JP2000026926A - Composite material for lead frame and semiconductor package using it - Google Patents

Composite material for lead frame and semiconductor package using it

Info

Publication number
JP2000026926A
JP2000026926A JP19316298A JP19316298A JP2000026926A JP 2000026926 A JP2000026926 A JP 2000026926A JP 19316298 A JP19316298 A JP 19316298A JP 19316298 A JP19316298 A JP 19316298A JP 2000026926 A JP2000026926 A JP 2000026926A
Authority
JP
Japan
Prior art keywords
lead frame
composite
composite material
rolling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19316298A
Other languages
Japanese (ja)
Inventor
Shiyouriyuu Son
正龍 孫
Tadashi Arikawa
正 有川
Akira Ichida
晃 市田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP19316298A priority Critical patent/JP2000026926A/en
Publication of JP2000026926A publication Critical patent/JP2000026926A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Abstract

PROBLEM TO BE SOLVED: To produce an inexpensive base stock for a lead frame provided with mechanical strength that a lead material is not easily deformed, capable of radiating the heat generation of an element with high efficiency, excellent in electric characteristics and good in etching and punching properties needed for the pattern formation of a lead frame, to provide a method for producing it and to provide a semiconductor package using it. SOLUTION: A lead frame 1 is formed from a composite material for a lead frame by punching or etching. The composite material for a lead frame is a composite rolled material contg. copper(Cu) and >=50 wt.% molybdenum(Mo) and has 40 to 250 μm sheet thickness, 160 to 250 W/m k thermal conductivity, 180 to 280 GPa Young's modulus, <=11×10-6/K thermal expansion coefficient and <=10 g/cm3 density. For producing this composite material for a lead frame, powder obtd. by sufficiently mixing Cu powder of <=30 μm and Mo powder of 2 to 6 μm so as to contain copper(Cu) and >=50 wt.% molybdenum(Mo) is mixed with a binder, and kneaded sufficiently, and, after that, it is subjected to extrusion molding, sintering and cold rolling or warm rolling to obtain a Cu-Mo composite rolled material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置に関
し、リードフレームに用いられるCu−Mo複合材とそ
れの製造方法とそれを用いた半導体パッケージに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a Cu-Mo composite material used for a lead frame, a method of manufacturing the same, and a semiconductor package using the same.

【0002】[0002]

【従来の技術】半導体分野において、ICチップの高密
度化、高速化がますます促進され、それに伴いチップの
多ピン化や狭ピッチ化が進み、さらに集積度の向上によ
って増大する単位体積当りのジュール熱が多くなるた
め、より効率よく放熱する必要がある。
2. Description of the Related Art In the field of semiconductors, high density and high speed of IC chips are increasingly promoted, and as a result, the number of pins and the pitch of chips are increased, and the unit density per unit volume is increased due to the improvement of integration. Since Joule heat increases, it is necessary to radiate heat more efficiently.

【0003】半導体素子で発生する放熱性を効率よくす
るため、素子搭載基板材料には、CuやCu系複合材等
が多く用いられているが、近年の半導体の高性能化の進
歩に伴いリ−ドフレームの果たす役割がますます重要と
なり、電気特性のみならず、高い放熱性を兼ね備えた材
料であることも必要となっている。
In order to efficiently dissipate heat generated in semiconductor elements, Cu and Cu-based composite materials are often used as element mounting board materials. -The role played by the frame has become increasingly important, and it is necessary that the material has not only electrical characteristics but also high heat dissipation.

【0004】[0004]

【発明が解決しようとする課題】半導体装置のリードフ
レーム材として、一般に、(ア)リード材が容易に変形
しないような機械的強度があること、(イ)素子の発熱
に対して効率よく放散すること、(ウ)電気的特性に優
れていること、(エ)リードフレームのパターン形成に
必要なエッチング性や打ち抜き性が良好であること、
(オ)安価であること等が要求される。
Generally, a lead frame material of a semiconductor device has (a) a mechanical strength such that the lead material is not easily deformed, and (a) heat is efficiently dissipated with respect to heat generated by the element. (C) excellent electrical properties, (d) good etching and punching properties required for forming a lead frame pattern,
(E) It is required to be inexpensive.

【0005】そのため、CuあるいはCu合金、Fe−
Ni合金あるいはFe合金が主に使われているが何れも
一長一短であり、上述の特性をすベて満たすことは難し
い。つまり、Cuは導電率や熱伝導率は優れているもの
の、熱膨張率が大きく、強度的には劣る。また、Cu合
金やFe基合金は、機械的強度に優れてはいるが、熱伝
導率は、数十W/m・K以下と低く放熱性という点から
はかなり見劣りする。
[0005] Therefore, Cu or Cu alloy, Fe-
Ni alloys or Fe alloys are mainly used, but each has advantages and disadvantages, and it is difficult to satisfy all the above characteristics. That is, although Cu has excellent electrical conductivity and thermal conductivity, it has a large coefficient of thermal expansion and is inferior in strength. Although Cu alloys and Fe-based alloys have excellent mechanical strength, their thermal conductivity is as low as several tens of W / m · K or less, which is considerably inferior in terms of heat dissipation.

【0006】一方、導電性と熱伝導率特性に優れている
Cuと、機械的強度が大きく熱膨張率がSiに近いMo
を組み合せ両者の特性を生かした金属複合材料で、主に
ICパッケージに搭載される放熱基板に利用されている
Cu−Mo複合材料が開示されている。
On the other hand, Cu, which has excellent conductivity and thermal conductivity characteristics, and Mo, which has high mechanical strength and a thermal expansion coefficient close to that of Si,
There is disclosed a Cu-Mo composite material which is a metal composite material utilizing the characteristics of both, and which is mainly used for a heat dissipation substrate mounted on an IC package.

【0007】しかし、この方法で、厚み(T)100μ
m前後の板を作製することは、圧延回数をかなり多くし
なければならず、その分製造コストが高くなることは明
らかであり、また、加工率を多くすることによって、M
o粒子が延ばされ、特性上、特に熱膨張率の異方性が大
きくなる等の理由から製造方法としては適当ではない。
However, in this method, the thickness (T) is 100 μm.
It is evident that the production of a plate having a length of about m requires a considerable increase in the number of times of rolling, which leads to an increase in the production cost.
It is not suitable as a production method because the o-particles are elongated and the anisotropy of the coefficient of thermal expansion in particular increases.

【0008】そこで,本発明の技術的課題は、上記
(ア)〜(オ)の全ての要件を満たすリードフレーム用
素材と、その製造方法と、それを用いた半導体パッケー
ジとを提供することにある。
Accordingly, it is an object of the present invention to provide a lead frame material which satisfies all of the above requirements (A) to (E), a method of manufacturing the same, and a semiconductor package using the same. is there.

【0009】[0009]

【課題を解決するための手段】本発明によれば、銅(C
u)と50重量%以上のモリブデン(Mo)を含む複合
圧延材であって、板厚40〜250μm,熱伝導率16
0〜250W/m・K,ヤング率180〜280GP
a,熱膨張係数11×10-6/K以下および密度10g
/cm3 以下の複合材からなることを特徴とするリード
フレーム用複合材が得られる。
According to the present invention, copper (C
u) and at least 50% by weight of molybdenum (Mo), a composite rolled material having a thickness of 40 to 250 μm and a thermal conductivity of 16
0-250W / m · K, Young's modulus 180-280GP
a, Coefficient of thermal expansion 11 × 10 −6 / K or less and density 10 g
/ Cm 3 or less, a composite material for a lead frame is obtained.

【0010】また、本発明によれば、前記リードフレー
ム用複合材において、Cu−Mo複合圧延材からなり、
圧延(Y)方向および圧延垂直(X)方向の各々のMo
粒子のアスペクト比(L/W)の比率[(L/W)Y
(L/W)X ]が2以下で、熱膨張係数の異方性が1.
5×10-6/K以下であることを特徴とするリードフレ
ーム用複合材が得られる。
According to the present invention, the composite material for a lead frame is made of a rolled Cu-Mo composite material,
Mo in each of the rolling (Y) direction and the rolling vertical (X) direction
Ratio of particle aspect ratio (L / W) [(L / W) Y /
(L / W) X ] is 2 or less and the anisotropy of the thermal expansion coefficient is 1.
A composite material for a lead frame, which is not more than 5 × 10 −6 / K, is obtained.

【0011】また、半導体部品を搭載するリードフレー
ムを備えた半導体パッケージにおいて,前記リードフレ
ームは、銅(Cu)と50重量%以上のモリブデン(M
o)を含むCu−Mo複合圧延材であって、板厚40〜
250μm、熱伝導率160〜250W/m・K、ヤン
グ率180〜280GPa、熱膨張係数11×10−6
/K以下および密度10g/cm3 以下を備えているこ
とを特徴とする半導体パッケージが得られる。
In a semiconductor package having a lead frame on which semiconductor components are mounted, the lead frame is made of copper (Cu) and 50% by weight or more of molybdenum (M).
a rolled Cu-Mo composite material containing o), having a thickness of 40 to
250 μm, thermal conductivity 160 to 250 W / m · K, Young's modulus 180 to 280 GPa, coefficient of thermal expansion 11 × 10 −6
/ K and a density of 10 g / cm 3 or less can be obtained.

【0012】また、本発明によれば、前記半導体パッケ
ージにおいて、前記Cu−Mo複合圧延材は、圧延
(Y)方向および圧延垂直(X)方向の各々のMo粒子
のアスペクト比(L/W)の比率[(L/W)Y /(L
/W)X ]が2以下で、熱膨張係数の異方性が1.5×
10-6/K以下であることを特徴とする半導体パッケー
ジが得られる。
Further, according to the present invention, in the semiconductor package, the Cu-Mo composite rolled material has an aspect ratio (L / W) of Mo particles in a rolling (Y) direction and a rolling perpendicular (X) direction. Ratio [(L / W) Y / (L
/ W) X ] is 2 or less and the anisotropy of the thermal expansion coefficient is 1.5 ×
A semiconductor package characterized by being at most 10 −6 / K is obtained.

【0013】また、30μm以下のCu粉末と2〜6μ
mのMo粉末を銅(Cu)と50重量%以上のモリブデ
ン(Mo)を含むように十分混合した粉末に、バインダ
ーを加え十分混練した後、押出し成形し、焼結、そして
冷間圧延又は温間圧延してCu−Mo複合圧延材を得る
ことを特徴とするリードフレーム用複合材の製造方法が
得られる。
Further, a Cu powder of 30 μm or less and 2-6 μm
m, and a binder obtained by adding a binder to a powder obtained by sufficiently mixing copper (Cu) and molybdenum (Mo) by 50% by weight or more, extruding, sintering, and cold rolling or hot rolling. A method for producing a composite material for a lead frame, characterized by obtaining a Cu-Mo composite rolled material by cold rolling.

【0014】また、本発明によれば、前記リードフレー
ム用複合材の製造方法において、前記Cu−Mo複合圧
延材は、板厚40〜250μm、熱伝導率160〜25
0W/m・K、ヤング率180〜280GPa、熱膨張
係数11×10-6/K以下および密度10g/cm3
下の特性を備えていることを特徴とするリードフレーム
用複合材の製造方法が得られる。
According to the present invention, in the method for producing a composite material for a lead frame, the Cu-Mo composite rolled material may have a thickness of 40 to 250 μm and a thermal conductivity of 160 to 25.
0 W / mK, Young's modulus 180 to 280 GPa, coefficient of thermal expansion 11 × 10 −6 / K or less, and density 10 g / cm 3 or less. can get.

【0015】さらに,本発明によれば、前記いずれかの
リードフレーム用複合材の製造方法において,前記冷間
圧延又は温間圧延を、前記Cu−Mo複合圧延材の圧延
(Y)方向および圧延垂直(X)方向の各々のMo粒子
のアスペクト比(L/W)の比率[(L/W)Y /(L
/W)X ]が2以下で、熱膨張係数の異方性が1.5×
10-6/K以下となるように行うことを特徴とするリー
ドフレーム用複合材の製造方法が得られる。
Further, according to the present invention, in any of the above-mentioned methods for producing a composite material for a lead frame, the cold rolling or the warm rolling is performed by using the rolling (Y) direction and rolling of the Cu—Mo composite rolled material. The ratio of the aspect ratio (L / W) of each Mo particle in the vertical (X) direction [(L / W) Y / (L
/ W) X ] is 2 or less and the anisotropy of the thermal expansion coefficient is 1.5 ×
A method for producing a composite material for a lead frame, which is performed so as to be 10 −6 / K or less, is obtained.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の実施の形態による半導体パ
ッケージを示す断面図である。また、図2は図1の半導
体パッケージに用いられるリードフレームを示す上面図
である。
FIG. 1 is a sectional view showing a semiconductor package according to an embodiment of the present invention. FIG. 2 is a top view showing a lead frame used in the semiconductor package of FIG.

【0018】図1を参照すると、半導体パッケージ10
は、半導体(IC)チップ1を搭載するステージ部2
と、リードフレーム基体3、リードフレーム基体3から
外側に延在するアウターリード部端子4及びリードフレ
ーム基体3から内方に延びるインナーリード部端子5と
を備えたリードフレーム本体6と、半導体チップ1とを
接続するボンディングワイヤー7と、これらをアウター
リード部端子4を残して覆う搭載基板8とを備えてい
る。
Referring to FIG. 1, a semiconductor package 10
Is a stage unit 2 on which a semiconductor (IC) chip 1 is mounted.
A lead frame main body 6 including a lead frame base 3, an outer lead terminal 4 extending outward from the lead frame base 3, and an inner lead terminal 5 extending inward from the lead frame base 3, and a semiconductor chip 1 And a mounting board 8 that covers these while leaving the outer lead terminal 4.

【0019】図2を参照すると、リードフレーム11
は、薄く長い板状のリードフレーム用素材からキャリア
部12と連結部13とを備えたままでプレスにより一体
に打ち抜き、又はエッチングにより形成される。キャリ
ア部12及び連結部13は、半導体パッケージ10を形
成の際、折り取られる。
Referring to FIG. 2, the lead frame 11
Is formed from a thin and long plate-like material for a lead frame by punching integrally with a press or by etching while having the carrier portion 12 and the connecting portion 13. The carrier part 12 and the connection part 13 are cut off when the semiconductor package 10 is formed.

【0020】本発明の実施の形態によるリードフレーム
では、所望の割合で配合したCu粉末およびMo粉末を
充分均一混合した後、水溶性バインダー,可塑剤および
純水を加え十分混練し、この混練材を押し出し成形した
後、脱バインダー,焼結そして圧延するという製造方法
で得られるT40〜250μmの薄い板をリードフレー
ム用素材として用いる。
In the lead frame according to the embodiment of the present invention, after the Cu powder and the Mo powder mixed in a desired ratio are sufficiently mixed uniformly, a water-soluble binder, a plasticizer and pure water are added and kneaded sufficiently. After extrusion molding, a thin plate of T40 to 250 μm obtained by a production method of debinding, sintering and rolling is used as a lead frame material.

【0021】リードフレーム用素材のCu含有量として
は、10〜50質量%で残りをMoが占めるCu−Mo
複合材が、熱伝導率や熱膨張率および剛性率からして適
当である。
The Cu content of the lead frame material is 10 to 50% by mass, with the remainder being Cu-Mo
Composites are suitable due to their thermal conductivity, coefficient of thermal expansion and rigidity.

【0022】また、リードフレームは空気に触れること
が多く、いわゆる150W/m・K以上ないと放熱材料
としては使用できない。近年の高密度化が進む中では、
160〜170W/m・K以上が望ましい。
Further, the lead frame often comes into contact with air, and cannot be used as a heat radiation material unless it is 150 W / m · K or more. With the recent increase in density,
160 to 170 W / mK or more is desirable.

【0023】下記表1に、既存の代表的なリードフレー
ム材料と本発明品との諸特性の比較を示す。42アロイ
は、Fe−42%Ni合金で一般によく使われている材
料であり、高強度型Cu合金とは引張強さ600MPa
以上、高導電型Cu合金は75%IACS以上のものを
示し、それらの代表例を示す。
Table 1 below shows a comparison of various characteristics between the present typical lead frame material and the present invention. Alloy 42 is a commonly used Fe-42% Ni alloy, and has a tensile strength of 600 MPa compared to a high-strength Cu alloy.
As described above, the high-conductivity-type Cu alloys are those having 75% IACS or more, and representative examples thereof are shown.

【0024】本発明品は、いずれも熱伝導率,熱膨張
率,ヤング率,導電率等総合的に優れている。また、4
2アロイと比較すると、熱膨張率はやや大きいが他の特
性より優れている。高強度型Cu合金の特性を見ると、
30質量%Cu以下−Moの特性値は、ほぼ同等であ
り、また、高導電型Cu合金と比較すると、導電率には
及ばないが、その他の特性値は優れていることから、一
般的なリードフレーム材としてはかなり優れていること
が判る。
The products of the present invention are all excellent in thermal conductivity, coefficient of thermal expansion, Young's modulus, conductivity and the like. Also, 4
Compared with Alloy 2, the coefficient of thermal expansion is slightly larger, but is superior to other properties. Looking at the characteristics of the high-strength Cu alloy,
The characteristic value of -Mo of 30% by mass or less is almost equal to that of the high-conductivity-type Cu alloy, but is lower than the conductivity, but the other characteristic values are excellent. It turns out that it is quite excellent as a lead frame material.

【0025】[0025]

【表1】 [Table 1]

【0026】本発明品は、特開平7−307422号公
報で開示されている押し出しによる方法で、リードフレ
ーム材料として適するように以下のように製造する。
The product of the present invention is manufactured by the extrusion method disclosed in JP-A-7-307422 so as to be suitable as a lead frame material as follows.

【0027】平均粒径(Fsss)2〜6μmのMo粉
末に同30μm以下のCu粉末を10〜50質量%加
え、充分・均一に混合する。この混合粉末に、バインダ
ーとして引張力と脱バインダー性が良いメチルセルロー
ス、界面活性剤には工業用プロビレングリコール、溶媒
には純水を用いて混練する。混練には、混練機に数回通
し、そして三本ロールに10回程度通し十分にバインダ
ーを行き渡らせ、かつMo粒子に配向性をもたらす。そ
して,厚さ(T)0.1〜1.8mm,望ましくは、T
0.2〜1.2mmで押し出しを行ないグリーン体を得
る。このグリーン体を十分脱バインダーした後、焼結し
た素材を圧延し、T40〜250μmの緻密化した板を
得る。この圧延板のMo粒子のアスペクト比(最長径/
最短怪:L/W)において、圧延方向に平行(Y)方向
のアスペクト比(L/W)Y と圧延方向に垂直(X)方
向のアスペクト比(L/W)X との比率[(L/W)Y
/(L/W)X ]が2以下であり、熱膨張係数の異方性
が1.5×10-6/K以下で、表面粗さRa≦0.1μ
m,Rmax ≦1の板が得られる。
To a Mo powder having an average particle size (Fsss) of 2 to 6 μm, 10 to 50% by mass of a Cu powder having a particle size of 30 μm or less is added and mixed sufficiently and uniformly. This mixed powder is kneaded with methyl cellulose having good tensile strength and debinding property as a binder, industrial propylene glycol as a surfactant, and pure water as a solvent. For kneading, the mixture is passed through a kneader several times, and then passed through a three roll about 10 times to sufficiently spread the binder and to give the Mo particles an orientation. And the thickness (T) is 0.1 to 1.8 mm, desirably, T
Extrusion is performed at 0.2 to 1.2 mm to obtain a green body. After sufficiently removing the binder from the green body, the sintered material is rolled to obtain a dense plate having a T of 40 to 250 μm. The aspect ratio of Mo particles of this rolled sheet (longest diameter /
Shortest Kai: L / W) in parallel to the rolling direction (Y) direction of the aspect ratio (L / W) Y to the rolling direction in the vertical (X) direction of the aspect ratio (L / W) ratio of X [(L / W) Y
/ (L / W) X ] is 2 or less, the anisotropy of the thermal expansion coefficient is 1.5 × 10 −6 / K or less, and the surface roughness Ra ≦ 0.1 μm.
m, Rmax ≤ 1 are obtained.

【0028】リードフレーム材料としての熱膨張係数の
異方性や表面粗さが上記のレべルであって、かつ上記表
1による特性であれば、半導体装置組立時の発熱あるい
は、作動時に発生する熱等による接合強度の低下がな
く、熱による変形や振動等の衝撃に耐えられる材料と言
える。
If the anisotropy and the surface roughness of the thermal expansion coefficient of the lead frame material are at the above-mentioned levels and the characteristics shown in Table 1 above, heat is generated at the time of assembling the semiconductor device or generated during operation. It can be said that the material does not decrease in bonding strength due to heat or the like and can withstand shocks such as deformation and vibration due to heat.

【0029】また、リードフレーム材として必要な打ち
抜き性あるいはエッチング性の善し悪しも重要なポイン
トである。
It is also important that the punching property or etching property required for the lead frame material is good or bad.

【0030】ここで,打ち抜きは、CuとMoが十分緻
密化しているため、側面や表面にクラックや亀裂が発生
せず良好である。一方、エッチング性は、CuとMoが
混在しているため技術を要するが、特開平9−1484
91号公報で開示したように問題はない。
Here, since the punching is sufficiently densified with Cu and Mo, cracks and cracks are not generated on the side surface and the surface, and the punching is favorable. On the other hand, the etching property requires technology because Cu and Mo are mixed,
There is no problem as disclosed in JP-A-91.

【0031】以下、本発明の実施の形態によるリードフ
レーム用複合圧延材の製造の具体例について説明する。
Hereinafter, a specific example of manufacturing a composite rolled material for a lead frame according to the embodiment of the present invention will be described.

【0032】(例1)平均粒径(Fsss)3μmのM
o粉末に同8μmの電解Cu粉末を10質量%加え、充
分・均一に混合する。この混合粉末に、バインダーとし
てメチルセルロース、界面活性剤として工業用プロピレ
ングリコールおよび純水を混ぜて混練した。混練には混
練機に3回通し、そして三本ロールに10回通し十分に
バインダーを行き渡らせ、高粘度スラリーにした。この
混練材を厚み(T)1.2mmで押し出しを行ないグリ
ーン体を得、このグリーン体を十分脱バインダーした
後、焼結した素材を10%以下の圧延率で、圧延を緑り
返し、T250μmの板を得た。
Example 1 M having an average particle size (Fsss) of 3 μm
10% by mass of the same 8 μm electrolytic Cu powder is added to the o powder and mixed sufficiently and uniformly. To this mixed powder, methylcellulose as a binder, propylene glycol for industrial use as a surfactant, and pure water were mixed and kneaded. For kneading, the mixture was passed through a kneader three times, and then passed three times through three rolls to sufficiently spread the binder to obtain a high viscosity slurry. The kneaded material was extruded with a thickness (T) of 1.2 mm to obtain a green body. After sufficiently debinding the green body, the sintered material was rolled green at a rolling rate of 10% or less, and T250 μm A plate was obtained.

【0033】この圧延板のMo粒子の圧延方向に平行
(Y)方向のアスペクト比(L/W)Y =3.4、圧延
方向に垂直(X)方向のアスペクト比(L/W)X
2.0であり、それらの比率[(L/W)Y /(L/
W)X ]=1.7となった。この時のYとX方向の熱膨
張係数の異方性が、1.3×10-6/Kであった。表面
粗さは、Ra≦0.1μm,Rmax ≦1μmであった。
また、熱伝導率163W/m・K、引張強度780MP
a,ヤング率280GPaと放熱性が良く高強度な特性
を有する材料ができた。
The aspect ratio (L / W) Y in the direction parallel to the rolling direction (Y) of the Mo particles of the rolled sheet (L / W) Y = 3.4, and the aspect ratio in the direction (X) perpendicular to the rolling direction (L / W) X =
2.0, and their ratio [(L / W) Y / (L /
W) X ] = 1.7. At this time, the anisotropy of the thermal expansion coefficient in the Y and X directions was 1.3 × 10 −6 / K. The surface roughness was Ra ≦ 0.1 μm and Rmax ≦ 1 μm.
In addition, thermal conductivity 163W / m · K, tensile strength 780MP
a, A material having a Young's modulus of 280 GPa, good heat dissipation, and high strength was obtained.

【0034】この得られた板材を両面エッチングにより
図1及び図2に示す形状のリードフレームに加工した。
なお、エッチング加工による変形はなく、サイドエッチ
は50μmであり、実用上使用に問題はなかった。
The obtained plate was processed into a lead frame having the shape shown in FIGS. 1 and 2 by double-sided etching.
There was no deformation due to the etching process, the side etch was 50 μm, and there was no problem in practical use.

【0035】(例2)例1と同様のMo粉末およびCu
粉末を7:3の割合で配合し、充分・均一に混合する。
この混合粉末に、例1と同様のバインダー,界面活性剤
および純水を混ぜて混練した。混練には混練機に2回通
し、そして三本ロールに7回通し、十分にバインダーを
行き渡らせ、高粘度スラリーにした。この混練材をT
0.8mmで押し出しを行ないグリーン体を得、このグ
リーン体を十分脱バインダーした後、焼結した素材を1
0%以下の圧延率で圧延を繰り返しT150μmの板を
得た。
(Example 2) The same Mo powder and Cu as in Example 1
The powders are mixed in a ratio of 7: 3 and mixed sufficiently and uniformly.
This mixed powder was mixed with the same binder, surfactant and pure water as in Example 1 and kneaded. For kneading, the mixture was passed twice through a kneader and then passed through a three-roll mill seven times to sufficiently spread the binder to form a high-viscosity slurry. This kneading material is
Extrusion was carried out at 0.8 mm to obtain a green body.
Rolling was repeated at a rolling reduction of 0% or less to obtain a T150 μm plate.

【0036】この圧延板のMo粒子のアスペクト比(L
/W)Y =3.1,(L/W)X =2.1であり、それ
らの比率[(L/W)Y /(L/W)X ]=1.5とな
った。このときのYとX方向の熱膨張係数の異方性が
1.2×10-6/Kであった。
The aspect ratio of the Mo particles (L
/ W) Y = 3.1, (L / W) X = 2.1, and their ratio [(L / W) Y / (L / W) X ] = 1.5. At this time, the anisotropy of the coefficient of thermal expansion in the Y and X directions was 1.2 × 10 −6 / K.

【0037】表面粗さは、Ra≦0.1μm,Rmax ≦
1μmであった。また、熱伝導率190W/m・K,引
張強度660MPa,ヤング率220GPaと放熱性が
良く高強度な特性を有する材料ができた。
The surface roughness is Ra ≦ 0.1 μm, Rmax ≦
It was 1 μm. In addition, a material having good heat dissipation properties and high strength properties was obtained with a thermal conductivity of 190 W / m · K, a tensile strength of 660 MPa, and a Young's modulus of 220 GPa.

【0038】この得られた板材を両面エッチングにより
図1に示す形状のリードフレームに加工した。なお、エ
ッチング加工による変形はなく、サイドエッチは30μ
mであり、実用上使用に問題はなかった。
The obtained plate was processed into a lead frame having the shape shown in FIG. 1 by double-sided etching. There was no deformation due to the etching process, and the side etch was 30μ.
m, and there was no problem in practical use.

【0039】(例3)例1と同様のMo粉末およびCu
粉末を1:1の割合で配合し、充分・均一に混合する。
この混合粉末に、例1と同様のバインダー,界面活性剤
および純水を混ぜて混練した。混練には混練機に2回通
し、そして三本ロールに6回通し十分にバインダーを行
き渡らせ、高粘度スラリーにした。この混練材をT0.
2mmで押し出しを行ないグリーン体を得、このグリー
ン体を十分脱バインダーした後、焼結した素材を10%
以下の圧延率で圧延を繰り返し、T40μmの板を得
た。
(Example 3) The same Mo powder and Cu as in Example 1
The powders are mixed at a ratio of 1: 1 and mixed sufficiently and uniformly.
This mixed powder was mixed with the same binder, surfactant and pure water as in Example 1 and kneaded. For kneading, the mixture was passed twice through a kneader, and then passed three times through a three-roll mill to sufficiently spread the binder to form a high-viscosity slurry. This kneaded material was added to T0.
Extrusion was performed at 2 mm to obtain a green body, and after sufficiently debinding the green body, the sintered material was reduced to 10%.
Rolling was repeated at the following rolling rates to obtain a T40 μm plate.

【0040】この圧延板のMo粒子のアスペクト比(L
/W)Y =3.2,(L/W)X =1.9であり、それ
らの比率[(L/W)Y /(L/W)X ]=1.7とな
った。このときのYとX方向の熱膨張係数の異方性が
1.5×10-6/Kであった。表面粗さは、Ra≦0.
1μm,Rmax ≦1μmであった。また,熱伝導率25
0W/m・K,引張強度530MPa,ヤング率180
GPaと放熱性が良く高強度な特性を有する材料ができ
た。
The aspect ratio (L) of the Mo particles in the rolled sheet
/ W) Y = 3.2, (L / W) X = 1.9, and their ratio [(L / W) Y / (L / W) X ] = 1.7. At this time, the anisotropy of the thermal expansion coefficient in the Y and X directions was 1.5 × 10 −6 / K. The surface roughness is Ra ≦ 0.
1 μm, Rmax ≦ 1 μm. In addition, the thermal conductivity 25
0W / m · K, tensile strength 530MPa, Young's modulus 180
A material having good heat dissipation and good strength with GPa was obtained.

【0041】この得られた板材を両面エッチングによ
り、図1に示す形状のリードフレームに加工した。な
お、エッチング加工による変形はなく、サイドエッチは
8μmであり、実用上使用に問題はなかつた。
The obtained plate material was processed into a lead frame having the shape shown in FIG. 1 by double-sided etching. There was no deformation due to the etching process, and the side etch was 8 μm, and there was no problem in practical use.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
リード材が容易に変形しないような機械的強度を備え、
素子の発熱に対して効率よく放散することができ、電気
的特性に優れ、リードフレームのパターン形成に必要な
エッチング性や打ち抜き性が良好であり,且つ安価であ
るリードフレーム用素材とその製造方法と、それを用い
た半導体パッケージとを提供することができる。
As described above, according to the present invention,
With mechanical strength so that the lead material does not easily deform,
An inexpensive lead frame material that can efficiently dissipate the heat generated by the element, has excellent electrical characteristics, has good etching and punching properties required for forming a lead frame pattern, and is inexpensive. And a semiconductor package using the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の発明の実施の形態による半導体装置の
断面図である。
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention.

【図2】図1に示す半導体パッケージに用いられるリー
ドフレームを示す図である。
FIG. 2 is a view showing a lead frame used for the semiconductor package shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1 半導体(IC)チップ 2 ステージ部 3 リードフレーム基体 4 アウターリード部端子 5 インナーリード部端子 6 リードフレーム本体 7 ボンデイングワイヤー 8 搭載基板 11 リードフレーム DESCRIPTION OF SYMBOLS 1 Semiconductor (IC) chip 2 Stage part 3 Lead frame base 4 Outer lead part terminal 5 Inner lead part terminal 6 Lead frame main body 7 Bonding wire 8 Mounting board 11 Lead frame

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 9/00 C22C 9/00 C22F 1/00 627 C22F 1/00 627 628 628 661 661A 685 685A 685Z 687 687 (72)発明者 市田 晃 富山県富山市岩瀬古志町2番地 東京タン グステン株式会社富山製作所内 Fターム(参考) 4K018 BA02 BA09 BC12 CA07 CA31 EA52 FA01 5F067 AA03 EA00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C22C 9/00 C22C 9/00 C22F 1/00 627 C22F 1/00 627 628 628 661 661A 685 685A 685Z 687 687 (72) Inventor Akira Ichida 2nd Iwase Koshimachi, Toyama City, Toyama Prefecture Tokyo Tan Gusten Co., Ltd. Toyama Works F term (reference) 4K018 BA02 BA09 BC12 CA07 CA31 EA52 FA01 5F067 AA03 EA00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 銅(Cu)と50重量%以上のモリブデ
ン(Mo)を含む複合圧延材であって、板厚40〜25
0μm、熱伝導率160〜250W/m・K、ヤング率
180〜280GPa、熱膨張係数11×10-6/K以
下および密度10g/cm3 以下の複合材からなること
を特徴とするリードフレーム用複合材。
1. A composite rolled material containing copper (Cu) and 50% by weight or more of molybdenum (Mo), having a thickness of 40 to 25.
For a lead frame, comprising a composite material having a thickness of 0 μm, a thermal conductivity of 160 to 250 W / m · K, a Young's modulus of 180 to 280 GPa, a thermal expansion coefficient of 11 × 10 −6 / K or less, and a density of 10 g / cm 3 or less. Composite materials.
【請求項2】 請求項1記載のリードフレーム用複合材
において、Cu−Mo複合圧延材からなり、圧延(Y)
方向および圧延垂直(X)方向の各々のMo粒子のアス
ペクト比(L/W)の比率[(L/W)Y /(L/W)
X ]が2以下で、熱膨張係数の異方性が1.5×10-6
/K以下であることを特徴とするリードフレーム用複合
材。
2. The composite material for a lead frame according to claim 1, wherein the composite material comprises a rolled Cu—Mo composite material and is rolled (Y).
Of the aspect ratio (L / W) of Mo particles in the vertical direction and the rolling perpendicular (X) direction [(L / W) Y / (L / W)
X ] is 2 or less, and the anisotropy of thermal expansion coefficient is 1.5 × 10 −6
/ K or less.
【請求項3】 半導体部品を搭載するリードフレームを
備えた半導体パッケージにおいて,前記リードフレーム
は、銅(Cu)と50重量%以上のモリブデン(Mo)
を含むCu−Mo複合圧延材であって、板厚40〜25
0μm、熱伝導率160〜250W/m・K、ヤング率
180〜280GPa、熱膨張係数11×10−6/K
以下および密度10g/cm3 以下を備えていることを
特徴とする半導体パッケージ。
3. A semiconductor package having a lead frame on which a semiconductor component is mounted, wherein the lead frame is made of copper (Cu) and molybdenum (Mo) of 50% by weight or more.
And a Cu-Mo composite rolled material containing:
0 μm, thermal conductivity 160 to 250 W / m · K, Young's modulus 180 to 280 GPa, coefficient of thermal expansion 11 × 10 −6 / K
And a density of 10 g / cm 3 or less.
【請求項4】 請求項3記載の半導体パッケージにおい
て、前記Cu−Mo複合圧延材は、圧延(Y)方向およ
び圧延垂直(X)方向の各々のMo粒子のアスペクト比
(L/W)の比率[(L/W)Y /(L/W)X ]が2
以下で、熱膨張係数の異方性が1.5×10-6/K以下
であることを特徴とする半導体パッケージ。
4. The semiconductor package according to claim 3, wherein the Cu—Mo composite rolled material has an aspect ratio (L / W) of Mo particles in each of a rolling (Y) direction and a rolling perpendicular (X) direction. [(L / W) Y / (L / W) X ] is 2
A semiconductor package having an anisotropy of thermal expansion coefficient of 1.5 × 10 −6 / K or less.
【請求項5】 30μm以下のCu粉末と2〜6μmの
Mo粉末を銅(Cu)と50重量%以上のモリブデン
(Mo)を含むように十分混合した粉末に、バインダー
を加え十分混練した後、押出し成形し、焼結、そして冷
間圧延又は温間圧延してCu−Mo複合圧延材を得るこ
とを特徴とするリードフレーム用複合材の製造方法。
5. A binder obtained by adding a binder to a powder obtained by sufficiently mixing Cu powder of 30 μm or less and Mo powder of 2 to 6 μm so as to contain copper (Cu) and 50% by weight or more of molybdenum (Mo), A method for producing a composite material for a lead frame, comprising extruding, sintering, and cold rolling or warm rolling to obtain a Cu-Mo composite rolled material.
【請求項6】 請求項5記載のリードフレーム用複合材
の製造方法において、前記Cu−Mo複合圧延材は、板
厚40〜250μm、熱伝導率160〜250W/m・
K、ヤング率180〜280GPa、熱膨張係数11×
10-6/K以下および密度10g/cm3 以下の特性を
備えていることを特徴とするリードフレーム用複合材の
製造方法。
6. The method for manufacturing a composite material for a lead frame according to claim 5, wherein the Cu—Mo composite rolled material has a thickness of 40 to 250 μm and a thermal conductivity of 160 to 250 W / m ·.
K, Young's modulus 180-280 GPa, coefficient of thermal expansion 11 ×
A method for producing a composite material for a lead frame, comprising characteristics of 10 −6 / K or less and a density of 10 g / cm 3 or less.
【請求項7】 請求項5又は6記載のリードフレーム用
複合材の製造方法において,前記冷間圧延又は温間圧延
を、前記Cu−Mo複合圧延材の圧延(Y)方向および
圧延垂直(X)方向の各々のMo粒子のアスペクト比
(L/W)の比率[(L/W)Y /(L/W)X ]が2
以下で、熱膨張係数の異方性が1.5×10-6/K以下
となるように行うことを特徴とするリードフレーム用複
合材の製造方法。
7. The method for manufacturing a composite material for a lead frame according to claim 5, wherein the cold rolling or the warm rolling is performed by a rolling (Y) direction and a rolling vertical (X) of the Cu—Mo composite rolled material. ) Direction, the ratio [(L / W) Y / (L / W) X ] of the aspect ratio (L / W) of each Mo particle is 2
A method for producing a composite material for a lead frame, wherein the anisotropy of the thermal expansion coefficient is set to 1.5 × 10 −6 / K or less.
JP19316298A 1998-07-08 1998-07-08 Composite material for lead frame and semiconductor package using it Pending JP2000026926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19316298A JP2000026926A (en) 1998-07-08 1998-07-08 Composite material for lead frame and semiconductor package using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19316298A JP2000026926A (en) 1998-07-08 1998-07-08 Composite material for lead frame and semiconductor package using it

Publications (1)

Publication Number Publication Date
JP2000026926A true JP2000026926A (en) 2000-01-25

Family

ID=16303329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19316298A Pending JP2000026926A (en) 1998-07-08 1998-07-08 Composite material for lead frame and semiconductor package using it

Country Status (1)

Country Link
JP (1) JP2000026926A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1231633A1 (en) * 2000-04-14 2002-08-14 A.L.M.T. Corp. Material of heat-dissipating plate on which semiconductor is mounted, method for fabricating the same, and ceramic package produced by using the same
JP2003297985A (en) * 2002-03-22 2003-10-17 Plansee Ag Package and manufacturing method thereof
US7083759B2 (en) 2000-01-26 2006-08-01 A.L.M.T. Corp. Method of producing a heat dissipation substrate of molybdenum powder impregnated with copper with rolling in primary and secondary directions
US20140345687A1 (en) * 2012-06-27 2014-11-27 International Business Machines Corporation Niobium thin film stress relieving layer for thin-film solar cells
EP2743973A3 (en) * 2012-12-11 2014-12-03 Robert Bosch Gmbh Method for contacting a semiconductor element by welding a contact element to a sintered layer on the semiconductor element and semiconductor component with increased stability against thermomechanical influence
CN104762498A (en) * 2015-04-14 2015-07-08 中国工程物理研究院材料研究所 Hot isostatic pressing preparation method of high-density molybdenum-copper alloy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083759B2 (en) 2000-01-26 2006-08-01 A.L.M.T. Corp. Method of producing a heat dissipation substrate of molybdenum powder impregnated with copper with rolling in primary and secondary directions
EP1231633A1 (en) * 2000-04-14 2002-08-14 A.L.M.T. Corp. Material of heat-dissipating plate on which semiconductor is mounted, method for fabricating the same, and ceramic package produced by using the same
EP1231633A4 (en) * 2000-04-14 2003-05-28 Almt Corp Material of heat-dissipating plate on which semiconductor is mounted, method for fabricating the same, and ceramic package produced by using the same
EP1553627A1 (en) * 2000-04-14 2005-07-13 A.L.M.T. Corp. Material for a heat dissipation substrate for mounting a semiconductor and a ceramic package using the same
JP2003297985A (en) * 2002-03-22 2003-10-17 Plansee Ag Package and manufacturing method thereof
US20140345687A1 (en) * 2012-06-27 2014-11-27 International Business Machines Corporation Niobium thin film stress relieving layer for thin-film solar cells
US9202943B2 (en) * 2012-06-27 2015-12-01 International Business Machines Corporation Niobium thin film stress relieving layer for thin-film solar cells
EP2743973A3 (en) * 2012-12-11 2014-12-03 Robert Bosch Gmbh Method for contacting a semiconductor element by welding a contact element to a sintered layer on the semiconductor element and semiconductor component with increased stability against thermomechanical influence
CN104762498A (en) * 2015-04-14 2015-07-08 中国工程物理研究院材料研究所 Hot isostatic pressing preparation method of high-density molybdenum-copper alloy

Similar Documents

Publication Publication Date Title
US6737168B1 (en) Composite material and semiconductor device using the same
JPWO2007004579A1 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
WO2002089206A1 (en) Heat sink
JP2004241765A (en) Composite material and manufacturing method therefor
JP2000026926A (en) Composite material for lead frame and semiconductor package using it
JP6962803B2 (en) Clad material and its manufacturing method
JP4404602B2 (en) Ceramics-metal composite and high heat conduction heat dissipation substrate using the same
WO2004038049A1 (en) Composite material, method for producing same and member using same
JPH11307701A (en) Heat sink and manufacture therefor
JP3552587B2 (en) Composite materials and semiconductor devices
JP3194118B2 (en) Semiconductor device and method of manufacturing semiconductor component used in the semiconductor device
TWI640495B (en) Composite component, use and manufacturing method of the same
JP2003078087A (en) Exoergic composite substrate with fin for semiconductor element
JP2000311971A (en) Semiconductor device and heat sink thereof
JP3452015B2 (en) Heat sink and method of manufacturing the same
JP3160696B2 (en) Metal composite material, method of manufacturing the same, and package having the same
JP2810873B2 (en) Method of manufacturing Cu-W alloy substrate for heat sink of semiconductor element
JP2009043981A (en) Ceramics substrate for electronic component, and method of manufacturing same
JP2967065B2 (en) Semiconductor module
JP2815656B2 (en) High-strength heat-radiating structural member for packaged semiconductor devices
JP3180100B2 (en) Semiconductor module
JP2010118651A (en) Heat sink, multilayer heat sink, and method of manufacturing heat sink
JP2003318316A (en) Ceramic circuit substrate
JP3420415B2 (en) High thermal conductive composite material
JP2003221604A (en) Method for manufacturing composite material with low thermal expansion and high thermal conductivity

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030702