとしては,セラミックパッケージ及びプラ
スチックパッケージの少なくとも一種や,そのまま用い
ることも可能であり,本発明以外のもので絶縁体であり
高放熱性を有するAlNと同等もしくはそれ以上の熱伝
導率を有するものである。
Here, as the package in which the metal shaped part of the present invention is used, at least one of a ceramic package and a plastic package, or a package as it is, other than the present invention, is an insulator and has a high heat dissipation property. It has a thermal conductivity equal to or higher than that of AlN having

【0024】[0024]

【0025】一方、本発明によれば、質量で30%以上
銅粉末と残部としてモリブデン粉末とを含む原料粉末
を混合し、成形し、焼結する焼結体の製造方法におい
て、前記原料粉末は、銅に対して0.1〜2.0質量%
の焼結助剤を含み、前記焼結助剤は、鉄粉、ニッケル粉
末、コバルト粉末及びマンガン粉末のうちから選択され
た少くとも一種からなり、前記焼結後、HIP処理を施
すことによって相対密度99%以上を有する焼結体を得
ることを特徴とする金属複合材料の製造方法が得られ
る。
On the other hand, according to the present invention , 30% or more by mass
In a method for producing a sintered body, a raw material powder containing copper powder and a molybdenum powder as the remainder is mixed, molded and sintered, wherein the raw material powder is 0.1 to 2.0% by mass with respect to copper.
Sintering aid, wherein the sintering aid is iron powder, nickel powder
Powder, selected from cobalt powder and manganese powder
A method of producing a metal composite material, which is at least one kind, is characterized by obtaining a sintered body having a relative density of 99% or more by performing HIP after the sintering.

【0026】[0026]

【0027】また,本発明によれば,前記したいずれか
の金属複合材料の製造方法において,前記HIP後サイ
ジングをすることを特徴とする金属複合材料の製造方法
が得られる。
According to the present invention, there is provided a method of manufacturing a metal composite material according to any one of the above-described methods of manufacturing a metal composite material, wherein sizing is performed after the HIP.

【0028】本発明によれば,前記したいずれかの金属
複合材料の製造方法において,前記焼結体は密度は10
g/cm3 以下,全体の平均熱膨張係数が7〜16×1
-6/℃の範囲にあり,熱伝導率は150W/m・K以
上の特性を有し,矩形状または凹凸等複雑形状の放熱基
板加工されることを特徴とする放熱基板材料の製造方法
が得られる。
According to the present invention, in any one of the above-described methods for producing a metal composite material, the sintered body has a density of 10%.
g / cm 3 or less, and the overall average thermal expansion coefficient is 7 to 16 × 1
A method for manufacturing a heat-radiating substrate material, wherein the heat-radiating substrate material is in the range of 0 −6 / ° C., has a thermal conductivity of 150 W / m · K or more, and is processed into a rectangular or uneven heat-radiating substrate. Is obtained.

【0029】本発明によれば,前記したいずれかの金属
複合材料の製造方法において,前記金属複合材料は,少
なくとも熱伝導率は190W/m・K以上の特性を有す
ることを特徴とする金属異形部品の製造方法が得られ
る。
According to the present invention, in any one of the above-described methods for producing a metal composite material, the metal composite material has a characteristic that at least a thermal conductivity is 190 W / m · K or more. A method of manufacturing a part is obtained.

【0030】ここで,本発明において,銅含有量は焼結
助剤の種類,量により異なるが,30質量%以上必要で
ある。また,焼結助剤は,焼結での緻密化促進のために
添加され,Fe,Mn,Ni,Coのうちから選択され
た少なくとも一種であり,実質的には銅が焼結・緻密化
する際に内包するガス分を放出するために添加され,そ
の量は,銅の量に対して0.1%以下では効果なく,ま
た,熱伝導性が低下することを考慮すると添加しない方
がよい。2%以上では,同様に熱伝導率の低下をきたす
ので,0.1〜2%の範囲で含有することが好ましく,
さらに,0.3〜1.0質量%の範囲がより好ましい。
その理由は,1.0質量%を超える場合,焼結助剤とし
ての緻密化効果が小さくなるだけでなく,熱伝導性が低
下し150W/m・K以下となり,放熱基板としての有
効性がなくなってしまう。また,焼結体が硬化し,凹凸
等の機械加工が難しくなり,矩形状のものを打ち抜けな
くなり,生産性が低下してしまうからである。
Here, in the present invention, the copper content depends on the type and amount of the sintering aid, but is required to be 30% by mass or more. The sintering aid is added to promote densification in sintering, and is at least one selected from Fe, Mn, Ni, and Co. In effect, copper is sintered and densified. It is added in order to release the gas contained therein when it is used. If the amount is less than 0.1% with respect to the amount of copper, it is ineffective, and considering that the thermal conductivity decreases, it is better not to add it. Good. If it is 2% or more, the thermal conductivity similarly decreases, so it is preferable that the content is contained in the range of 0.1 to 2%.
Furthermore, the range of 0.3 to 1.0 mass% is more preferable.
The reason is that, when the content exceeds 1.0% by mass, not only the effect of densification as a sintering agent is reduced, but also the thermal conductivity is reduced to 150 W / m · K or less, and the effectiveness as a heat dissipation substrate is reduced. Will be gone. In addition, the sintered body is hardened, and machining such as unevenness becomes difficult, so that it is impossible to punch through a rectangular shape, and productivity is reduced.

【0031】また,焼結助剤を微粒金属粉で添加する場
合には,銅量に対して,0.5〜1.0質量%添加する
ことが,密度と熱伝導率のバランスから有効である。
When the sintering aid is added in the form of fine metal powder, it is effective to add 0.5 to 1.0% by mass with respect to the amount of copper in view of the balance between density and thermal conductivity. is there.

【0032】具体的には,本発明の金属複合材料の製造
方法において,銅とモリブデンの粉末を混合プレス・焼
結のプロセスを得て所望の放熱基板材料又は異形部品に
する際に,銅とモリブデンを十分に混合するときあるい
はした後,焼結助剤として鉄(Fe),マンガン(M
n),ニッケル(Ni),コバルト(Co)のうち少な
くとも一種以上を添加し,還元雰囲気中で焼結する。ま
た,必要に応じて,熱間等方加圧プレス(以下,HIP
と呼ぶ)及びサイジングの一方又は両方の処理をし,充
分な緻密化及び形状精度を出す。焼結後の密度不足はH
IPにより緻密化し,また,焼結の変形はサイジングに
より容易に矯正が可能である。
Specifically, in the method for producing a metal composite material of the present invention, when a process of mixing and pressing and sintering copper and molybdenum powder to obtain a desired heat-radiating board material or a deformed part, When or after mixing molybdenum thoroughly, iron (Fe), manganese (M
n), at least one of nickel (Ni) and cobalt (Co) is added, and sintering is performed in a reducing atmosphere. If necessary, a hot isostatic press (hereinafter referred to as HIP)
And / or sizing to obtain sufficient densification and shape accuracy. Insufficient density after sintering
Densification by IP and deformation of sintering can be easily corrected by sizing.

【0033】[0033]

【実施例】以下,本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0034】図1は本発明の実施例に係る金属複合材料
となる焼結体の鉄添加量と相対密度との関係を示す図で
ある。また,図2は図1の焼結体の鉄添加量と熱伝導率
との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the amount of iron added and the relative density of a sintered body which is a metal composite material according to an embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the amount of iron added and the thermal conductivity of the sintered body of FIG.

【0035】図1及び図2に示すように,鉄添加量0.
01〜1質量%の範囲内で,焼結体の相対密度が95%
以上となり,また,0.5〜1質量%で99%に達して
いる。そして,この範囲内で熱伝導率が150W/m・
K以上となっている。
As shown in FIG. 1 and FIG.
Within the range of 01 to 1% by mass, the relative density of the sintered body is 95%.
As described above, the content reaches 99% at 0.5 to 1% by mass. And, within this range, the thermal conductivity is 150 W / m.
K or more.

【0036】図1及び図2に示す金属複合材料は次のよ
うに製造されている。同質量の銅とモリブデン粉末に夫
々鉄を添加し,混合し,プレスし,焼結されている。
The metal composite material shown in FIGS. 1 and 2 is manufactured as follows. Iron is added to the same mass of copper and molybdenum powder, mixed, pressed and sintered.

【0037】図1及び図2に示す焼結体を熱間等方加圧
プレス(HIP)を行うと,所望する特性を有する本発
明の実施例に係る金属複合材料となる。
When the sintered body shown in FIGS. 1 and 2 is subjected to hot isostatic pressing (HIP), a metal composite material having desired characteristics according to the embodiment of the present invention is obtained.

【0038】以下,本発明の実施例に係る金属複合材料
の具体的な製造について説明する。
Hereinafter, specific production of the metal composite material according to the embodiment of the present invention will be described.

【0039】(実施例1)図3は本発明の実施例1に係
る金属異形部品を示す図であり,(a)は正面図,
(b)は平面図である。また,図4は図3の金属異形部
品を用いた半導体パッケージを示す斜視図である。図3
に示すように,金属異形部品10は,角板状で中央部に
段を成して突出した平板状の凸部1が設けられている。
この凸部1に図示しない半導体チップが搭載され,図4
に示すパッケージに収容される。
(Embodiment 1) FIG. 3 is a view showing a metal deformed part according to Embodiment 1 of the present invention.
(B) is a plan view. FIG. 4 is a perspective view showing a semiconductor package using the metal deformed part of FIG. FIG.
As shown in (1), the metal deformed part 10 is provided with a flat plate-shaped projection 1 which is formed in a square plate shape and has a step at the center.
A semiconductor chip (not shown) is mounted on the convex portion 1, and FIG.
Is housed in the package shown.

【0040】図4に示すように,半導体素子12は凸部
1上に固定されている。この異形部品10は,端子ピン
14を備えたソケット15内に収容され,半導体素子1
2とピン端子14がボンデングワイヤ13によって接続
され,更に,ソケット蓋16によって覆われて,半導体
パッケージの完成となる。
As shown in FIG. 4, the semiconductor element 12 is fixed on the projection 1. The odd-shaped component 10 is accommodated in a socket 15 having terminal pins 14 and
2 and the pin terminal 14 are connected by the bonding wire 13 and further covered by the socket lid 16 to complete the semiconductor package.

【0041】図3(a)及び(b)に示す金属異形部品
10は次のように製造されている。
The metal deformed part 10 shown in FIGS. 3A and 3B is manufactured as follows.

【0042】モリブデン粉(3.2μm)と銅粉(8μ
m)を分散剤としてアルコールを用いたボール入り混合
機にて,30時間混合した。ここにおいて,モリブデン
と銅の比率は,質量比で7:3であり,しかも銅量に対
して,0.3質量%のNiを含有させたものである。ボ
ール除去後,固液分離乾燥後,樟脳を用いて造粒粉とし
た。脱樟脳の後,図3(a)及び(b)に示す凸部1を
下にプレス成形した。プレス成形品を1230℃で3時
間水素中で焼結した後,HIPにより1.8トン/cm
2 ,1060℃で1時間処理し,総厚1.5に対して,
20〜25μmの厚み方向でサイジングを行った。この
結果,密度は理論密度の99.8%に達し,熱膨張係数
8.8×10-6/K,熱伝導率194W/m・K,半導
体チップ搭載予定の凸部は面粗さでRmax 2μmとな
り,半導体用パッケージに用いられる金属放熱材料とし
ての優良な金属異形部品が得られた。
Molybdenum powder (3.2 μm) and copper powder (8 μm)
m) was mixed for 30 hours in a ball-mixer using alcohol as a dispersant. Here, the ratio of molybdenum to copper is 7: 3 by mass, and 0.3 mass% of Ni is contained with respect to the amount of copper. After removal of the balls, solid-liquid separation and drying, granules were formed using camphor. After the decamphor, the convex portion 1 shown in FIGS. 3A and 3B was press-molded downward. After sintering the press-formed product in hydrogen at 1230 ° C. for 3 hours, 1.8 ton / cm by HIP
2. Treat at 1060 ° C for 1 hour.
Sizing was performed in the thickness direction of 20 to 25 μm. As a result, the density reached 99.8% of the theoretical density, the coefficient of thermal expansion was 8.8 × 10 −6 / K, the thermal conductivity was 194 W / m · K, and the convex portion to be mounted on the semiconductor chip had a surface roughness of Rmax. The thickness was 2 μm, and an excellent metal deformed part as a metal heat dissipation material used for a semiconductor package was obtained.

【0043】(実施例2)図5は本発明の実施例2に係
る金属異形部品を示す図であり,(a)は断面図,
(b)は平面図である。図5(a)及び(b)に示すよ
うに,金属異形部品20は中央部に平坦な凹部2を有す
る。
(Embodiment 2) FIG. 5 is a view showing a metal deformed part according to Embodiment 2 of the present invention.
(B) is a plan view. As shown in FIGS. 5A and 5B, the metal deformed part 20 has a flat concave portion 2 at the center.

【0044】図4の金属異形部品20は次のように製造
されている。
The metal deformed part 20 shown in FIG. 4 is manufactured as follows.

【0045】実施例1と同様の処理により,モリブデン
と銅が質量比4:6であり,しかも銅量に対して1質量
%のFeを含有させた複合粉を得た。次いで,バインダ
ーとしてソフトワックスを用いて造粒粉とし,脱バイン
ダー後,図4の凹部2を下にしてプレス成形し,水素中
で1100℃で3時間焼結した。底板1.2mmの厚さ
方向にプレスによりサイジングし,厚みバラツキ±0.
025mmを得,且つ底板の上,下面平行度0.03を
得た。この結果,密度は,理論密度の99.4%に達
し,熱膨張係数12.7×10-6/K,熱伝導率249
W/m・Kの金属製放熱材料としての,良好な金属異形
部品が得られた。また,実施例2と同様にして,Feの
代わりにMnを同質量%含有させたときも,Feを含有
させたものと同様な結果が得られた。
By the same treatment as in Example 1, a composite powder having a molybdenum / copper ratio of 4: 6 and containing 1% by mass of Fe with respect to the amount of copper was obtained. Next, a granulated powder was formed by using soft wax as a binder, and after debinding, press-molded with the concave portion 2 shown in FIG. 4 down, and sintered in hydrogen at 1100 ° C. for 3 hours. Sizing by pressing in the thickness direction of the bottom plate 1.2mm, thickness variation ± 0.
025 mm and a top and bottom parallelism of 0.03 were obtained. As a result, the density reached 99.4% of the theoretical density, the coefficient of thermal expansion was 12.7 × 10 −6 / K, and the thermal conductivity was 249.
A good metal deformed part as a metal heat dissipation material of W / m · K was obtained. Also, in the same manner as in Example 2, when Mn was contained in the same mass% instead of Fe, the same result as that containing Fe was obtained.

【0046】(実施例3)図6は本発明の実施例3に係
る金属異形部品を示す図であり,(a)は平面図,
(b)は(a)のA−A線に沿う断面図である。また,
図7は図6の金属異形部品を用いた半導体パッケージを
示す図である。
(Embodiment 3) FIG. 6 is a view showing a metal deformed part according to Embodiment 3 of the present invention.
(B) is sectional drawing which follows the AA line of (a). Also,
FIG. 7 is a diagram showing a semiconductor package using the metal deformed part of FIG.

【0047】図6(a)及び(b)に示すように,基体
5は板状で4つの角部が丸くなっている。この基体5の
一面中央部には,四角板状の凸部6が凸設されている。
また,基板の4隅には,穿設された貫通孔7が設けられ
ている。
As shown in FIGS. 6A and 6B, the base 5 is plate-shaped and has four rounded corners. A square plate-shaped projection 6 is provided at the center of one surface of the base 5.
Further, through holes 7 are formed at four corners of the substrate.

【0048】更に,本発明の実施例3に係る金属異形部
品は実施例1と同様な材料を用いて,角部の丸い金型を
用いて実施例1と同様に4隅に孔部を有するようにプレ
ス成形し,焼結し,その後に,サイジングすることによ
り製造されている。
Further, the metal deformed part according to the third embodiment of the present invention has holes at the four corners in the same manner as in the first embodiment using the same material as in the first embodiment and using a mold having rounded corners. Press molding, sintering, and then sizing.

【0049】図7を参照して,金属異形部品30の凸部
に,箱型の支持部32を固定し,AlNからなる支持板
32を介して半導体素子31を固定し,この半導体素子
にリードワイヤー35を夫々接続して,このリドワイヤ
ー35を支持部32から外方に突出させて,半導体パッ
ケージが構成される。
Referring to FIG. 7, a box-shaped support portion 32 is fixed to the projecting portion of metal deformed part 30, and a semiconductor element 31 is fixed via a support plate 32 made of AlN. The wires 35 are connected to each other, and the lid wires 35 are made to protrude outward from the support portions 32 to form a semiconductor package.

【0050】(実施例4)図8は本発明の実施例4に係
る金属異形部品を示す図であり,(a)は平面図,
(b)はB−B線に沿う断面図である。
(Embodiment 4) FIG. 8 is a view showing a metal deformed part according to Embodiment 4 of the present invention.
(B) is sectional drawing which follows the BB line.

【0051】図8(a)及び(b)に示すように,金属
異形部品40は,基体8が実施例1及び2と同様な形状
で,中央部に基体の板面からT1の高さに突出した4角
筒状の凸壁部11が設けられ,この凸壁部11の両側
に,凸壁部11から離間して,T1よりも小さいT2の
高さに突出した断面円柱状の突出部9とを備えている。
As shown in FIGS. 8 (a) and 8 (b), the metal deformed part 40 has a base 8 having the same shape as in the first and second embodiments, and has a central portion at a height of T1 from the plate surface of the base. A protruding quadrangular cylindrical protruding wall portion 11 is provided. On both sides of the protruding wall portion 11, a protruding portion having a columnar cross section protruding at a height of T2 smaller than T1 and separated from the protruding wall portion 11. 9 is provided.

【0052】この金属異形部品40は実施例2と同様な
材料を用いて,実施例1と同様に,突出部9及び凸壁部
11が下になるようにプレス成形され,焼結され,実施
例1と同様にサイジング処理されている。
This metal deformed part 40 is press-formed using the same material as that of the second embodiment so that the protruding portion 9 and the convex wall portion 11 face down and sintered, similarly to the first embodiment. The sizing process is performed in the same manner as in Example 1.

【0053】(実施例5)図9(a)及び(b)は本発
明の実施例5に係る金属複合材料を示す図で,放熱基板
を示している。図9に示すように,放熱基板50は基体
51の中央部に窪んだ窪み部52が形成されている。次
に,本発明の実施例5に係る放熱基板50の製造方法に
ついて説明する。
(Embodiment 5) FIGS. 9A and 9B are views showing a metal composite material according to Embodiment 5 of the present invention, showing a heat dissipation substrate. As shown in FIG. 9, the heat dissipation board 50 has a recessed portion 52 formed in the center of the base 51. Next, a method for manufacturing the heat dissipation board 50 according to the fifth embodiment of the present invention will be described.

【0054】モリブデン粉末および電解銅粉末を3:1
の割合で,また焼結助剤として鉄粉を銅比で0.8質量
%混合し,図9に示すように□35×T1.5(凹形)
にプレス成型した後,水素雰囲気中で焼結し,さらにH
IP処理した。この焼結体の相対密度は99.6%であ
り,焼結・HIP時の変形はサイジングにより矯正し,
±0.05の寸法公差には十分であった。
The molybdenum powder and the electrolytic copper powder were mixed at a ratio of 3: 1.
, And iron powder was mixed as a sintering aid in an amount of 0.8% by mass in terms of copper. As shown in FIG.
Press molding, sintering in a hydrogen atmosphere,
IP processed. The relative density of this sintered body is 99.6%, and the deformation during sintering and HIP is corrected by sizing.
It was sufficient for a dimensional tolerance of ± 0.05.

【0055】この時の密度(ρ)は9.8g/cm3
熱膨張係数(α)については,α=8.2×10-6
℃,熱伝導率(κ)は163W/m・Kであった。
The density (ρ) at this time was 9.8 g / cm 3 ,
Regarding the coefficient of thermal expansion (α), α = 8.2 × 10 −6 /
° C and thermal conductivity (κ) were 163 W / m · K.

【0056】また,これに3μm電解Niめっきを施し
た後,水素雰囲気中にて850℃×20分処理したが,
めっきの膨れ,変色,染み等の不良はなかった。
Further, after this was subjected to electrolytic plating of 3 μm Ni, it was treated at 850 ° C. × 20 minutes in a hydrogen atmosphere.
There were no defects such as blistering, discoloration, and stain of the plating.

【0057】(実施例6)モリブデン粉末および電解銅
粉末を1:1の割合で,また焼結助剤としてニッケル粉
を銅比で0.5質量%混合し,実施例5と同様な方法で
焼結体を作製した。この焼結体の相対密度は,99.8
%であり,焼結時の変形はサイジングにより矯正し,±
0.05の寸法公差には十分であった。
(Example 6) Molybdenum powder and electrolytic copper powder were mixed at a ratio of 1: 1 and nickel powder as a sintering aid was mixed at 0.5% by mass in a copper ratio. A sintered body was produced. The relative density of this sintered body is 99.8
%, The deformation during sintering is corrected by sizing, ±
A dimensional tolerance of 0.05 was sufficient.

【0058】この時の特性は,ρ=9.5g/cm3
α=11.0×10-6/℃,κ=181W/m・Kであ
った。
The characteristics at this time are: ρ = 9.5 g / cm 3 ,
α = 11.0 × 10 −6 / ° C., κ = 181 W / m · K.

【0059】また,実施例5と同様,Niめっきを施し
た後,水素雰囲気中にて850℃×20分処理したが,
めっきの膨れ,変色,染み等の不良はなかった。
Further, as in the case of the fifth embodiment, after the Ni plating, the substrate was treated in a hydrogen atmosphere at 850 ° C. for 20 minutes.
There were no defects such as blistering, discoloration, and stain of the plating.

【0060】(実施例7)モリブデン粉末および電解銅
粉末を1:1の割合で混合し,実施例5と同様な方法で
焼結体を作製した。この焼結体の相対密度は,94.0
%であったが,アルゴンガス雰囲気において,温度;1
050℃,圧力;1トン/cm2 の条件にてHIP処理
を行った所,相対密度は99.7%となった。焼結・H
IP時の変形はサイジングにより矯正し,±0.05の
寸法公差には十分であった。
(Example 7) A molybdenum powder and an electrolytic copper powder were mixed at a ratio of 1: 1 to produce a sintered body in the same manner as in Example 5. The relative density of this sintered body is 94.0
% In an argon gas atmosphere;
When HIP processing was performed under the conditions of 050 ° C. and a pressure of 1 ton / cm 2 , the relative density was 99.7%. Sintering ・ H
The deformation at the time of IP was corrected by sizing, and was sufficient for the dimensional tolerance of ± 0.05.

【0061】この時の特性は,ρ=9.5g/cm3
α=11.1×10-6/℃,κ=245W/m・Kであ
った。
The characteristics at this time are: ρ = 9.5 g / cm 3 ,
α = 11.1 × 10 −6 / ° C., κ = 245 W / m · K.

【0062】また,実施例5と同様,Niめっきを施し
た後,水素雰囲気中にて850℃×20分処理したが,
めっきの膨れ,変色,染み等の不良はなかった。
As in the case of the fifth embodiment, after the Ni plating, the substrate was treated in a hydrogen atmosphere at 850 ° C. for 20 minutes.
There were no defects such as blistering, discoloration, and stain of the plating.

【0063】(実施例8)モリブデン粉末および電解銅
粉末を2:1の割合で混合し,10×12×T1.2
(矩形)にプレス成型した後,水素雰囲気中で焼結し
た。この焼結体の相対密度は,92.5%であったが,
アルゴンガス雰囲気において,温度;1050℃,圧
力;1トン/cm2 の条件にてHIP処理を行った所,
相対密度は99.5%となった。焼結時の変形はサイジ
ングにより矯正し,±0.05の寸法公差には十分であ
った。
Example 8 Molybdenum powder and electrolytic copper powder were mixed at a ratio of 2: 1 and 10 × 12 × T1.2
(Rectangle) and then sintered in a hydrogen atmosphere. The relative density of this sintered body was 92.5%,
HIP treatment was performed in an argon gas atmosphere under the conditions of temperature: 1050 ° C., pressure: 1 ton / cm 2 ,
The relative density was 99.5%. The deformation during sintering was corrected by sizing, which was sufficient for the dimensional tolerance of ± 0.05.

【0064】この時の特性は,ρ=9.7g/cm3
α=8.8×10-6/℃,κ=205W/m・Kであっ
た。
The characteristics at this time are: ρ = 9.7 g / cm 3 ,
α = 8.8 × 10 −6 / ° C. and κ = 205 W / m · K.

【0065】この組成の銅−モリブデン複合材料は,緻
密化ができず,従って圧延加工が非常に難しいため生産
性は低いが,上述の方法であれば,機械加工性も良くな
り,生産性も上がる。また,実施例5と同様,Niめっ
きを施した後,水素雰囲気中にて850℃×20分処理
しても,めっきの膨れ,変色,染み等の不良はなかっ
た。
Although the copper-molybdenum composite material of this composition cannot be densified and is therefore very difficult to roll, the productivity is low, but the above-mentioned method improves the machinability and the productivity. Go up. In addition, as in Example 5, even after the Ni plating, the plating was not swelled, discolored, stained, etc., even when treated in a hydrogen atmosphere at 850 ° C. for 20 minutes.

【0066】(実施例9)図10(a),(b)は本発
明の実施例9に係る金属複合材料を示す図で,放熱基板
を示している。図8に示すように,放熱基板60は基体
61の中央部に台62が形成されている。次に,実施例
9に係る放熱基板60の製造方法について説明する。
(Embodiment 9) FIGS. 10A and 10B are views showing a metal composite material according to Embodiment 9 of the present invention, showing a heat dissipation substrate. As shown in FIG. 8, the heat dissipation board 60 has a base 62 formed at the center of a base 61. Next, a method for manufacturing the heat dissipation board 60 according to the ninth embodiment will be described.

【0067】モリブデン粉末および電解銅粉末を1:4
の割合で混合し,図10に示すように□28×T1.3
(凸形)にプレス成型した後,水素雰囲気中で焼結し
た。この焼結体の相対密度は94.3%であったが,ア
ルゴンガス雰囲気において,温度;1000℃,圧力;
0.8トン/cm2 の条件にてHIP処理を行った所,
相対密度は99.7%となった。焼結時の変形はサイジ
ングにより矯正したところ,±0.05の寸法公差には
十分であった。
The molybdenum powder and the electrolytic copper powder were mixed at a ratio of 1: 4
□ 28 × T1.3 as shown in FIG.
After being pressed into a (convex) shape, it was sintered in a hydrogen atmosphere. The relative density of this sintered body was 94.3%, but in an argon gas atmosphere, the temperature: 1000 ° C., the pressure:
After HIP processing under the condition of 0.8 ton / cm 2 ,
The relative density was 99.7%. When the deformation during sintering was corrected by sizing, the dimensional tolerance of ± 0.05 was sufficient.

【0068】この時の特性は,ρ=9.2g/cm3
α=14.7×10-6/℃,κ=320W/m・Kであ
った。
The characteristics at this time are as follows: ρ = 9.2 g / cm 3 ,
α = 14.7 × 10 −6 / ° C., κ = 320 W / m · K.

【0069】また,実施例5と同様,Niめっきを施し
た後,水素雰囲気中にて850℃×20分処理したが,
めっきの膨れ,変色,染み等の不良はなかった。
Further, as in the case of the fifth embodiment, after the Ni plating, the substrate was treated in a hydrogen atmosphere at 850 ° C. for 20 minutes.
There were no defects such as blistering, discoloration, and stain of the plating.

【0070】[0070]

【発明の効果】以上,説明したように,本発明によれ
ば,理論密度の99%以上を有するとともに全体の平均
熱膨張係数が7〜16×10-6/℃の範囲にある金属複
合材料とその製造方法とそれを用いたパッケージを提供
することができる。
As described above, according to the present invention, a metal composite material having a theoretical density of 99% or more and an overall average thermal expansion coefficient in the range of 7 to 16 × 10 -6 / ° C. And a manufacturing method thereof and a package using the same.

【0071】また,本発明によれば,前記金属複合材料
を用いた放熱基板材料とその製造方法とを提供すること
ができる。
Further, according to the present invention, it is possible to provide a heat dissipation board material using the metal composite material and a method of manufacturing the same.

【0072】また,本発明によれば,銅−モリブデンの
系により,190W/m・K以上の金属複合材料と,放
熱基板材料と,高放熱性金属異形部品とが得られ,しか
も密度は実質的に10未満で軽量な金属異形部品と,そ
の製造方法と,それを備えたパッケージを提供すること
ができる。
Further, according to the present invention, a metal composite material of 190 W / m · K or more, a heat-dissipating substrate material, and a highly heat-dissipating metal deformed part can be obtained by the copper-molybdenum system, and the density is substantially reduced. It is possible to provide a metal deformed part which is less than 10 in weight, a method of manufacturing the same, and a package having the same.

【0073】また,本発明によれば,充分緻密化してお
り,サイジングを加えれば精密な寸法の部品が安価に容
易に(汎用設備で)量産可能になり,パッケージとりわ
けプラスチックパッケージの様な,大消費部品に供し得
る金属異形部品と,その製造方法と,それを備えたパッ
ケージを提供することができる。
Further, according to the present invention, the components are sufficiently densified, and if sizing is added, parts having precise dimensions can be easily mass-produced at low cost (with general-purpose equipment). It is possible to provide a deformed metal part that can be used as a consumer part, a method of manufacturing the same, and a package including the same.

【0074】さらに,本発明によれば,銅及びモリブデ
ンからなるために,メッキ,半田付けが可能であり,従
来のパッケージの生産設備を本質的に替える事なく用い
ることができ,経済的である金属異形部品と,その製造
方法と,それを備えたパッケージを提供することができ
る。
Further, according to the present invention, since it is made of copper and molybdenum, it can be plated and soldered, and can be used without essentially changing the conventional package production equipment, which is economical. A metal deformed part, a method of manufacturing the same, and a package including the same can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施例に係る金属複合材料とな
る焼結体の鉄添加量と相対密度との関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the amount of iron added and the relative density of a sintered body that becomes a metal composite material according to an example of the present invention.

【図2】図1の焼結体の鉄添加量と熱伝導率との関係を
示す図である。
FIG. 2 is a diagram showing the relationship between the amount of iron added and the thermal conductivity of the sintered body of FIG.

【図3】(a)は本発明の実施例1に係る金属異形部品
の正面図である。(b)は(a)の金属異形部品の平面
図である。
FIG. 3A is a front view of a metal deformed part according to the first embodiment of the present invention. (B) is a top view of the metal deformed part of (a).

【図4】図3の金属異形部品を用いた半導体パッケージ
を示す斜視図である。
FIG. 4 is a perspective view showing a semiconductor package using the metal deformed part of FIG. 3;

【図5】(a)は本発明の実施例2に係る金属異形部品
の断面図である。(b)は(a)の金属異形部品の平面
図である。
FIG. 5A is a cross-sectional view of a metal deformed part according to a second embodiment of the present invention. (B) is a top view of the metal deformed part of (a).

【図6】(a)は本発明の実施例3に係る金属異形部品
の平面図である。(b)は(a)の金属異形部品のA−
A線断面図である。
FIG. 6A is a plan view of a metal deformed part according to a third embodiment of the present invention. (B) is A- of the metal deformed part of (a).
FIG. 3 is a sectional view taken along line A.

【図7】図6の金属異形部品を用いた半導体パッケージ
を示す斜視図である。
FIG. 7 is a perspective view showing a semiconductor package using the metal deformed part of FIG. 6;

【図8】(a)は本発明の実施例4に係る金属異形部品
の平面図である。(b)は(a)の金属異形部品のB−
B線断面図である。
FIG. 8A is a plan view of a metal deformed part according to Embodiment 4 of the present invention. (B) is B- of the metal deformed part of (a).
It is a B sectional view.

【図9】(a)は本発明の実施例5に係る金属異形部品
の平面図である。(b)は(a)の金属異形部品の正面
図である。
FIG. 9A is a plan view of a metal deformed part according to Embodiment 5 of the present invention. (B) is a front view of the metal deformed part of (a).

【図10】(a)は本発明の実施例9に係る金属異形部
品の平面図である。(b)は(a)の金属異形部品の正
面図である。
FIG. 10 (a) is a plan view of a metal deformed part according to Embodiment 9 of the present invention. (B) is a front view of the metal deformed part of (a).

【符号の説明】[Explanation of symbols]

1,6 凸部 2 凹部 5,8 基体 7 貫通孔 10,20,30,40 金属異形部品 11 凸壁部 50,60 放熱基板 51,61 基体 52 窪み部 62 台部 1,6 convex portion 2 concave portion 5,8 base 7 through hole 10,20,30,40 metal deformed part 11 convex wall 50,60 radiating substrate 51,61 base 52 concave portion 62 base

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 9/00 C22C 9/00 (72)発明者 土井 良彦 東京都台東区東上野五丁目24番8号 東 京タングステン株式会社内 (56)参考文献 特開 平4−180534(JP,A) 特開 平4−348062(JP,A) 特開 平6−248493(JP,A) 特開 平4−349650(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 23/373 C22C 1/00 C22C 9/00 B22F 1/00 B22F 3/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI C22C 9/00 C22C 9/00 (72) Inventor Yoshihiko Doi 5--24-8 Higashi-Ueno, Taito-ku, Tokyo Tokyo Tungsten Co., Ltd. JP-A-4-180534 (JP, A) JP-A-4-34862 (JP, A) JP-A-6-248493 (JP, A) JP-A-4-349650 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) H01L 23/373 C22C 1/00 C22C 9/00 B22F 1/00 B22F 3/00

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量で30以上のと、前記銅に対して
0.1〜1.0質量%の焼結助剤と、残部としてモリブ
デンとを含む原料粉末の焼結体であって、前記焼結助剤
、鉄、ニッケル、コバルト、マンガンのうちの少くと
も一種からなり、前記焼結体は、相対密度99%以上を
有し、密度10g/cm以下、全体の平均熱膨張係数
が7〜16×10−6/℃の範囲にあり、熱伝導率
50W/m・K以上の特性を有する異形状を備えた放熱
基板材料からなるヒートシンクを有することを特徴とす
るパッケージ。
1. Copper having a mass of 30 or more, and said copper
A sintered body of a raw material powder containing 0.1 to 1.0% by mass of a sintering aid and the balance of molybdenum, wherein the sintering aid is iron, nickel, cobalt, At least as little as manganese
The sintered body has a relative density of 99% or more, a density of 10 g / cm 3 or less, an overall average thermal expansion coefficient in the range of 7 to 16 × 10 −6 / ° C., and a thermal conductivity of the rate is 1
A package comprising a heat sink made of a heat-dissipating substrate material having a different shape having a characteristic of 50 W / m · K or more.
【請求項2】 質量で30%以上の銅と、残部として
リブデンとを含む原料粉末の焼結体であって、前記焼結
体は、相対密度99%以上を有するとともに、前記銅に
対して0.1〜1.0質量%の焼結助剤を含み、前記焼
結助剤は、鉄、ニッケル、コバルト、マンガンのうちの
少くとも一種からなり、異形状を備えていることを特徴
とする放熱基板材料。
2. A sintered body of a raw material powder containing at least 30% by mass of copper and the balance of molybdenum, wherein said sintered body has a relative density of at least 99%, The sintering aid contains 0.1 to 1.0% by mass with respect to the copper, and the sintering aid is made of at least one of iron, nickel, cobalt, and manganese, and has a different shape. radiating substrate material characterized in that there.
【請求項3】 質量で30%以上の銅と、残部として
リブデンとを含む原料粉末の焼結体であって、前記焼結
体は相対密度99%以上を有するとともに前記銅に対し
て0.1〜1.0質量%の焼結助剤を含み、前記焼結助
剤は、鉄、ニッケル、コバルト、マンガンのうちの少く
とも一種からなり、少くとも190W/m・Kの熱伝導
率を有し、パッケージに用いられ半導体チップに接触す
るか又は半導体チップの周囲に配置されることを特徴と
する金属異形部品。
3. A 30% or more copper in mass, a sintered body of material powder containing a motor <br/> Ribuden the balance, the sintered body as well as have a relative density of 99% or more the Against copper
0.1 to 1.0% by mass of the sintering aid,
The agent is less of iron, nickel, cobalt and manganese
A metal deformed part comprising at least one kind , having a thermal conductivity of at least 190 W / m · K, being used for a package, being in contact with a semiconductor chip or being arranged around a semiconductor chip.
【請求項4】 請求項記載の金属異形部品において、
少くとも段付き部分を有することを特徴とする金属異形
部品。
4. The metal deformed part according to claim 3 ,
A metal variant having at least a stepped portion.
【請求項5】 請求項3又は4記載の金属異形部品を用
いたことを特徴とするパッケージ。
5. A package using the metal deformed part according to claim 3 or 4 .
【請求項6】 質量で30%の銅粉末と残部としてモリ
ブデン粉末とを含む原料粉末を混合し、成形し、焼結す
る焼結体の製造方法において、前記原料粉末は、銅に対
して0.1〜2.0質量%の焼結助剤を含み、前記焼結
助剤は、鉄粉、ニッケル粉末、コバルト粉末及びマンガ
ン粉末のうちから選択された少くとも一種からなり、
記焼結後、HIP処理を施すことによって相対密度99
%以上を有する焼結体を得ることを特徴とする金属複合
材料の製造方法。
6. A method for producing a sintered body in which a raw material powder containing 30% by mass of copper powder and a balance of molybdenum powder is mixed, molded and sintered, wherein the raw material powder is Against copper
Containing 0.1 to 2.0% by mass of a sintering aid,
Auxiliaries include iron powder, nickel powder, cobalt powder and manganese.
At least selected from among the down powder consists kind, after the sintering, a relative density of 99 by performing the HIP treatment
%. A method for producing a metal composite material, comprising obtaining a sintered body having at least
【請求項7】 請求項記載の金属複合材料の製造方法
において、前記HIP後サイジングをすることを特徴と
する金属複合材料の製造方法。
7. The method for producing a metal composite material according to claim 6 , wherein the sizing is performed after the HIP.
【請求項8】 請求項6又は7記載の金属複合材料の製
造方法において、前記焼結体は密度は10g/cm
下、全体の平均熱膨張係数が7〜16×10−6/℃の
範囲にあり、熱伝導率は150W/m・K以上の特性を
有し、矩形状または凹凸等複雑形状の放熱基板に加工さ
れることを特徴とする放熱基板材料の製造方法。
8. The method for producing a metal composite material according to claim 6 , wherein the sintered body has a density of 10 g / cm 3 or less and an overall average thermal expansion coefficient of 7 to 16 × 10 −6 / ° C. A method for manufacturing a heat-dissipating board material, wherein the heat-dissipating board material is in a range, has a thermal conductivity of 150 W / m · K or more, and is processed into a heat-dissipating board having a complicated shape such as a rectangular shape or an uneven shape.
【請求項9】 請求項6乃至8の内のいずれか一つに
載の金属複合材料の製造方法において、前記金属複合材
料は、少なくとも熱伝導率は190W/m・K以上の特
性を有することを特徴とする金属異形部品の製造方法。
9. The method of manufacturing a metal composite material according to claim 6 , wherein the metal composite material has a thermal conductivity of at least 190 W / m · K. A method for producing a deformed metal part having the following characteristics.
JP26714094A 1994-09-28 1994-10-31 Metal composite material, method of manufacturing the same, and package having the same Expired - Fee Related JP3160696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26714094A JP3160696B2 (en) 1994-09-28 1994-10-31 Metal composite material, method of manufacturing the same, and package having the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-233089 1994-09-28
JP23308994 1994-09-28
JP26714094A JP3160696B2 (en) 1994-09-28 1994-10-31 Metal composite material, method of manufacturing the same, and package having the same

Publications (2)

Publication Number Publication Date
JPH08153836A JPH08153836A (en) 1996-06-11
JP3160696B2 true JP3160696B2 (en) 2001-04-25

Family

ID=26530830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26714094A Expired - Fee Related JP3160696B2 (en) 1994-09-28 1994-10-31 Metal composite material, method of manufacturing the same, and package having the same

Country Status (1)

Country Link
JP (1) JP3160696B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032415A1 (en) * 2005-09-30 2007-04-05 Osram Opto Semiconductors Gmbh Method for producing a radiation-emitting component and radiation-emitting component
JP5818045B1 (en) * 2014-12-05 2015-11-18 株式会社半導体熱研究所 Heat dissipation board and semiconductor package and semiconductor module using it
CN112355312A (en) * 2020-10-23 2021-02-12 中南大学 Activation sintering preparation method of ultrafine-grained pure molybdenum metal material
CN115383105A (en) * 2022-08-10 2022-11-25 洛阳爱科麦钨钼科技股份有限公司 High-density molybdenum-copper alloy material and preparation method thereof

Also Published As

Publication number Publication date
JPH08153836A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
US6114048A (en) Functionally graded metal substrates and process for making same
KR100496600B1 (en) Sintered Body and Manufacturing Method
US5493153A (en) Plastic-packaged semiconductor device having a heat sink matched with a plastic package
US6238454B1 (en) Isotropic carbon/copper composites
JP5531329B2 (en) Package based on semiconductor heat dissipation parts
KR101691724B1 (en) Heat radiation plate for high power devices
EP0608621A1 (en) Circuit system, a composite material for use therein, and a method of making the material
JP3160696B2 (en) Metal composite material, method of manufacturing the same, and package having the same
JP3548991B2 (en) Heat dissipating substrate and manufacturing method thereof
JP2000216278A (en) Semiconductor package and manufacture of heat radiating substrate using for the same
JP5232594B2 (en) Molded body
EP1195810B1 (en) Method for producing an aluminum-silicon carbide semiconductor substrate the same
US5886269A (en) Substrate and heat sink for a semiconductor and method of manufacturing the same
JP2704932B2 (en) Heat dissipation board, method of manufacturing the same, and semiconductor device
JP2973170B2 (en) Ceramic package and heat dissipation board
US5878322A (en) Heat-dissipating substrate for micro-electronic devices and fabrication method
JP3552587B2 (en) Composite materials and semiconductor devices
JPH07153878A (en) Manufacture of plastic packaged semiconductor device and heat sink
JPH0878578A (en) Material for heat dissipating substrate and manufacturing method thereof
JPH0336305B2 (en)
JP2000026926A (en) Composite material for lead frame and semiconductor package using it
JP2810873B2 (en) Method of manufacturing Cu-W alloy substrate for heat sink of semiconductor element
JPS6128629B2 (en)
JP3473106B2 (en) Heat sink for semiconductor
JP3506201B2 (en) Method for manufacturing thin plate-shaped sintered body and heat spreader

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees